
A Web-based Case-based Learning Environment – Use
in the Didactics of Informatics

Maria Boubouka*

National and Kapodistrian University of Athens
Department of Informatics and Telecommunications

mboub@di.uoa.gr

Abstract. The present dissertation examines the didactic utilization of cases,
specifically through digital learning environments. The review of existing digi-
tal case-based learning environments indicated the need for the development of
an environment that enables the creation of learning activities of different types
based on one or more than one cases. Towards this end, the design of the learn-
ing environment CASTLE (CASes for Teaching and LEarning) is proposed. In-
novative characteristics of CASTLE concern: the distinction of cases and activi-
ties that are handled as different entities, the generic design that can be speci-
fied for teaching different subject matters and the support of interaction be-
tween users. A prototype of CASTLE for teaching Programming has been cre-
ated and is described, along with a proposed template of Programming cases
which is supported by experimental evidence. Finally, the evaluation of
CASTLE prototype and an investigation for the specification of CASTLE in
Didactics are presented.

Keywords. Cases, Problems, Learning Activities, Educational scenarios, Di-
dactics of Programming

1 Introduction

One of the most salient goals of modern education is the development of problem
solving skills [1-2]. Cases which are context-rich problem descriptions are essential
ingredients of learning environments aiming at enabling students to deal with prob-
lems. Context information included in cases helps students understand the meaning-
fulness of dealing with the problems and therefore increases their motivation for en-
gagement in the problem solving process [3-4].

In bibliography there is neither a unique definition for the term case nor a consen-
sus for case content or structure [5-7]. This is due to the fact that cases are being used
in a great variety of learning activities, some of which demand only the problem de-
scription and others necessitate that this description be accompanied by one or more

* Dissertation Advisor: Maria Grigoriadou, Emeritus Professor

solutions [8]. Jonassen [9] characterizes cases as “building blocks of problem-based
learning environments” and summarizes seven different ways of case utilization in
teaching: 1) cases as problems to solve, 2) cases as worked examples, 3) case studies,
4) cases as analogues [10], 5) cases as prior experiences [11-13], 6) cases as multiple
perspectives [7], 7) cases as simulations. The aforementioned applications of cases
differ in terms of: a) the structuredness of the problems (well structured or ill struc-
tured) [1], b) the number of different cases that are being involved (one or more than
one case) and c) how the case is being used i.e. as an example to be studied or as a
problem to be solved. Within the wide range of different learning activities that can be
designed based on cases there have been included activities adequate for both novices
and experts on a subject matter. Moreover, the fact being that case authoring is a
rather demanding task, the need to maximize case utilization through the creation of
more than one learning activities based on one case is emphasized.

In the last decades a large number of digital case-based learning environments have
been developed, covering a variety of learning subject matters. The extended review
performed, and analytically described in the dissertation, focused on the structure and
content of cases as well as on the types of activities based on the cases in the exam-
ined learning environments.

Considerable differences have been noticed in the length of the cases included in
the reviewed environments. Cases in the form of story problems in learning environ-
ments for Mathematics [14] or Physics [15] are rather short (a couple of paragraphs),
while cases describing design problems in Architecture [16] or Computer Engineering
[17,18] are quite long (multiple pages, collections of files connected by analytical
narratives of the problem situation and the solution process). Moreover, besides the
problem description, a case may contain or not the description of its solution process
given by an expert.

As far as the case-based learning activities are concerned, each learning environ-
ment usually contains one single type of activity. In particular, there are environments
where students are asked to solve the case problems [19]; others where students can
study cases already solved by experts [16] and others where students have to partici-
pate in group discussions based on one case [20]. In another group of environments
students working on a case are engaged in a sequence of activities, which is always
the same for all cases included in the environment [21]. Finally, only a small number
of environments support activities asking for comparisons between cases [22].

Furthermore, few learning environments allow case authoring [23]. In the majority
of the environments the case collection is created by their developers and no author-
ing functionalities are available for the final users (instructors or learners). Finally,
none of the reviewed case-based environments have social software functionalities
that would allow the exchange of comments on the learning material between users.

