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Abstract

In this dissertation we aimed at investigating the possible gains from
exploiting the 3-dimensional nature of the brain images, through a higher-
order tensorization of the fMRI signal, and the use of less restrictive gen-
erative tensor models. In this context, the higher-order Block Term De-
composition (BTD) and the PARAFAC2 tensor models are considered, for
first time in fMRI blind source separation. In order to test the proposed
BSS methods and in order to understand the limitations and challenges
that doctors face, a novel fMRI protocol was also designed and fMRI data
from volunteers were collected. The last problem that this thesis touches
upon is the fusion of fMRI and electroengephalography (EEG). Analyzing
both EEG and fMRI measurements is highly beneficial for studying brain
function because these modalities have complementary spatio-temporal
resolutions

1 Introduction

Brain tasks involving action, perception, cognition, memory retrieval, etc., are
performed via the simultaneous activation of a number of brain regions, which
are engaged in proper interactions in order to effectively execute a specific task.
In functional Magnetic Resonance Imaging (fMRI), brain activity is captured
by detecting associated changes in blood flow within the brain [1]. In contrast,
in Electroengephalography (EEG) the electrical activity, that is associated with
the movement of charged atoms, which are emitted during a neural activation, is
detected. Both EEG and fMRI measure ongoing neural activity during a certain
period of time at specific locations at the surface of or inside the brain. The
obtained data stream comprises a mixture of the source signals, which carry the
useful information that is required by the neuroscientists in order to understand
and “decipher” the various brain functions.

Extracting information from fMRI data commonly relies on simplifying as-
sumptions and it is based on matrix-based approaches that fail to exploit the
inherent multi-way structure of the brain data. In this PhD thesis, tensor (multi-
way) models and associated algorithms are investigated that are adapted to the
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fMRI problem in order to assess their performance as compared to matrix-based
schemes. Appropriate tensor factorizations are developed and studied. The key
concept behind the methodologies presented in this thesis is to exploit the in-
herent structural information on different levels.

Since, in general, the processes underlying brain functions are not (yet) fully
understood, it is of great significance to reduce any potential for biases and
therefore minimize the assumptions imposed on the data. This motivates the
use of Blind Source Separation (BSS) techniques [2]; the localization of the
respective to each task activated areas in the human brain is a challenging BSS
problem, in which the sources are a result of a combination of spatial maps
(activated areas) and time-courses (timings of activation).

Furthermore, in order to understand a system as complex as the human
brain, multimodal measurements can be beneficial, since they are able to capture
complementary aspects of the same system. In the field of neuroimaging and
brain mapping, the complementary nature of the (spatiotemporal) resolutions
of the electroencephalography (EEG) and the functional Magnetic Resonance
Imaging (fMRI) motivates for their fusion for a better localization of the brain
activity, both in time and space [3].

In this thesis, the advantages of the use of higher order tensors in the BSS
of fMRI are studied. The combination of EEG and fMRI is also explored in
order to improve the results of BSS. Furthermore, a case study is developed
and an fMRI protocol has been designed in order to test how the presence of
semantic faces, emojis, affect the memory retrieval mechanism of the brain. In
this context, all the methods that have been deployed in this thesis have been
used in order to test their performance. A chapter-by-chapter abstract is given
below.

2 Multilinear algebra

Tensors are arrays (of order higher than two), a generalization of matrices.
Matrices are two-way arrays and can also be considered as second-order tensors;
there are three- and higher-way arrays (or higher-order) tensors. Tensor algebra
has many similarities but also significant and striking differences with matrix
algebra.

The ith entry of a vector a is denoted ai, while ai,j and ai,j,k denote an
entry of a matrix A ∈ RI×J and a tensor A ∈ RI×J×K , respectively. MATLAB
notation is used for the rows or columns of a matrix or a tensor (e.g., A(i, :) is
the ith row of matrx A).

• The order of a tensor is the number of dimensions, also known as ways or
modes.

