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Abstract. Naming services provide the foundations of developing di-
verse and important applications. Currently, these are operated by cen-
tralized authorities, which have to be trusted for their correct operation.
Unfortunately, centralization incurs several downsides as illustrated by
numerous security incidents where such authorities have been compro-
mised. Decentralization has been proposed as an alternative to deal with
these issues. Nevertheless, decentralization raises other issues, such as
free-riding and Sybil attacks.

In this thesis, we leverage smart contract platforms and propose the
design of a decentralized naming service. We are the first to fully for-
malize the naming service design problem in the Universal Composabil-
ity framework and formally prove the security of our construction. The
main barrier in realizing a smart contract-based naming service is the
size of the contract’s state, which should be minimized. We resolve this
issue by defining and using in our naming service a public-state cryp-
tographic accumulator with constant size. We propose and implement a
second construction, which preserves the security properties of the first
and is the only version with constant-sized state that can be deployed
on Ethereum’s live chain. We compare these constructions with the sim-
ple approach of prior works, where all identity records are stored on the
contract’s state. We address several shortcomings of Ethereum and its
cost model by introducing an alternative paradigm for developing smart
contract-based applications. Our approach is relevant for a wide range of
applications, e.g., any key-value store. We address Ethereum’s monoton-
ically increasing state by introducing recurring fees that are adjustable
by miners. We propose a scheme where the cost of storage-related op-
erations reflects the effort that miners have to expend to execute them.
We show that under such a pricing scheme that encourages economy, the
constructions presented in this work reduce incurred transaction fees by
up to an order of magnitude.
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1 Introduction

Contrary to its original, clean design principles, the Internet today is not com-
pletely decentralized. The Internet’s naming services, such as Domain Name
Systems (DNSs) and Public Key Infrastructures (PKIs), provide the most criti-
cal building blocks that allow and secure, respectively, digital communications.
These services handle mappings between entitie names and values (e.g., an IP
address for DNSs, or a public key for PKIs). Unfortunately, these critical ser-
vices are under the control of centralized, remote entities that must be trusted
for their correct operation. This is problematic as it is proven by multiple se-
curity incidents in e.g. centralized public key infrastructures, where certification
authorities have been compromised. (e.g., [64, 72, 83])

The advent of Bitcoin revolutionized the world of digital payments since
it was the first system that allowed entities that do not trust each other to
transact securely, without relying on trusted, third parties. The operation of
Bitcoin is based on a distributed peer-to-peer network that maintains a highly
replicated, verifiable, append-only transaction log, which is commonly referred
to as a blockchain. This technology is very promising as it allows the develop-
ment of systems that are completely decentralized. As a result of this potential,
there have been calls from the community to re-decentralize the Internet using
blockchain technology to build its critical naming services, thereby eliminating
the Internet’s reliance on centralized entities.

Namecoin ([25]) and Emercoin ([8]) are notable examples of blockchain-based
naming services. These systems employ the blockchain to store, query and verify
the validity of records pertaining to identities. However, this approach is ineffi-
cient for the following reasons. First, it forces client to download and maintain a
complete copy of the blockchain to enable them to validate identity records. Sec-
ond, the computational and storage complexities increase linearly to the number
of registered records. Third, the system’s usability is severely limited as impor-
tant devices are excluded due to their limited storage (e.g., smartphones). Fi-
nally, it increases the amount of information that network nodes (miners) need
to retain, which may prevent new nodes from synchronizing and contributing to
the network’s security.

In this thesis, we present the design, implementation and evaluation of the
first provably secure, fully distributed naming service. The building blocks of
our service are smart contracts and cryptographic accumulators. We present
two constructions of our service that store constant-sized state on the smart
contract, regardless of the number of registered identities. In this way, we fully
resolve the aforementioned issues associated with on-blockchain storage. Storage
of identity records is offloaded to an external, potentially unreliable, distributed
storage network which, among others, allows for more efficient access to identity
records.



2 Background

In this chapter, we provide background knowledge that is required to understand
the remaining chapters of this thesis. In particular, we present basic concepts
about public key cryptosystems, digital certificates and public key infrastruc-
tures. Next, we describe the operation of blockchain systems, which form the
building block on which the Ethereum smart contract platform was built, on top
of which we implemented all the constructions presented in this thesis. Finally,
we present an introduction to cryptographic accumulators and their properties.

3 Related Work

In this chapter, we present the results of up to date bibliography on naming
services, as well as, public key infrastructures. Based on the fact that several
previous approaches use the same underlying primitive for the development of
such services, we categorize them based on it. In summary, we review previ-
ous works that are based on: 1) replicated state machines, 2) various types of
overlay networks, and 3) blockchains. Our bibliographic research allows us to
illustrate the weaknesses and failures of each category, as well as, each system
individually. We note that no previous approach addresses, overall, issues such
as time-stamping, arbitrary failures, free-riding, Sybil attacks, formally proven
secure constructions and others.

4 Naming Service: Building Blocks and Definition

In this chapter, we begin by introducing basic notation that is relevant to this
thesis. We also formally present definitions of standard cryptographic hardness
problems, such as the strong RSA and collision-resistant cryptographic hash
functions. Next, we present the first official definition of a public-state, additive,
universal cryptographic accumulator, which is the building block of our naming
service. Finally, we present the formal definition of our naming service, in the
Universal Composability framework, which we model as an ideal functionality.
We also present the formal definition of two additional ideal functionalities that
model the (unreliable) storage network and the smart contract, respectively.
Finally, we provide a general description of how clients interact with all of the
above functionalities in our protocols, which we present in the following chapters.