To sum up, the review of existing case-based digital learning environments has in-
dicated that the creation of distinct learning activities based on one case remains an
open research issue. The development of such a learning environment is of critical
importance as there are case-based activities adequate for both novices and advanced
learners in a subject matter. Moreover, case authoring is an exacting task. Thus, a
learning environment that supports case authoring and case reuse in distinct case-

based activities may consist a powerful tool for the instructor by enabling him/her to
create learning activities adapted to the educational needs of his/her students.

Towards this end the present dissertation proposes the design of the learning envi-
ronment CASTLE (CASes for Teaching and LEarning), which aims to support teach-
ing and learning through cases. The design of CASTLE is generic and can be adapted
to the specific needs of a learning subject matter through the specification of the de-
sign of cases and case-based learning activities. In the dissertation experimental evi-
dence is presented concerning: the development of a prototype of CASTLE for teach-
ing Programming, the evaluation of this prototype by novice and expert Programming
teachers who used the environment as authors, and an investigation for the specifica-
tion of CASTLE in Didactics.

2 The design principles of CASTLE

The main requirement for the design of CASTLE was to support the authoring of
cases as well as the authoring and elaboration of different types of learning activities
based on cases. Within the different types of activities, the same case may play a role
ranging from being an already solved problem offered to be studied as an example, to
being presented as a novel problem to be solved. Other types of activities may involve
two or more cases. Such an activity asks students to compare the solutions of two
isomorphic case problems (different story, same procedure)[24] in order to identify
structural similarities, or to study a solved case and engage in solving an isomorphic
one. This fundamental requirement is being met in CASTLE by handling cases and
case-based learning activities as distinct entities which are interrelated between them.

Three different user roles are being supported in CASTLE: teacher, learner and
administrator. In CASTLE a teacher can: author cases and case-based activities; or-
ganize learning activities in collections; create sequences of learning activities in or-
der to form educational scenarios; assign these scenarios to learners and follow their
elaboration. Learners engage in the elaboration of educational scenarios individually
or in groups. Learners are also allowed to author cases themselves. Administrators in
CASTLE are responsible for the management of user accounts, subject matters and
learning material in the form of cases, activities and scenarios.

Additionally, CASTLE supports the interaction between the groups of teachers and
learners thus supporting the formation of communities. In other words, CASTLE has
social software functionalities [25]. For example, a case author, after publicizing a
case in CASTLE, can receive both verbal comments on the case and an arithmetical
grade from 1 to 5 by other users, teachers and learners. The received comments and
feedback can facilitate the optimization of the learning material as authors have the
possibility to commit improvements. Every case is owned by its author in the sense
that only its author can make changes on a case and create an updated version of it.
However, no ownership is required on a case in order to create a learning activity
based on it. This means that there are interactions between users during the creation of
the learning material.

Furthermore, data from user interaction is collected in CASTLE while students
elaborate educational scenarios. This data is used as an input to the open learner
model [26, 27] of CASTLE and enables the provision of personalized feedback to the
learners.

The generic design of CASTLE presented here needs further specification in order
to meet the special demands of each learning subject matter. This procedure takes
place through the selection of case content and structure as well as the types of case-
based learning activities adequate for a given subject matter. In the following para-
graph the specification process leading to the prototype of CASTLE for Programming
teaching and learning is described.

3 Specification process of CASTLE in Programming .

3.1 Specification of case structure

In order to specify the case structure for the subject matter of Programming, a review
of the relevant literature was conducted [28]. Two different Programming case study
structures have been found in bibliography: Structure A proposed by Linn and Clancy
[29] and Structure B proposed by Spooner and Skolnick [30] (see Table 1). These
structures have both similarities and differences when compared. For example, both
structures propose that a case should contain the problem description (Programming
problem statement in Structure A, Motivation, Background in Structure B), an expla-
nation for the problem solution (Solution process description in Structure A, Algo-
rithm development and New Programming concepts in Structure B), the code of the
program produced to solve the problem (Code listing in Structure A, Solution pro-
gram in Structure B) and questions on the solution (Study & Test questions in Struc-
ture A, Discussion & Further study in Structure B).