• The mode–n unfolded (matricized) version A(n) ∈ RIn×I1Is···In−1In+1···IN

of an Nth-order tensor, A ∈ RI1×I2×···×IN , results from mapping the
tensor element a(i1,i2,...,iN ) to a matrix element a(in,j)

• A> and A† denote the transpose and the pseudo-inverse of a matrix A.

The Kronecker product of two matrices A ∈ RI×J and B ∈ RK×L is de-
noted by the symbol ⊗ and the Khatri-Rao product (column-wise Kronecker)
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product of two matrices is denoted by �. Generally the tensor rank A is the
minimal number of rank-1 tensors that yield A in a linear combination and is
usually denoted as R. Furthermore, the rank of the mode–n matricized version
A(n) of a tensor A is known as mode–n rank. Generally the multilinear
rank of a tensor is the N -tuplet of its N mode–n ranks [4].

3 Functional Magnetic Resonance Imaging

Functional Magnetic Resonance Imaging (fMRI) is a noninvasive technique for
studying brain activity, which has been receiving an increasing attention in
the last two decades or so. fMRI indirectly studies brain activity, by measur-
ing fluctuations of the Blood Oxygenation Level Dependent (BOLD) signal [1].
BOLD fluctuation usually occurs between 3 to 10 seconds after the stimulus,
and this effect is modeled by the so-called Haemodynamic Response Function
(HRF). During an fMRI experiment and while the subject performs a set of
tasks responding to external stimuli (task-related fMRI) or no tasks (resting-
state fMRI), a series of 3-D brain images is acquired.

Increased neural activity requires more oxygen and glucose to be delivered.
Hence, possible activation in an area of the brain results in a depletion of oxygen
in the blood vessels near this area, which is followed by an influx of cerebral
blood that overcompensates for the increase in demand, resulting in an excess of
oxygenated blood in activated brain areas. The oxygen is transported through
the blood vessels by means of hemoglobin molecules. Oxyhemoglobin (Hb) is
diamagnetic, whereas deoxyhemoglobin (dHb) is a paramagnetic substance that
produces microscopic magnetic field inhomogeneities which can be measured.

4 BSS for fMRI via higher-order tensor decom-
positions

The growing interest in neuroimaging technologies generates a massive amount
of biomedical data that exhibit high dimensionality. Tensor-based analysis of
brain imaging data has by now been recognized as an effective approach ex-
ploiting its inherent multi-way nature. In particular, the advantages of ten-
sorial over matrix-based methods have previously been demonstrated in the
context of functional magnetic resonance imaging (fMRI) source localization;
the identification of the regions of the brain which are activated at specific time
instances. However, such methods can also become ineffective in realistic chal-
lenging scenarios, involving, e.g., strong noise and/or significant overlap among
the activated regions. Moreover, they commonly rely on the assumption of an
underlying multilinear model generating the data. In the first part of this thesis,
we aimed at investigating the possible gains from exploiting the 3-dimensional
nature of the brain images, through a higher-order tensorization of the fMRI
signal, and the use of less restrictive generative models.

Traditionally, after acquiring a 3-D fMRI image (with spatial dimensions
Ix × Iy × Iz) at a time instance n (Fig. 1), the data (referred to as folded
data) are reshaped to a lower dimension (unfolded), giving rise to a sequence
of vectors, tn, for n = 1, 2, . . . , It (with Ixyz = Ix · Iy · Iz voxels each). These
It vectors (3-D images at different time instants) are stacked together to form
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Figure 1: (a) Brain images unfolded in vectors and stacked in matrices (b) per
subject and (c) for the multi-subject case.

a matrix (Fig. 1(a)). Such a matrix is formed for each one of the subjects, i.e.,
T k, k = 1, 2, . . . , Is (Is different subjects in the multi-subject case, Fig. 1(b)).
These Is matrices are in turn concatenated to form T ∈ RItIs×Ixyz (Fig. 1(c)),
for which a decomposition is sought such that:

