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Abstract. In the perspective of manipulating geometric objects, there
exists two main representations of curves and surfaces: parametric and
implicit representations. Both are useful for different purposes and thus
complement each other. Parametric representations are efficient in sam-
pling points on an object; implicit representations are efficient in deter-
mining whether a point belongs to an object or not. Because of that,
having both representations of the same objects at the same time maxi-
mizes the range of operations one can do with geometric objects. Switch-
ing from one representation to another is not an easy task. It usually
requires the use of algebraic properties. Thus, there is a strong link be-
tween algebra and geometry, symbolised by the algebraic varieties: they
are geometric objects described by an algebraic structure.

This thesis explores new kinds of implicit representations and algorithms
for computing implicit representations. We show that different methods
are adapted to different situations even when it comes to the choice
of an implicit representation amongst several possibilities. Space curves
can thus be described implicitly by conical surfaces, moving lines and/or
moving quadrics. . . each description having different geometrical proper-
ties and practical usage. As there is not one implicit representation or
implicitization algorithm that would be the best in any situation, we de-
velop methods that fit to different kinds of informations known about the
object we want to represent. As we show, objects constructed by sweep-
ing a rigid body can be represented using the knowledge of that nature.
Similarly, very particular curves may have a complicated algebraic struc-
ture. Depending on our tolerance to approximation, such curves can thus
be perturbed to simplify greatly their algebraic structure or, on the con-
trary, be represented by a rich implicit representation format.

Keywords: Algebraic geometry · Implicitization · CAGD-CAE · Resul-
tants · Syzygies

1 Dissertation Summary

We are interested in the representation of geometric objects, such as surfaces
and curves. They can be stored in computers by different types of informations;

? Dissertation Advisor: Ioannis Z. Emiris, Professor



the representation method then determines how these informations should be in-
terpreted. For example, Bézier curves and patches form a basis of simple shapes
that can be combined to have more complex shapes in Computer-Aided Geo-
metric Design (CAGD). Even simpler: polygonal surfaces can be combined in
order to for a polygonal mesh of a 3D object, which is useful in Computer-Aided
Engineering (CAE). Also useful for CAE, Algebraic Geometry defines a shape
as the zero set of polynomial or rational equation(s). In bitmap imaging, objects
are described pixel by pixel. And so on. . .

Of course, an object representable by one representation method may not be
representable by another method. An elliptic curve, for instance, can be described
as the zero set of a degree 3 polynomial but it cannot be described using Bézier
curves or rational parameterizations. On the other hand, a large set of objects
can be represented using several different representation methods. An important
problem is then to be able to pass from a representation to another. The difficulty
to convert an object from one representation to another relates with the diversity
of these representation methods.

Amongst representation methods, two kinds are of greater importance:
• Parametric representations, taking one or several parameters as input and
a point of the object as output. Typically, a parametric representation of an
algebraic object is a birational map between a projective space and that object.
• Implicit representations, taking a point of the ambient space as input and
outputting whether that point belongs to the object or not. Typically, an implicit
representation is a set of polynomials that simultaneously vanish on the object.

The work presented in this thesis is about (1) describing interesting ways
to represent algebraic objects with a focus on implicit representations and (2)
developing algorithms to switch from a representation to another with a focus
on implicitization, i.e. algorithms that output an implicit representation.

1.1 Interest in applications and previous work

Although 2D and 3D objects are the core objects of the study, the algebraic
tools developed can be applied to other situations, in particular when higher
dimensional spaces are involved. The big picture is that parametric represen-
tations are useful when sampling and object while implicit representations are
useful when looking for the relative position of a given point with respect to the
object. They are complementary. Having both representations of a single object
is usually the best way to go, thus the need of implicitization algorithms for
building an implicit representation associated with a parametric representation.

Both representations allow rendering algorithms. Raytracing methods for ren-
dering implicitly-represented objects can handle reflections and lightning accu-
rately, which makes them suitable for very high-quality rendering. However, the
speed when displaying parametrically-represented objects is outmatched and can
make the difference between a real-time rendering and a non-real-time render-
ing. Because of the speed advantage, designers use parametric representations to
produce free-form objects very easily in practice. Then, if needed, other represen-
tations must be computed. For instance, CAE engineers need another represen-



Fig. 1: Problems with global (implicit) representations: trimming a Bézier
curve to its control polygon may keep unwanted parts of the global curve

(left), trimming on the parametric space cannot be carried to a global
representation, unless an inverse map from the ambient space to the

parametric space is available (right)

tation (implicit or mesh) in order to compute the objects’ hardness, flexibility or,
more generally, its physical properties and behaviour (which consists in solving
partial differential equations most of the time).