Table 1. Programming Case study structures

Structure A Structure B
Programming Problem statement
Solution process description
Code listing

Study questions
Test questions

Motivation
Background
Algorithm development
New Programming concepts
Solution program

Discussion
Further study

In CASTLE, Cases and case-based Activities are considered different entities and are
handled independently. In the Case study structures described above, there are parts
that correspond to the Case entity of CASTLE and parts that correspond to the Activi-

ties (e.g Study & Test questions in Structure A and Discussion & Further study in
Structure B). The comparison between the two structures shows that differences re-
side in the Case part of the Case studies and, more specifically, in the parts referring
to the explanation of the problem solution. In particular, Structure A proposes an ex-
planation of the critical decisions reached by an expert programmer while writing the
solution program. On the contrary, Structure B suggests a gradual introduction of the
solution, starting with the description of the algorithm development and proceeding
with the new programming concepts required in the program code.
In order to select the structure of Cases in the CASTLE prototype for Programming
teaching, the two structures have been compared in two empirical studies.

First empirical study.
The first empirical study aimed to compare the two structures in terms of their effi-

ciency and their acceptance by the learners.

In particular, the research questions were:

─ does the structure of a programming case affect the ability of learners to develop
programs for resolving similar problems?

─ does the structure of a programming case affect the time required to study it?
─ what are the opinions of the learners about the structure and the usefulness of

cases?

Participants.
102 first-year students participated in the study. They had enrolled to the course

“Introduction to Informatics and Telecommunications” at the Department of Infor-
matics and Telecommunications of the National and Kapodistrian University of Ath-
ens. The students formed two groups of 51 members each: Group 1 and Group 2.

Procedure.
The empirical study consisted of the following phases:

─ Phase A, Pre-test (30 min): the students of both groups worked on a programming
problem and were asked to develop a program in order to solve it.

─ Phase B, Case study (60 min): the students of Group 1 worked on a Case study
structured according to Structure A and the students of Group 2 worked on a Case
study structured according to Structure B. The case problem for both groups was
the same.

─ Phase C, Post-test (30 min): the students of both groups worked on a problem iso-
morphic to the problem of the pre-test phase. As in phase A, their task was to de-
velop a program.

─ Phase D, Filling the questionnaire (15 min). All students were asked to fill in a
questionnaire on their opinions on the Case study assigned to them in phase B.

Students were also asked to write down in their response sheet the actual time they
had spent on the completion of phases A, B and C.

Results.
The programs developed by the students during the pre-test and post-test phases have
been evaluated independently according to criteria set by two experienced Program-
ming teachers who assigned a five-point scale grade (0-4) for each criterion. The total
grade of each program has been calculated as the mean value of the distinct criteria
grades. Disagreements between evaluators were resolved through discussion.

Pre-test performance between the two groups has been compared using an inde-
pendent samples t-test. No significant difference was found in the t-test performed
(t(100)= 0,107, p=0,915) (mean pre-test scores Group1=2,5620, Group2=2,5375).

Subsequently, repeated General Linear Model (GLM) measures analysis of vari-
ance on students’ performances in pre- and post-test, with Case (pre-test vs. post-test)
as the within-subjects factor, and Case structure (Group1 vs. Group2) as the between-
subjects factor has been conducted. The corresponding multivariate tests revealed that
the Case factor contributes to the improvement of the post–test performance of both
groups’. The “Case x Case structure” interaction yielded no significant effects (mean
post-test scores Group1=2,995, Group2=2,743). The results of the repeated measures
analysis are presented in Τable 2.

Table 2. Multivariate tests for time factor and for the interaction Case x Case structure

Factor F(1) p

Case 11.68 0.001
Case x Case structure 1.48 0.226

As can be seen in Table 2, no evidence was found supporting the assumption that
Case structure may affect the ability of students to develop programs that resolve
similar (to the case) problems.