T ≈MA>, (1)

with A ∈ RIxyz×R containing the weights of the spatial maps and M ∈
RItIs×R containing the concatenated time-courses of all subjects, R being the
estimated number of sources [5, 1]. Note that, in practice, the decomposition
cannot be exact due to unmodeled phenomena including noise. In this way, the
intrinsically 5th-order (dimension x × dimension y × dimension z × time ×
subjects) problem of a multi-subject fMRI analysis has been transformed into a
2nd-order one. This type of unfolding of higher-order data into two-way arrays
leads to decompositions that are non-unique, unless specific assumptions on the
involved factors are made. Moreover, and most importantly, such an unfold-
ing can result in a loss of underlying informative correlations that may exist,
because the neighborhood information is not respected. In this context, the
approaches most frequently pursued are the Independent Component Analysis
(ICA) [6], and Dictionary Learning [7]. ICA solves Eq. (1) by assuming that the
matrix A contains statistically independent spatial maps in its columns, each
one corresponding to a time-course in the associated column of the (mixing)
matrix M .

The multi-way nature of the data is preserved in multi-linear (tensor) models,
which, in general, a) produce unique (modulo scaling and permutation ambi-
guities) representations under mild conditions, b) can improve the ability of
extracting spatiotemporal modes of interest [5, 8, 9], and c) facilitate neuro-
physiologically meaningful interpretations [5]. The state-of-the-art in tensorial
methods for analyzing multi-subject fMRI data include the Canonical Polyadic
Decomposition (CPD)-based analysis [5] and the Tensor Probabilistic Indepen-
dent Component Analysis (TPICA) [10].

Following the tensorial rationale, in contrast to the previously discussed un-
folding, instead of forming a matrix T by concatenating the matrices T k=1,2,...,Is

( Fig. 1), the latter can be arranged to form a third-order tensor T ∈ RIxyz×It×Is

(Fig. 2). Hence, a tensor decomposition method can be mobilized for the BSS
task instead of the matrix-based methods. Tensorial methods provide, in most of
the cases, improved spatial and temporal localization of the activity, compared
to the matrix-based approaches [5, 10].

CPD (or PARAFAC) [5] approximates a 3rd-order tensor (or an fMRI tensor
in our case), T ∈ RIxyz×It×Is , by a sum of R (estimated number of sources)
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Figure 2: (a) Brain images unfolded in vectors and stacked in matrices (b) per
subject and (c) in tensors in the multi-subject case.

rank-1 tensors (Fig. 4.a), namely

T ≈
R∑

r=1

ar ◦ br ◦ cr. (2)

The above can be equivalently written in the matricized form

T (1) ≈A(C �B)>, (3)

and for the kth frontal slice of T (analogous equations can be written for the
horizontal and lateral slices):

T k ≈ ADkB
>, k = 1, 2, . . . , Is, (4)

where A =
[
a1,a2, . . . ,aR

]
is a matrix that contains the R spatial components

(Ixyz voxels per component) and B =
[
b1, b2, . . . , bR

]
,C =

[
c1, c2, . . . , cR

]
are

similarly defined matrices, which contain the associated time-courses (It time
points) and the subject activation levels (Is subjects), respectively. Dk is the
diagonal matrix with the elements of the kth row of C on its diagonal. The
main advantage of the CPD, besides its simplicity, is the fact that it is unique
(up to permutation and scaling) under mild conditions.

The tensor formulation approach described inherit from the matrix-based
counterparts the initial step of the unfolding of the 3-D spatial data into a vector
tn. That is, they do not fully exploit the multi-way nature of the acquired data,
which seems to be the natural path to follow for the task at hand.

In addition, the unfolding into vectors misses to fully reveal the low-rank
content of the spatial signal, which can only be unveiled through a multi-way
model. Furthermore, as it has been shown by Phan et al. [11], unfolding higher-
order noisy data to lower-order tensors generally results in a loss of the accuracy
in the respective decomposition.