On top of that, a lot of 3D objects are represented using polygonal meshes
(triangular meshes for most of it). These can be considered both as parametric
representations or implicit representations since it only consists of linear sur-
faces, from which both representations are immediate to construct. Meshes are
more than enough to represent very simple objects (i.e. with flat surfaces). They
are not efficient any more when it comes to represent curved shapes, as many
polygons are required for them for a result that is not as smooth as what we
could ask for. We need to use more accurate representations when meshes are
not a satisfying solution, and thus have algorithms for manipulating them and
switch from a representation to another with the minimal loss of precision.

The algorithm of marching cubes (see [14]) can be used to compute a mesh out
of an implicit representation. Using it, an approximation of implicitly-represented
objects can be displayed relatively fast, though slower than when a parametric
representation is directly available.

One of the biggest issues with parametric representations is the fact that the
intersection of two rationally parameterized objects (typically two surfaces) are
not necessarily rational varieties (the intersection curve(s) cannot be rationally
parameterized). This is a huge problem to deal with in CAE and in particular
when switching back and forth from parametric representations produced by
CAGD to implicit representations or meshes required in CAE.

Implicit matrix representations give a solution to that problem and are a
fitting way to represent a wide range of varieties. Instead of considering a variety
as the set of common zeros of implicit polynomials, it is described as the set
of points dropping the rank of a formal matrix. A square matrix containing
formal coordinates thus represents an hypersurface; the drop of rank property
is equivalent to the vanishing of the determinant (which is then the variety’s
unique defining polynomial). For varieties of lower dimensions, a rectangular
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Fig. 2: Different representations of varieties

matrix can be used and the drop of rank property is equivalent to the vanishing
of all of that matrix’s largest minors.

There exists plenty of parameterization and implicitization algorithms. When
it comes to exact implicitization, there are traditionally two frameworks: Gröbner
bases and resultants. Gröbner bases were invented, as the name suggests not,
independently by Hironaka in 1964[11] (while proving that any variety in char-
acteristic 0 admits a resolution of singularities) and Buchberger (Gröbner’s stu-
dent) in 1965. They play only a little role in the work presented in this thesis
because we rather use resultants or syzygies. Resultants have been introduced by
Sylvester in 1840[18]. They can be used to determine whether d+ 1 polynomials
in d variables share a common root. Resultants are both polynomials and often
described as a matrix’s determinant: they are thus highly algebraic objects. The
use of syzygies in implicitization algorithms is a rather new field of research.
Sederberg and Chen described the grounds for such algorithms in 1995[15]. Busé
and Luu Ba have pushed the method further since 2009[2].

In this thesis approximate implicitizations are also a concern, although a
minor one. When doing approximate implicitization, a lot of problems that arise
at non-generic situations can be ignored or bypassed. Thus, the use of algebra
is much less prominent.

1.2 Summary and contributions of the thesis

This thesis presents results and algorithms in the field of implicit representations
and implicitization algorithms.

The author has followed Ph.D. studies at the National and Kapodistrian Uni-
versity of Athens in Greece in the framework of the project ARCADES funded
by the Marie Sk lodowska-Curie Actions. As part of this studies, the author has
spent 3 months at the research centre SINTEF in Oslo, Norway, and 4 months



at the research centre RISC Software GmbH in Hagenberg, Austria. In both
occasions, work has been done collaboratively with the local research teams.

During his stay at SINTEF, the author implemented in C++ a sparse resul-
tant algorithm based on an existing Maple implementation[7]. Although C++
is globally faster than Maple, it lacks of standard mathematical libraries (for
instance, newmat or Eigen are two of the many existing matrix libraries, both
having advantages and drawbacks). This implementation relies on the matrix
library newmat and uses its own implementation of polynomials and polynomial
operations.

During his stay at RISC, the author developed in C++ a new implicitization
algorithm for a special kind of 3D objects: swept volumes. Those are volumes
generated by an object following a time-dependent 3D rigid transformation. The
swept volume itself is the union of all the points in space that come in contact
with that base object at some point in time. Several works have been done
regarding the implicitization of swept volumes; some of them require the base
object to be polyhedral (such as [19]). The algorithm developed here is very
flexible in the sense that it accepts many kinds of representations of the base
object as input (and not only polyhedral ones) and take advantage of it in order
to generate an implicit representation of the swept volume.