Data concerning the other two research questions has also been analyzed. In spe-
cific, this data concerned: a) the time students spent studying the Case in Phase B, b)
the students’ opinions on the structure and usefulness of Case. The data analysis
showed that: a) there was a significant difference in the time students of the two
groups spent studying the Case, with students of the Group 1 spending less time than
those of Group 2, b) there was a significant difference of opinions of students of the
two groups about the redundancy of the information contained in the Cases, with
students of the Group 2 claiming more often that some parts of the Case they worked
on should be omitted.

Second empirical study.

The second empirical study focused on the case authoring process aiming at the inves-
tigation of the difficulties pre-service Computer Science teachers face while acting as
case authors. In this framework, the proposed case structures (Structure A and Struc-
ture B) have also been compared. Significant differences have been noticed in the
frequency pre-service teachers select Structure A and Structure B templates, with
Structure A being preferred by the majority of authors. Moreover, significantly less

problems in the case structure have been observed to cases structured according to
Structure A than those structured according to Structure B.

Case template in CASTLE Programming prototype.

Evidence from both empirical studies described above has been considered in order to
design the Case template for CASTLE Programming prototype. Namely, the selected
template followed the Structure A outline containing the parts: Problem where the
case problem is described, Solution where the solution program code is listed and
Explanation where the most important decisions in the development of the solution
program are commented.

3.2 Specification of case-based activities

Next, the specification of CASTLE Programming prototype proceeded with the selec-
tion of the case-based activities types. Ideas for the types of activities were found in
the Didactics of Programming bibliography, including the Programming case studies
structure proposals described above as well as digital learning environments special-
ized in Programming instruction.

Some of the selected types of activities engage learners to respond to questions af-
ter studying an entire case and others demonstrate only some of the case parts and
require the completion of the case by the learners. For example, in perturbation ac-
tivities, the entire case template (including the parts problem, solution and explana-
tion) is presented to learners. Learners have to study the proposed solution and expla-
nation thoroughly and solve a new problem themselves. The new problem is created
by the alteration of the case problem conditions. On the contrary, in explanation ac-
tivities only the problem and solution parts of the case are being presented to the
learners who have to complete the explanation part themselves. In another set of ac-
tivities, two or more cases are involved. For example, in comparison activities stu-
dents have to study two entire cases and find similarities and differences in their solu-
tions.

3.3 CASTLE Programming prototype outline

CASTLE layout.
The main screen of CASTLE is divided into three areas: the concept tree (Figure 1,

A), the information frame (Figure 1, B) and the presentation tabs (Figure 1, C). Cases
appear as leaves in the concept tree, appended from the concept they refer to. Once a
user clicks on the name of a given case, the case unfolds into a new presentation tab.
Simultaneously, a list of all activities based on this case appears in the information
frame. A user may select an activity from the list in order to view it in a new presenta-
tion tab.

Case management.
Case authoring in CASTLE is a two-step activity. In the first step the author fills in

the case name, the problem description, the problem constraints (if any), the main
concept and (optionally) the group of cases containing isomorphic problems. In the
second step the problem solution (code listing) together with the explanation of criti-
cal decisions are completed. This enables the submission of multiple solutions to a
given problem description. Every solution is divided into parts which are labeled ac-
cording to their function. Explanation is listed below the solution, following the same
labels.

Fig. 1 CASTLE Snapshot where A. the concept tree, B. the information frame & C. the

presentation tabs

Activity management.
CASTLE facilitates the case activity authoring by appropriately presenting and hiding
parts of a case according to the selected activity type. An activity author should com-
plete the following steps in order to create an activity:

1. Name the activity
2. Select the activity type out of the list of activities included in CASTLE
3. Select the case (or the cases) the activity is based on
4. Write the activity question
5. Provide information about: the estimated difficulty level (1 to 5) and the required

elaboration time (in minutes).

An activity author may base his/her activities on cases previously authored by
him/herself, but also on cases authored by others. If the adequate case is not already
included in CASTLE, the author should first create the case and then proceed with the
creation of the activity.