A possible way to benefit from the findings mentioned above is to adopt an
alternative type of data unfolding. For the unfolding proposed in this thesis,
we adopt the mode-1 (frontal) matricization of the respective data tensor, An

(Fig. 3(a)) (by symmetry, mode-2 or mode-3 can also be used with similar

results). By stacking the It matrices together, a 3rd-order tensor, T̃ k (all the
tensors generated by the suggested alternative unfolding will be denoted with
a tilde), is formed for the kth subject (Fig. 3(c)). For Is different subjects, a

4th-order tensor, T̃ , is created, by stacking together all 3-way tensors, T̃ k =
T̃ (:, :, :, k). A 5th-order tensor (using directly the 3-D spatial brain images)
could also be considered, albeit at a complexity increase.

Following those arguments, an alternative unfolding and a higher than 3rd-
order tensor model is a more natural way to perform the unmixing of the sources.
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Figure 3: (a)Brain images unfolded in matrices and stacked in (b) 3rd-order
tensors per subject and (c) 4th-order tensors for a number of subjects.

However, the use of CPD (and hence TPICA) with such a formulation can
be problematic in cases where the components are not of rank one. As an
alternative to CPD, the use of Block Term Decomposition (BTD) [4] in the
4-way (and 5-way) tensorization of the fMRI signal is investigated in this work,
for the first time. The adoption of BTD (Fig.4.c) is dictated by the need of a
more flexible model that reveals the low rankness of the spatial mode.

BTD is a generalization of CPD which can capture latent factors of rank
higher than one in each component. In particular, the rank-(Lr, Lr, 1, 1) BTD

of the tensor T̃ k ∈ RIx×Iyz×It (Which is proposed) is given by:

T̃ ≈
R∑

r=1

Ar ◦ br ◦ cr =

R∑
r=1

(XrY
>
r ) ◦ br ◦ cr. (5)

The two spatial factors are of low rank (Lr) while the time and subject
factors are of rank one (those modes have not been folded and the assumption
of rank one is still valid).

Furthermore, as mentioned previously one of the main assumption of the
tensorial analysis of the BSS fMRI model (both with CPD and TPICA) is that
the analyzed data are generated from a trilinear (or multilinear) model. This
assumption, however, may prove to be quite strict in practice; for example, due
to the natural intra-subject and inter-subject variability of the HRF. We will
investigate the possible gains from the adoption of less strict models, such as
PARAFAC2 (Fig.4.a).

PARAFAC2 [12] differs from CPD in that strict multilinearity is no longer a
requirement. CPD assumes the same factors across all the different modes,
whereas PARAFAC2 relaxes this constraint and allows variation across one
mode (in terms of the values and/or the size of the corresponding factor matrix).
It can be written in terms of the (here frontal) slices of the permuted tensor

T (p) ∈ RIt×Ixyz×Is as:

T
(p)
k ≈ BkDkA

>, k = 1, 2, . . . , It, (6)

and allowing Bk to be different for different k’s.
In this context, the higher-order Block Term Decomposition (BTD) and the

PARAFAC2 tensor models are considered, for first time in fMRI blind source
separation. Furthermore it has been proposed an heuristic for the estimation of
the inner rank L of the BTD decomposition for Blind Source Separation (BSS)
of fMRI. The simulation results demonstrate the effectiveness of BTD for chal-
lenging scenarios (presence of noise, spatial overlap among activation regions)
and the effectiveness of PARAFAC2 for scenarios where an inter-subject vari-
ability of the Haemodynamic Response Function (HRF) exists. Furthermore,
a detailed analysis of a dataset which is openly available at the OpenfMRI
database, has been performed.
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Figure 4: Non strictly multilinear tensor models: a) PARAFAC2 and b)BTD2.
c) The more flexible model of BTD .