Another, more theoretical contribution, is the design and implementation
in Maple of a new implicitization algorithm of varieties of codimension strictly
greater than 1. The idea behind that algorithm comes from the theory of Chow
forms. We prove that, using this algorithm, we can always represent space curves
with 3 implicit equations. While it is known since a long time that there always
exists 3 equations defining a space curve, many algorithms do not reach that
lower bound and output more than 3 equations. This algorithm has been pub-
lished as the article [8].

Finally, our last contribution is a new matrix-based implicitization algorithm.
This algorithm relies on syzygies and chain complexes. It is a continuation of
the work described in [2], done in collaboration with L. Busé and F. Yıldırım
from INRIA Sophia-Antipolis, France. It provides a very strong link between
parametric and implicit representations, allowing to reverse the map between
the parametric and ambient spaces through the implicit matrix that it produces.
The improvement of our new implicit matrix compared to [2] is that our matrices
are more compact and faster to use. This amelioration comes with the drawbacks
of being slower to compute (however, computing the matrix is done once while
using it is done many times) and are slightly less easy to manipulate (because of
its compactness, singular points of high degree may be uneasy to revert, that is to
find all of its parameterization’s preimages). This algorithm has been published
as the article [3].



2 Results and Discussion

2.1 Chow Form Algorithm

Chow forms have been studied in computer algebra, in particular for varieties
of codimension > 2, since they provide a method to describe the variety by a
single polynomial [5,10]. The Chow form of a variety V is basically a polynomial
RV which indicates when linear subspaces intersect V . For example, the Chow
form of a space curve in projective 3-dimensional space is a polynomial in the
indeterminates uij that vanishes whenever the planes

H0 = u00x0 + u01x1 + u02x2 + u03x3 = 0,
(1)

H1 = u10x0 + u11x1 + u12x2 + u13x3 = 0,

intersect on the curve. If the space curve is given parametrically, the Chow
form represents the variety in terms of RV . It can be computed by a symbolic
resultant of the system of linear equations (1) where the set of variables X =
(xi)i is substituted with the parametric equations; the resultant eliminates the
parameters and yields a polynomial in the variables U = (ui)i. The implicit
hypersurfaces in X containing the variety have to be extracted through rewriting
rules. These make implicitization algorithms that rely on the computation of RV
impractical for varieties of high degree and/or dimension.

Due to their complexity, very few implementations exist for computing the
Chow forms themselves. Amongst them, [17] is an implementation in Macaulay2,
based on the formula of the Chow form in the Grassmannian space using the
Plücker coordinates, and [12, Subroutine 7] is an algorithm using polynomial
ring tools and based on a Poisson-like formula of the Chow form.

To formally define the Chow form let Gr(k + 1, n + 1) denote the Grass-
mannian space of k-dimensional linear projective subspaces of Pn. For a variety
V ⊂ Pn of codimension c, let B(V ) ⊂ Pn × Gr(c, n + 1) be the set of (P,L)
such that P belongs both to V and to the projective linear subspace L of di-
mension c− 1. Then we obtain V by forgetting the second component in B(V )
and we obtain an hypersurface Z(V ) := {L ∈ Gr(c, n + 1) | L ∩ V 6= ∅} of the
Grassmannian space Gr(c, n+ 1) by forgetting the first component in B(V ).

V Z(V )

B(V )

Z(V ) is called the Chow variety of V and has the advantage of being an
hypersurface in the Grassmannian space, so it is determined by a unique im-
plicit equation up to a constant factor: the Chow form RV . Despite being de-
termined by a unique equation, Z(V ) describes the variety V of unconstrained
(co)dimension, see Proposition 1. Note that when V is a variety of codimension



1, we have Z(V ) ' V ; this explains why the theory of Chow form is effective only
for codimension c > 1. On the other hand, the Chow form of a zero-dimensional
variety V = {v1, . . . , vk} is also known as the u-resultant.

Definition 1. Let V ⊂ Pn be a d-dimensional irreducible variety and H0, . . . ,Hd

be linear forms where

Hi = ui0x0 + · · ·+ uinxn, i = 0, . . . , d (2)

and uij are new variables, 0 6 i 6 d, 0 6 j 6 n. The Chow form RV of V is a
polynomial in the variables uij such that

RV (uij) = 0⇔ V ∩ {H0 = 0, . . . ,Hd = 0} 6= ∅.