Comment exchange functionalities.
CASTLE users may exchange comments on the cases and activities included in

CASTLE. This commenting mechanism provides authors with feedback on the learn-
ing material they have created thus enabling them to make improvements. In specific,
a case author may receive both verbal comments and a numerical evaluation in a five-
point scale (1 to 5). Activities authors, in addition to the verbal and numerical evalua-
tion, receive feedback concerning the estimation of other users on the activity diffi-
culty level (1 to 5) and the required elaboration time.

Other functionalities.
CASTLE supports the creation of educational scenarios, which are sequences of

learning activities. In order to help teachers create their scenarios, CASTLE provides
them the opportunity to organize sets of activities in collections. Moreover, a teacher
is able to monitor and support the elaboration of scenarios by his/her students who
work with CASTLE.

3.4 CASTLE Programming prototype evaluation

The prototype of CASTLE for Programming has been used and evaluated by a
group of 66 pre-service programming teachers and a group of 17 expert programming
teachers. Pre-service teachers were four-year students at the Department of Informat-
ics and Telecommunications of the National and Kapodistrian University of Athens
who had enrolled to the course “Introduction to Informatics and Telecommunica-
tions”. Expert teachers were in-service teachers of Informatics with many years of
teaching experience in secondary education. Teachers had to work with CASTLE
prototype in order to create cases and case-based learning activities. Next, they were
asked to submit comments on cases and case-based learning activities authored by
their peers. At the same time, they had to fill in an evaluation questionnaire contain-
ing both Likert-scale and open-ended questions. The analysis of the teachers’ answers
in the questionnaires revealed that both groups of teachers had expressed positive
opinions on CASTLE. In specific, teachers agreed that CASTLE manages to handle
successfully cases and activities as distinct entities, supporting users adequately in
finding activities based on a given case. Moreover, teachers of both groups found the
comment exchange functionalities of CASTLE really useful, recognizing how impor-
tant it is not only to receive but also to submit comments themselves. Few significant
differences on the opinions of the two groups of students have been observed. For
example, pre-service teachers responded that CASTLE is more adequate for beginner
learners in Programming than it is for more advanced learners. Expert teachers do not
share this opinion as they consider CASTLE equally useful for learners of all levels.
Suggestions for the next versions of CASTLE have also been collected from the
evaluation of the prototype. Evaluators indicated that help information should be up-
graded. Finally, interesting ideas for layout improvements have been reported and will
be taken into consideration.

4 Specification process of CASTLE in Didactics.

The specification of CASTLE in Didactics has also been investigated in the frame-
work of this dissertation. Many examples of case utilization in teacher education have
been reported in the last years. An empirical study was conducted to examine whether
the way a case is being studied (through an online learning environment or in class)
affects the ability of teachers to design learning activities [31]. No significant differ-
ences have been reported. The examination of how case-based activities of Didactics
can be implemented through a digital learning environment provided evidence that
CASTLE design is adequate for this subject matter as well.

5 Conclusions

The review of relevant bibliography indicated the need and usefulness of a learning
environment that enables the authoring of learning activities of different types based
on one case, as this remains an open issue in the domain of digital case-based learning
environments. There is a large variety of learning activities that may be created on a
given case, including activities both for novices and for advanced learners. Addition-
ally, case authoring is a demanding task. These facts stress the importance of case
reuse in different types of activities.

In the framework of the present dissertation the architectural design of the web-
based case-based learning environment CASTLE (CASes for Teaching and LEarning)
is presented. CASTLE handles cases and case-based learning activities as distinct
entities. An author may create his/her own cases in CASTLE or find interesting cases
created by others and use them to create different types learning activities. Some
types of learning activities in CASTLE may refer to two or more cases (e.g. compari-
son activities). Additionally, CASTLE enables the creation and elaboration of educa-
tional scenarios that are formed as sequences of case-based learning activities. Fi-
nally, comment exchange on cases, learning activities and educational scenarios is
supported, enabling authors to constantly improve their learning material.