Aiming at combining the effectiveness of BTD in handling strong instances
of noise and the potential of PARAFAC2 to cope with datasets that do not
follow the strict multilinear assumption, we proposed a novel PARAFAC2-like
extension of BTD, called BTD2 (Fig.4.b)

Using the (mode-1) unfoldings, T̃
(p)

k(1), of the T̃
(p)

k = T̃
(p)

(:, :, :, k) ∈ RIt×Ix×Iyz

tensors (Fig. 2) yields the BTD2 decomposition:

T̃
(p)

k(1) = (BkS)D̃k(X � Y )>, k = 1, 2, . . . , It. (7)

The matrices S = blockdiag(1>L , . . . ,1
>
L ) and D̃k = blockdiag(ck1IL, . . . , ckRIL)

appear in formulating BTD as CPD. Spatial matrices are defined as X =
[X1,X2, . . . ,XR], Y = [Y 1,Y 2, . . . ,Y R] with Xi ∈ RIx×L and Y i ∈ RIyz×L.
An Alternating Least Squares (ALS) algorithm is adopted for BTD2. The
method was also tested using both synthetic and real data and we have ex-
hibited that has superior performance in the presence of high noise, spatial
overlap and difference in the HRFs among subjects.

5 How emojis influence memories derived from
reading words

The second main part of this thesis, in addition to signal processing methods,
also elaborates on practical aspects of fMRI. In order to test the proposed BSS
methods and in order to understand the limitations and challenges that doctors
face, as a part of a secondment in Bioiatriki SA, we designed a novel fMRI pro-
tocol and collected fMRI data from volunteers.We have tried to investigate the
cognitive and behavioral effects of emojis in memory retrieval, in an effort to
determine how emojis complement the written text. Communication plays an
essential role in our everyday life and draws on both verbal (e.g., speech) and
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Figure 5: A block of the experimental task. A sentimental stimulus (Love and
sad face) followed by a cross, a pseudoword and a second cross.

nonverbal (e.g., gestures, facial expressions, the tone of the voice) cues to convey
information. Recently, the Computer-Mediated Communication (CMC), which
lacks the subtle nonverbal cues, has become part of our life. The insertion of
emoticons and emojis is one option to convey emotions in online text commu-
nication and compensate the lack of nonverbal communicative cues. Different
stimuli were presented to the participants, which were composed of alternating
positive and negative words combined with happy or sad emojis.

In this research we wanted to study the influence of emojis on memory re-
trieval from reading words of emotional content. Different volunteers were asked
to rate 100 words based on their emotional content (happy or sad) as well as the
ability to retrieve memories from those words (imageability). Eventually, using
these results, two groups of 6 words were created, namely, those that exhibit
the biggest difference in valance (most positive and most negative words) and
simultaneously have similar mean values of arousal, imageability, and familiar-
ity, to avoid secondary effects. The words selected were Love, Companionship,
Hope, Life, Freedom and Truth for the group of happy words and Hospital,
Melancholia, Pain, Sickness, Hopelessness and Abandonment for the group of
sad words. With a similar way the most happy emoji was selected (Smiling face
with open eyes) and the saddest one (weary face).

Different stimuli were presented to the participants. Those stimuli consisted
of alternating words with happy or sad emotional content in combination with
happy or sad emojis. Each word was combined once with the happy emoji
and once with the sad emoji. Hence 24 different stimuli were created half of
them with congruent semantic content (e.g. combination of a Happy word with
the Happy emoji - HH) and the other with incongruent semantic content (e.g.
combination of a Happy word with the Sad emoji - Hs). The total duration of the
experiment was 15 to 17 minutes and consisted of 24 different blocks (Fig.5).
Each volunteer was instructed to press a button as soon as a memory was
recalled. Thus, in addition to fMRI data, behavioral data were also collected.

It is the first time that the impact of emojis on the autobiographical memory
retrieval has been documented in fMRI. A significant impact of the sentimental
content of the emojis was observed, both in the response time of the subjects
and in the areas activated (with the use of the fMRI data). Furthermore it
has been shown that this impact is significant even in the case of the use of a
single word and not of a whole sentence, which biases the participant towards
the sentimental content of the memory to be retrieved.