The intersection of the d+ 1 hyperplanes Hi defined in equation (2) is gener-
ically a (n− d− 1)-dimensional linear subspace L of Pn, i.e., an element of the
Grassmannian Gr(n− d, n+ 1) = Gr(c, n+ 1), where c is the codimension of V .

Proposition 1. [10, Prop.2.5,p.102] A d-dimensional irreducible subvariety V ⊂
Pn is uniquely determined by its Chow form. More precisely, a point ξ ∈ Pn lies
in V if and only if any (n−d−1)-dimensional plane containing ξ belongs to the
Chow variety Z(V ) defined by RV .

Suppose that V is a space curve homogeneously parameterized as

xj = fj(t), j = 0, . . . , 3, t = (t0 : t1).

Let the line L be defined by a symbolic point ξ = (ξ0 : · · · : ξ3) and a sufficiently
generic point G 6∈ V . Define two planes Aff(G, ξ, P0) and Aff(G, ξ, P1) that
intersect along L, by choosing two random points P0 and P1 and let H0(x0 : · · · :
x3) and H1(x0 : · · · : x3) be their respective implicit equations, as in (1). The
coefficients of H0 and H1 are now linear polynomials in ξ. The (homogeneous)
Sylvester resultant of this system, where we set xj = fj(t), eliminates t and
returns a polynomial in ξ which vanishes on V (but not only on V ), thus offering
a necessary but not sufficient condition.

Lemma 1. Let δ = deg fj(t), j = 0, . . . , 3 and RG be the Sylvester resultant of

H0(f0(t) : . . . : f3(t)), H1(f0(t) : . . . : f3(t)), (3)

where H0, H1 are defined as above. Then RG is of degree 2δ and factors into:

1. a degree δ polynomial defining the conical surface SGV ⊃ V of vertex G and
directrix V ,

2. and a polynomial EδL, where EL is a linear polynomial defining the plane
passing through points G,P0, P1.

Theorem 1. Let f : P1 → P3, be a homogeneous parameterization of a space
curve V and SGkV , k = 1, 2, 3 be three conical surfaces obtained by the method
above with 3 different random points Gk /∈ V . We distinguish two cases.



1. If V is not planar and the points Gk are not collinear, then V is the only
1-dimensional component of SG1

V ∩ S
G2

V ∩ S
G3

V .

2. If V is contained in a plane P and if G1 is not in P, then V = P ∩ SG1

V .

This gives an implicitization algorithm of space curves that output either
2 or 3 implicit polynomials of degree δ. In the complete thesis, we generalise
this algorithm to varieties of any codimension c > 1 embedded in spaces of any
dimension Pn.

2.2 Moving Quadrics Algorithm

In what follows, we suppose that an homogeneous parameterization of a rational
curve C ⊂ Pn, n ≥ 2, is given over a field K by

φ : P1 → Pn (4)

(s : t) 7→ (f0(s, t) : f1(s, t) : · · · : fn(s, t)) ,

where f0, . . . , fn are homogeneous polynomials in K[s, t] of the same degree d ≥
1. For the sake of simplicity we assume without loss of generality that these
polynomials have no common factor, so that the map φ is well defined everywhere
on P1.

Unlike the case of plane curves, if n ≥ 3 a single polynomial equation in
K[x0, . . . , xn] is not sufficient to describe implicitly the curve C. Such an equation
describe an hypersurface in Pn and hence a collection of at least n−1 of them are
necessary for characterizing a curve by a dimension argument, and in general
more than n − 1 equations are needed. To be more precise, consider the ring
morphism

K[x0, . . . , xn]→ K[s, t]
xi 7→ fi(s, t), i = 0, . . . , n.

The set of polynomials that are in the kernel of this map, that is to say the poly-
nomials P (x0, . . . , xn) such that P (f0, . . . , fn) = 0, is an ideal of K[x0, . . . , xn]
that is called the defining ideal of the curve C, denoted IC . Choosing a finite
set of generators of this ideal with a good shape and in small number is known
to be a difficult task (see for instance [9,16,13]). In what follows, an alternative
implicit representation under the form of a matrix whose entries depend on the
variables x0, . . . , xn, is presented.

A moving hyperplane of degree ν ∈ N is a polynomial of the form

H(s, t;x0, . . . , xn) = g0(s, t)x0 + · · ·+ gn(s, t)xn

where g0, . . . , gn are homogeneous polynomials in K[s, t] of degree ν. For any
point (s0 : t0) ∈ P1,H(s0, t0;x0 . . . , xn) is a linear form in the variables x0, . . . , xn
that can be interpreted as the defining equation of a hyperplane in Pn. This hy-
perplane moves when the point (s0 : t0) varies in P1, hence its name. In addition,
the moving hyperplane H is said to follow the parameterization φ if

H(s, t; f0(s, t), . . . , fn(s, t)) = g0f0 + · · ·+ gnfn = 0.