5 RSA-based PKI Construction

In this chapter, we present the first construction of our naming service. We begin
by presenting a construction of a public-state, additive, universal cryptographic
accumulator whose security is based on the strong RSA assumption in the Ran-
dom Oracle model. The input domain of this accumulator is limited to prime
numbers. However, our naming service requires the accumulation of arbitrary



strings. We solve this problem by presenting a polynomial complexity function
that associates arbitrary strings to prime numbers. This function is a determin-
istic version of that of Gennaro et al. [69]. We prove the collision-resistance of
this function and that on input an arbitrary string, this function will output a
prime number, except with negligible probability. Next, we present the construc-
tion of a public key infrastructure that uses the aforementioned building blocks
to implement the operations of our naming service. In particular, we present
the smart contract’s code, as well as, our construction’s protocol. Finally, we
define the security theorem of this construction, whose proof is provided in the
appendix of the thesis.

6 Hash tree-based PKI Construction

In this chapter, we present the second construction of our naming service. We
begin by presenting the universal cryptographic accumulator of Camacho et
al. [54], which is based on hash trees. This accumulator is strong, i.e., it offers
more properties than the one we defined in the previous chapter. However, in this
accumulator, the structures used to prove whether an element is accumulated
or not have are logarithmic, unlike the previous accumulator where they are of
constant size. Next, we present the construction of a public key infrastructure
that uses the aforementioned accumulator to implement the operations of our
naming service. Similar to the previous chapter, we present the smart contract’s
code, the protocol of our construction, and its security theorem.

7 Evaluation

In this chapter, we present experiments that measure the cost of running on
Ethereum the two constructions of our naming service, as well as, their building
blocks. We intersperse our results with recommendations for modifications and
improvements to Ethereum that, we believe, are vital if Ethereum (or any smart
contract platform) is to reach its maximum potential of supporting arbitrary,
large-scale, distributed applications.

Our first set of experiments demonstrates the extra cost of implementing
a digital signature scheme on a smart contract, compared to the implementa-
tion based on precompiled contracts provided by the Ethereum platform. We
calculate an average overhead cost of two orders of magnitude.

We then present the evaluation of our two PKI constructions. We present the
configuration of each construction (e.g., values for the security parameters) and
the cost of each operation of the smart contract. For each construction, we dis-
cuss extensively the semantics of the results and illustrate its deployment scale.
In summary, for the first construction that is based on the strong RSA assump-
tion, our results show that it cannot be deployed on Ethereum’s live chain, due
to the high cost of the process that maps arbitrary strings to prime numbers.
However, the second construction, which is based on hash trees, can be deploy on
Ethereum’s live chain for medium-sized PKIs. We complement the results of each



construction with a discussion where we propose future optimizations. Finally,
we implement and evaluate a PKI where all the records are stored on the smart
contract’s state, which is the approach followed by all previous blockchain-based
naming services. Our results show that, at present, this approach is the most
cost-effective. However, the impact of this approach on the future and longevity
of the platform is severe. This is a hot topic of discussion in the Ethereum com-
munity, which has been looking for ways to address it for years. However, our own
constructions are perfectly aligned with the future and longevity of Ethereum,
as well as, any other smart contract platform, as they incur constant storage
overhead, irrespective of the number of registered identities.

8 An Alternative Paradigm for Developing Applications
and Pricing Storage on Smart Contract Platforms

In this chapter, drawing on the research and results of the previous chapter,
we present our approach to tackle all issues arising from the practice of using
blockchains or smart contracts as a means of directly storing, validating and
retrieving data. We introduce an alternative methodology for developing appli-
cations on these platforms where we employ the state of smart contracts only to
validate application data. Data storage and retrieval are offloaded to an exter-
nal, possibly unreliable, storage network. Our methodology is generic and can
be applied to any key-value store. To support the effectiveness and adaptability
of our approach, we present the design and implementation of an ERC20 to-
ken standard adaptation. We evaluate our construction and compare it with the
standard implementation.

We address the problem of Ethereum’s monotonically increasing state by pre-
senting an adaptive model for pricing storage operations. Specifically, we intro-
duce recurring storage fees commensurate with the amount of storage consumed
by each smart contract, pricing storage operations based on the complexity of
their execution, and freeing up storage space occupied by contracts that are no
longer used. Under this cost model, we re-evaluate both the construction of our
ERC20 token construction and our hash tree-based PKI construction. Our re-
sults show that both constructions provide cost-effective improvements of up to
one order of magnitude.

9 Conclusions and Future Work

In this thesis, we presented the design and implementations of a provably secure
naming service based on smart contracts. Our service provides a combination of
properties that no previous approach has been able to offer. However, interesting
technical issues remain to be explored. Indicatively, we mention the following:

– Design, implement, and evaluate of a distributed storage network that is
scalable and resistant to Sybil attacks.



– Reduce or eliminate the computational burden that storage network nodes
may impose on clients.

– Apply and evaluate verifiable computation techniques in regards to the pro-
cedure that maps arbitrary strings to prime numbers.

– Extend the security model of the accumulator of Camacho et al. [54] to
reduce the cost of the operations of the hash tree-based construction.
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C., Vukolić, M., Cocco, S.W., Yellick, J.: Hyperledger fabric: A distributed oper-
ating system for permissioned blockchains. In: Proceedings of the 13th EuroSys
Conference. ACM (2018)

44. Avramidis, A., Kotzanikolaou, P., Douligeris, C., Burmester, M.: Chord-pki: A
distributed trust infrastructure based on p2p networks. Computer Networks 56
(January 2012)
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