Specifically, it was observed that sentimentally incongruent emojis increase
the reaction times and the number of omissions from the participants, while also
activate brain regions related to the attention network and language processing,
such as Broca’s area, in agreement with previous studies. Furthermore, it has
been shown that emojis convey non-verbal information that trigger brain areas
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related to face-emotion recognition such as the middle frontal gyrus, the left
IPC and the (right) anterior fusiform gyrus; a finding that contrasts similar
previous researches conducted with the use of emoticons instead of emojis [13].
The activation of the right fusiform gyrus is a significant finding. Due to the
fact that emojis are actually drawings, and not facial representations by the
sparse means of typographic symbols like emoticons, both the configural and
featural mechanisms of the brain are able to process their image and hence, the
face feature processing regions are activated.

Blind methods (such as ICA and BTD), which have only recently been pro-
posed for task-related studies, have been also tested with similar findings to
FSL. Nevertheless, the area of posterior cingulate gyrus was only observed in
the results of BTD, unlike FSL and GICA. On the other hand, none of the
blind methods tested were able to separate congruent from incongruent stimuli.

6 Fusion of EEG and fMRI via Soft Coupled
Tensor Decompositions

Data fusion refers to the joint analysis of multiple datasets which provide com-
plementary views of the same task. In this chapter of the thesis, the problem of
jointly analyzing electroencephalography (EEG) and functional Magnetic Reso-
nance Imaging (fMRI) data is considered. Analyzing both EEG and fMRI mea-
surements is highly beneficial for studying brain function because these modali-
ties have complementary spatiotemporal resolution: EEG offers good temporal
resolution while fMRI offers good spatial resolution. Hence, the complementary
nature of the spatiotemporal resolutions of EEG and FMRI motivates their fu-
sion with the aim of achieving a better localization of the brain activity, both
in time and space [14].

Different types of fusion can be realized. The earliest approaches for fusion
of fMRI and EEG (and a large number of recent ones, are essentially “inte-
grative” in nature. The rationale behind these methods is to employ objective
functions for decomposition of the fMRI signal with constraints based on infor-
mation obtained from EEG (or vice versa). Recently, the emphasis has been
turned to “true” fusion, where the decomposition of the data from each modal-
ity can influence the other using all the common information that may exist.
During optimization, the factors, which have been identified as common, are
appropriately “coupled” and, thus, a bridge between the two modalities is es-
tablished. Various ways to realize the coupling have been proposed depending
on the coupled mode: a) coupling at the spatial domain with the use of the
so-called lead-field matrix, which summarizes the volume conduction effects in
the head b) coupling at the time domain using the convolution with an HRF,
and c) coupling at the subjects domain, using the assumption that the same
neural processes are reflected in both modalities with the same covariation. In
all the aforementioned methods, the coupling between the corresponding modes
is “hard”, meaning that the shared factors are the same in the two datasets.

Although the multi-way nature of EEG has been exploited in earlier fusion
methods, it has been neglected for fMRI. Furthermore, these methods rely on
preprocessing of the fMRI data using the General Linear Model (GLM) frame-
work. A spatial map of interest (areas of activation) per subject is extracted
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Figure 6: Schematic representation of the soft coupled CPDs at the time
domain of EEG and fMRI.

from the fMRI data and all the spatial maps are stacked into a matrix (space ×
subjects), hence discarding the extra dimension of time and relying on Coupled
Matrix Tensor Factorization (CMTF) to solve the joint BSS problem. In the
GLM framework, a canonical HRF was assumed to be known (and invariant in
space and among subjects), the expected signal changes are defined as regressors
of interest in a multiple linear regression analysis and the estimated coefficients
are tested against a null hypothesis. Intra- and inter-subject variability of HRF
is known to exist, hence a possible misspecification of the HRF may lead to bi-
ased estimates of widespread activity in the brain. The use of the spatial maps
of GLM categorizes such CMTF-based methods as “late” fusion or true fusion
using multivariate features [3].