Geometrically, this implies that the hyperplane defined by the equation H = 0
goes through the point φ(s : t) ∈ C.

For any integer ν ≥ 0, it is straightforward to compute a basis H1, . . . ,Hrν

of the vector space of moving hyperplanes of degree ν following φ by solving a
simple linear system. We define the matrix Mν(φ), or simply Mν , as the matrix
whose columns are filled with the coefficients of the moving hyperplanes Hj with
respect to the variables s, t. More precisely, Mν is defined by the matrix equality

(H1 H2 · · · Hrν ) = (sν sν−1t · · · tν) ·Mν . (5)

It is of size (ν+1)×rν and its entries are linear forms in K[x0, . . . , xn]. Therefore,
it has sense to evaluate the matrix Mν at a point p ∈ Pn, which we denote by
Mν(p).

Proposition 2. [15,1] For all integer ν ≥ δ − 1 we have rν ≥ ν + 1 and

rank Mν(p) < ν + 1 ⇐⇒ p ∈ C.

Thus, Proposition 2 shows that the matrices Mν are implicit representations of
the curve C for all ν ≥ δ − 1, in the sense that they allow to discriminate the
points p ∈ Pn that belong to the curve C.

As we call a moving hyperplane an equation of a hyperplane that moves as
the parameter (s : t) ∈ P1 varies, we call a moving quadric an equation of a
quadric hypersurface whose coefficients depend on the parameter (s : t) ∈ P1.
More concretely, a moving quadric of degree ν ∈ N is a polynomial of the form

Q(s, t;x0, . . . , xn) = g0,0(s, t)x20 + g0,1(s, t)x0x1 + · · · + gn,n(s, t)x2n

where the polynomials gi,j(s, t) are homogeneous polynomials of degree ν in
K[s, t]. In addition, this moving quadric is said to follow the parameterization φ
if

Q(s, t; f0, . . . , fn) =
∑

0≤i≤j≤n

gi,j(s, t)fi(s, t)fj(s, t) = 0.

Similarly to moving hyperplanes, this latter condition means geometrically that
the quadric defined by the polynomial Q goes through the point φ(s : t) ∈ C.

We can consider the vector space of moving quadrics following the parame-
terization φ of degree ν and, similarly to what we did with moving hyperplanes,
build a coefficient matrix from them. However, such a matrix is useless in gen-
eral because its entries are exclusively quadratic forms in K[x0, . . . , xn] and hence
the determinants of its minors are always polynomials of even degree. A better
option is to combine both moving hyperplanes and moving quadrics in a same
coefficient matrix. We proceed as follows.

Choose an integer ν and let 〈H1, . . . ,Hrν 〉 be a basis of the vector space
of moving hyperplanes following φ. We can consider the vector space Wν of
moving quadrics following φ. Each moving hyperplane Hj of degree ν following



φ generates n + 1 moving quadrics of the same degree ν, still following φ, that
are given by xiHj , 0 ≤ i ≤ n. Observe that geometrically, such a moving quadric
consists of the union of the moving hyperplane of equation Hj = 0 and the static
hyperplane of equation xi = 0. We denote by Vν the sub-vector space of moving
quadrics generated by these moving quadrics obtained from moving hyperplanes.
Now, let 〈Q1, . . . , Qcν 〉 be basis of the quotient vector space Wν/Vν . Then, we
define the matrix MQν(φ) by

(H1 H2 · · · Hrν Q1 · · · Qcν ) = (sν sν−1t · · · tν) ·MQν .

It is a matrix of size (ν + 1) × (rν + cν). By definition, the first rν columns
of MQν correspond to the matrix Mν previously introduced and its entries are
linear forms in K[x0, . . . , xn]. On the other hand, its last cν columns are built
from moving quadrics and hence its corresponding entries are quadratic forms
in K[x0, . . . , xn].

Let the sequence of increasing integers µ1 ≤ µ2 ≤ . . . ≤ µn denote the
degrees of a µ-basis of φ, which is defined in the complete thesis or in [4]. The
dimension rν of the space of moving hyperplanes following φ is given by rν =∑n
i=1 max(0, ν − µi + 1). Here is our main result.