The specification of the generic design of CASTLE in two subject matters has been
also examined. Programming and Didactics have been selected as representative sub-
ject matters that contain mainly well-structured and ill-structured problems respec-
tively. The investigation showed that CASTLE may be specified in both subject mat-
ters. In Programming, the investigation went further and a prototype of CASTLE for
Programming teaching has been developed. The Programming case template used in
CASTLE prototype has been selected after the experimental comparison of two tem-
plates found in bibliography and is proposed. Finally, CASTLE prototype has been
evaluated by pre-service and expert teachers. Both groups of teachers expressed over-
all satisfaction with CASTLE, found that it succeeds to support users to find the learn-
ing activities based on a given case and recognize the importance of receiving and
submitting comments on the learning material.

References

1. Jonassen, D. H.: Instructional design model for well-structured and ill-structured problem-
solving learning outcomes. Educational Technology Research and Development, vol
45(1), 65-95 (1997)

2. Jonassen, D. H.: What is problem solving. In Jonassen, D. H. (Ed.) Learning to solve prob-
lems: instructional design guide, pp 1-18. NJ: Lawrence Erlbaum Associates (2003b)

3. Brown, J.S., Collins, A., Duguid, P. : Situated cognition and the culture of learning. Edu-
cational Researcher, 18, 32-42 (1989)

4. Vosniadou, S. How children learn. Educational Practices Series, The International Acad-
emy of Education (IAE) and the International Bureau of Education (UNESCO) (2001).

5. Herreid, C. F.: Start with a story: The case study method of teaching college science.
NSTA Press: Arlington, VA (2006)

6. Kolodner, J.: Case-Based Reasoning. San Mateo, CA: Morgan Kaufmann Publishers Inc.
(1993)

7. Spiro, R. J., Coulson, R. L., Feltovich, P. J., Anderson, D. K.: Cognitive flexibility theory:
Advanced knowledge acquisition in ill-structured domains. Technical Report No. 441.
Champaign, IL: University of Illinois, Center for the Study of Reading (1988)

8. Golich, V.L., Boyer, M., Franko, P., Lamy, S.: The ABC of Case Teaching, Pew Case
Studies in International Affairs. Institute for the Study of Diplomacy, Georgetown Univer-
sity, Washington D. C. (2000)

9. Jonassen, D.H.: Research Issues in Problem Solving. In 11th International Conference on
Education Research. (2010)

10. Gentner, D., Loewenstein, J., Thompson, L.: Analogical encoding: Facilitating Knowl-
edge transfer and integration. In Forbus, K. D., Gentner, D., Reiger, T. (Eds.) Proceedings
of the 26th Annual Conference of the Cognitive Science Society, pp 452–457.Cognitive
Science Society, Austin, TX (2004)

11. Aamodt, A., Plaza, E.: Case-Based Reasoning: Foundational Issues, Methodological
Variations, and System Approaches. AI Communications. IOS Press, vol7 (1), 39-59
(1994)

12. Kolodner, J.L.: An introduction to case-based reasoning. Artificial Intelligence Review,
vol 6(1), 3-34 (1992)

13. Maher, M. L., Balachandran, M. B., Zhang, D.: Case-Based Reasoning in Design. Law-
rence Erlbaum, Hillsdale, NJ. Lawrence Erlbaum Associates(1995)

14. Derry, S. J., the TiPS Research Group: Development and Assessment of Tutorials in Prob-
lem Solving (TiPS): A Remedial Mathematics Tutor. Final Report to the Office of Naval
Research (N00014-93-1-0310), Wisconsin Center for Education Research. University of-
Wisconsin-Madison, Madison, WI (2001)

15. Jonassen, D. H.: Designing research-based instruction for story problems. Educational
Psychology Review, vol 15(3), 267-296 (2003a)

16. Zimring, C.M., Bafna, S., Do, E.: Structuring cases in a case based design aid. Vanegas J.,
Chinowsky. P. (eds), pp. 308-313 (1996)