In this section of the thesis, we propose true “early” fusion of fMRI and
EEG tensors via soft (assuming similarity and not strong-hard equality) cou-
pling among modes. In our approach, we exploit the multi-way nature of both
modalities and omit the GLM preprocessing step, in an effort to fully exploit
the information underlying the raw data. We propose a framework for early
fusion of fMRI and EEG using coupled CPD with “soft” coupling [15], which
relies on similarity and not exact equality. Fusion based on raw data, although
potentially quite challenging, may allow better inference. The coupling could
be attempted in any of the modes, depending on the problem at hand. The
schematic representation of the framework, proposed for coupling in the time
domain, can be viewed at Fig. 6.

The CPDs of the 3rd-order fMRI tensor, T ∈ RIa×Ib×I3 , and the 4th-order
EEG tensor, T̃ ∈ RIe×I1×I2×I3 , can be written as T k ≈ ADkB

> and T̃ k(1) ≈
ED̃k(B̃�Ã)>, respectively, with T̃ k(1) being the mode-1 matricization of T̃ k =

T̃ (:, :, :, k). A =
[
a1,a2, . . . ,aR

]
is a matrix that contains the weights of the R

spatial components (Ia voxels), B,C contain the associated time courses (Ib)
and subject activation levels of fMRI (I3), respectively, and Dk is the diagonal
matrix formed from the kth row of C. For the EEG case, matrices E, Ã, B̃, C̃
contain the weights of the associated ERPs (Ie), electrodes (I1), trials amplitude
(I2) and the subject activation levels of EEG (I3), respectively, and D̃k is the
diagonal matrix formed from the kth row of C̃. The proposed cost function to
minimize is given as:
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I3∑
k=1

‖T k −ADkB
>‖2F +

I3∑
k=1

‖T̃ k(1) −ED̃k(B̃ � Ã)>‖2F

+ λB‖B1:Rc
−HB̃1:Rc

‖2F , (8)

with L being the lead-field matrix, used for the EEG forward problem, and H
the matrix representing the convolution with the HRF and the down-sampling
(due to the different sampling rate of the two modalities). Rc is the number of
common components in the coupled mode(s), so there are R − Rc and R̃ − Rc

distinct components of fMRI and EEG, respectively.
The quadrilinear model of CPD that is selected for decomposing the EEG

tensor assumes that every subject has exactly the same ERP, an assumption
which is restrictive and can be overcome with the adoption of PARAFAC2,
where E may vary with k. Thus, the CPD used for EEG can be replaced
by PARAFAC2, with Ek = P kH and P k and H, and the cost function is
transformed to:

I3∑
k=1

‖Xk −ADkB
>‖2F +

I3∑
k=1

‖P>k T̃ k(1) −HD̃k(B̃ � Ã)>‖2F

+ λB‖B1:Rc
−HB̃1:Rc

‖2F . (9)

We demonstrate, with simulated data, the advantage of the proposed method
over methods based on Independent Component Analysis (ICA), hard coupling
and uncoupled CPD per modality. This is an attempt to benefit from the multi-
way nature of both modalities, following an “early true” fusion (hence bypassing
the need to rely on features). Performance gains have been reported compared
to ICA methods as well as to the separate analyses of the datasets. The use
of coupled PARAFAC2-CPD was seen to outperform the coupled CPD in the
presence of shifts in the ERPs per subject. A simple mean-ERP analysis prior
to the joint analysis could provide an indication of the amount of the shift in the
ERPs, in order to select which of the soft coupled tensor decompositions shall be
used. Future work will include studies with real data, comparisons with methods
based on Independent Vector Analysis (IVA) and alternative tensor models (e.g.,
Block Term Decomposition). Moreover, a more systematic selection of the λ
values will be sought for.
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