Theorem 2. Assume that ν ≥ µn − 1. Then rν + cν ≥ ν + 1 and

rank MQν(p) < ν + 1 ⇐⇒ p ∈ C.

Moreover, we have that

cν =
∑

1≤i<j≤n

max(0, µi + µj − 1− ν).

In particular, if ν ≥ µn + µn−1 − 1 then cν = 0 and it follows that MQν = Mν .

We discuss the shape of this matrix for some specific values of the degrees of
the µ-basis. We emphasize that unlike in the case of plane curves, the matrices
MQν will never be square matrices for space curves because a space curve cannot
be defined by a single equation over an algebraically closed field.

In the family of matrices MQν , ν ≥ µn − 1, the matrix MQµn−1 is evidently
the one with the smallest number of rows. Moreover, the smallest possible value
for the integer µn is dd/ne because of the equality

∑n
i=1 µi = d. It corresponds to

the situation where the µi’s are evenly distributed. It turns out that this balanced
situation is the generic one when K is an algebraic closed field: fixing a degree d
and picking n random homogeneous polynomials in (s, t) of degree d, f0, . . . , fn
using a dense distribution of the coefficients such as Gaussian distribution, the
degrees of its µ-basis are evenly distributed with probability 1 (see [6, Theorem
1.2] for the case n = 2 and [4, Section 3, Theorem 1] for a proof that generalises
to arbitrary dimension n ≥ 2).

Here are some further specific settings:



– µ1 = 0: An element of degree 0 in the µ-basis corresponds to a (non-moving)
hyperplane containing the curve. In this situation, we have µ2 + . . .+µn = d
and the problem is reduced to examining a curve in Pn−1 a µ-basis of which
is (p2, . . . , pn).

– µ1 = µ2 = 1: In this situation, the curve is contained in a (non-moving)
quadric the equation of which is given by the resultant of p1 and p2.

– µi = d/n for all i: In this case, the degree d is a multiple of n and the matrix
MQd/n−1 is purely quadratic since there is no moving hyperplane of degree
d/n− 1 following the parameterization.

3 Conclusions

We have seen that implicitization is not a trivial operation. Although most sim-
ple varieties, e.g. the hypersurfaces of degree 1 or 2, can be represented both
implicitly and parametrically, and their representation can be switched effort-
lessly, it is not the case any more beyond that algebraic complexity threshold. For
these difficult varieties, various implicitization algorithms exist without one be-
ing superior to all the others in all the situations. Simple varieties for their part,
are often constructed as approximations of complicate shapes or point clouds
and they also require different kinds of methods for which design purposes are
at least as important as algorithmic efficiency.

In the industry, implicit representations are often implemented to be poly-
nomials or functions; the implicit matrix representation that we developed may
require updates of softwares for them to be usable, despite their advantages
(in particular, the fact that they can solve the inversion problem, finding the
parameters associated with a point lying on the variety).

A very trendy approach is the use of neural networks, and more precisely
deep learning methods, to achieve various kinds of goal. Deep learning can indeed
be trained on producing implicit representations starting from various kind of
inputs. The results might be good for approximate implicitization but hardly
usable for exact implicitization. Another advantage of deep learning methods is
that they get extremely efficient with the class of shapes they are trained on.
While algebraic methods and, to a lesser extent, usual approximation methods
are able to handle correctly a wide variety of shapes, even bizarre ones, because
their heuristical aspects are adjusted by the implementations (e.g. the error
measurement), neural networks automatically adapt to the objects they are given
and are more efficient on similar ones.

However, we think that there is and there will always be room for alge-
braic standpoints when it comes to representations of geometric objects. Indeed,
the richness of algebraic structures offers possibilities for geometric operations
that are not possible otherwise, because polynomials are well-known and easy
to handle. Approximate implicitization may have little use of algebraic theory;
however, when it comes to exactness and conversions without loss of precision,
the protean algebra toolbox is there to avail.
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3. Laurent Busé, Clément Laroche, and Fatmanur Yıldırım. Implicitizing rational
curves by the method of moving quadrics. Computer-Aided Design, 114:101–111,
sep 2019.

4. D.A. Cox, T.W. Sederberg, and F. Chen. The moving line ideal basis of planar
rational curves. J. CAGD, 15(8):803–827, 1998.

5. J. Dalbec and B. Sturmfels. Introduction to chow forms. In Neil L. White, ed-
itor, Invariant Methods in Discrete and Computational Geometry: Proc. Curaçao
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