17. Carroll, J.M., Rosson, M.B.: Case studies as minimalist information. IEEE Transactions on
Professional Communication, vol49(4), 297-311 (2006)

18. Xiao, L., Carroll, J., Rosson, M.: Support Case-Based Authentic Learning Activities: A
Collaborative Case Commenting Tool and a Collaborative Case Builder. Paper presented
at the Human-Computer Interaction. HCI Applications and Services, pp. 371-380. Beijing,
China (2007)

19. Riedel, J., Fitzgerald, G., Leven, F., Toenshoff, B.: The Design of Computerized Practice
Fields for Problem Solving and Contextualized Transfer. Journal of Educational Multime-
dia and Hypermedia, 12(4), 377-398. Norfolk, VA: AACE (2003).

20. Rocha, A.R., Moreira, G., Campos, F., Rabelo, L.: CardioCaseDiscussion: a cooperative
learning environment for patients’ cases discussion in Cardiology. In Barker, P., Rebelsky,
S. (Eds.) Proceedings of World Conference on Educational Multimedia, Hypermedia and
Telecommunications 2002, pp. 1371-1373. Chesapeake, VA: AACE (2002)

21. Choi, I., Lee, S. Jung, J.: Designing Multimedia Case-Based Instruction accommodating
Students’ Diverse Learning Styles. Jurnal of Educational and Educational Multimedia and
Hypermedia. Vol17(1), 5-25 (2008)

22. Leclet, D., Joiron, C.: Design of a Distance Learning Environment - DIACOM : An Inter-
active Forum Based on Collaborative Learning for Continuing Medical Eduaction. In
Barker, P., Rebelsky, S. (Eds.) Proceedings of World Conference on Educational Multi-
media, Hypermedia and Telecommunications 2002, pp 876-881. Chesapeake, VA: AACE
(2002)

23. Rudy, M., Jaksch, S.: Building Science by Design: Developing a Building Information
System and Teaching Architecture with Analytical Case Studies. ED-MEDIA 2004: World
Conference on Educational Multimedia, Hypermedia & Telecommunications, Association
for the Advancement of Computing in Education, pp. 4815-4820. Norfolk (VA) (2004)

24. Reed, S. K.: A structure-mapping model for word problems. Journal of Experimental Psy-
chology: Learning, Memory, and Cognition, 13, 124–139 (1987)

25. Shirky, C.: A Group is Its Own Worst Enemy. Networks, Economics, and Culture mailing
list, Retrieved 21 2012 from:. http://www.shirky.com/writings/group_enemy.html
(2003)

26. Bull, S.: Supporting Learning with Open Learner Models. In Proceedings of 4th Hellenic
Conference in Information and Communication Technologies in Education, pp. 47-61.
Athens (2004)

27. Bull, S., Kay, J. : A Framework for Designing and Analysing Open Learner Modelling.
Proceedings of Workshop on Learner Modelling for Reflection. In International Confer-
ence on Artificial Intelligence in Education, pp. 81-90 (2005)

28. Boubouka, M., Verginis, I., Grigoriadou, M. & Zafiri, I. (2009) "Towards the enhancement
of the learning process with different types of case based activities" in Proceedings of the
8th IEEE International Conference on Advanced Learning Technologies (ICALT2009),
Riga, Latvia, 15-17 July 2009, pp 652-654.

29. Linn, M., Clancy, M.: The case for case studies of programming problems. Communica-
tions of the ACM, vol 35(3), 121-132 (1992)

30. Spooner, D. & Skolnick, M.: Science and Engineering Case Studies in Introductory Com-
puting Course for Non-Majors, pp. 154-158. SIGCSE CA (1997)

31. Boubouka M., Verginis I., Grigoriadou M.. Supporting the Implementation of Case Activi-
ties using e-learning. In Spector M. J., Ifenthaler, D., Isaías, P., Kinshuk, & Demetrios, G.
Sampson (Eds.), Learning and Instruction in the Digital Age Technologies, Springer,
2009, ISBN 978-1-4419-1550-4 (2009).

