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Abstract. Fibrotic diseases cover a spectrum of systemic and organ specific diseases that affect a 

large portion of the population, currently without cure. Idiopathic Pulmonary Fibrosis (IPF) is an 

interstitial lung disease and one of the most common and studied fibrotic diseases. Understanding the 

underlying biological mechanisms and interactions of a disease remains a time consuming and costly 

task. Computational methodologies that reveal pathway communities can be of great value as they 

help expedite the process of identifying how perturbations in a single pathway can affect others. Drug 

Repurposing (DR) is a methodology where already existing drugs are tested against diseases outside 

their initial spectrum to reduce the high cost of new drug development.  

    Our 4 main objectives are to (i) identify key differentially expressed genes of fibrotic diseases, (ii) 

explore the perturbed biological pathways, (iii) suggest repurposed drugs as potential anti-fibrotic 

candidates for further testing and (iv) identify which fibrotic diseases resemble IPF based on common 

terms, to potentially pursue common regimens.  

    We analyze transcriptomics datasets to identify key genes implicated in fibrotic diseases. We use 

these genes as input in DR tools and then propose a novel drug re-ranking methodology via a scoring 

formula that consolidates standard repurposing scores with structural, functional and side effect scores. 

Following, we present a pathway analysis and community detection methodology, based on Random 

Walk theory, where a walker crosses a pathway-to-pathway network under the guidance of a disease-

related map. The latter is a gene network that we construct by integrating multi-source information 

regarding a specific disease. The most frequent trajectories highlight communities of pathways that 

are expected to be strongly related to the disease under study. By applying our pathway analysis 

methodology on 9 different fibrotic maladies, we identify various common highlighted pathways as 

well as unique entries for some of the diseases. 
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1 Dissertation Summary 

1.1 Introduction  

Fibrotic diseases constitute a group of incurable maladies that are recognized by a fibrotic 

phenotype and affect a large portion of the population. They cover a spectrum of systemic 

and organ specific diseases where their corresponding mechanisms escape the homeostatic 



signals and due to over-repairing, they cause tissue scarring. This leads to the functional 

failure of the organ or system. Idiopathic Pulmonary Fibrosis (IPF) is a rare, incurable 

disease of the respiratory system during which fibrotic tissue and scars appear in the lungs. 

IPF leads to death within 3-5 years due to the rapid fibrotic progression. According to a 

2014 study, article data from 21 countries suggest an incident rate of 3-9 cases per 100,000 

(per year) for North America and Europe and lower rates for East Asia (1.2–3.8 per 100,000) 

and South America (0.4–1.2 per 100,000) [1]. Recent developments on the field have led to 

updates in IPF’s diagnosis’ guidelines. A multidisciplinary committee of IPF experts has 

provided new guidelines for IPF diagnosis by combining evidence from high-resolution 

computed tomography (HRCT) and histopathological patterns of ‘usual interstitial 

pneumonia (UIP)’, ‘possible UIP’ and ‘indeterminate for UIP’ [2]. The committee also 

strongly advise against serum biomarker (MMP7, SPD, CCL18, KL6) measurements as an 

approach to distinguishing IPF from other ILDs because of the high false-positive and false-

negative result rates. 

    Despite the improvement of available technologies in the pharmaceutical industry, the 

cost of commercializing a new drug doubles every 9 years [3]. Designing novel organic 

compounds in a systematic fashion is a daunting task as it has been estimated that there can 

be up to 1060 molecules with drug-like properties [4]. Drug Repurposing or Drug 

Repositioning (DR) is the process during which known drugs are applied to different 

diseases. In silico DR studies have been published regarding maladies such as Alzheimer’s 

Disease (AD), where Siavelis et al. [5] used a bioinformatics pipeline to discover potential 

inhibitor drugs against AD. Bourdakou et al. [6] constructed and used a DR pipeline in the 

use case of Breast Cancer. More DR studies have been published on Malaria and 

Tuberculosis [7], on other parasitic diseases such as Trypanosomiasis, Toxoplasmosis, 

Cryptosporidiosis and Leishmaniasis [8], on Small Cell Lung Cancer [9] as well as on 

Gastrointestinal Stromal Tumor [10]. 

    The various categories of biological data are known as omics. Multiomics is a biological 

analysis approach where data consist of multiple "omes". Some of the major omics 

categories are: (i) genomics which concern structure, function, evolution, mapping, and 

editing of the genome (DNA), (ii) transcriptomics which concern the transcribed gene 

expression into mRNA as well as into non-coding RNA, (iii) proteomics which concern the 

functional proteins translated from mRNA and (iv) metabolomics, which concern 

metabolites such as sugars, nucleotides, amino acids and lipids.  

    The goal of the current thesis is to (i) identify key regulatory genes of IPF and other 

fibrotic diseases, (ii) highlight key biological pathways that are involved in the pathogenesis 

of fibrosis, (iii) propose candidate drugs for further experimental validation, (iv) identify 

fibrotic diseases common to IPF to pursue further common treatments among them and 

develop tools and methodologies regarding Pathway Analysis and DR. 

 



1.2 DR Pipeline against IPF 

For the first DR pipeline that we utilize [11], we download IPF gene expression datasets 

from GEO. We perform statistical analysis in order to extract key differentially expressed 

genes per experiment with the R/Bioconductor package Limma. We select the top-150 and 

top-150 under-expressed genes (p-value < 0.05) (due to the input restrictions of DR tools), 

of each dataset based on their fold change (FC). We also use the NetWalker tool, as a 

Random Walk-based approach, to construct a second list with the same number of over- 

and under-expressed genes. 

    We use the differentially expressed gene lists from the analyses as input in 3 DR tools 

(old version of CMap, LINCS (old version) and SPIEDw) and the tools return drug lists 

sorted by ascending inhibition scores. Negative drug score values suggest inhibiting mode 

of action against the disease’s signature, while positive drug scores hint for inducing action 

for the disease. We re-rank the candidates by integrating inhibition, structural and functional 

properties as well as potential side effects in a composite scoring schema via our 

methodology, termed CoDReS (Composite Drug Repurposing Scoring). 

    For the pathway analysis section of our initial DR pipeline, we use the gene lists (over- 

and under-expressed) of each experiment as input to Enrichr’s KEGG pathway analysis to 

discover molecular mechanisms involved in the pathogenesis of IPF. Finally, we identify 

miRNAs that can potentially silence over-expressed genes from our analysis. 

 

1.3 Drug Re-ranking 

In our second work, we created a tool based on our initial CoDReS methodology [12]. 

Currently, CoDReS is hosted in the CING - Bioinformatics Group Servers (C-BIG Servers) 

(http://bioinformatics.cing.ac.cy/CoDReS/). We implement a scoring formula based on data 

from online biological repositories that are regularly updated. We calculate a composite 

score (CoDReS) for each drug, as the normalized weighted sum of the initial a-priori score 

(aS) with a functional (FS) and a structural score (StS) as introduced below: 

 

𝐶𝑜𝐷𝑅𝑒𝑆𝑖 =
𝑤𝑎𝑆 ∗ 𝑎𝑆𝑖 + 𝑤𝐹𝑆 ∗ 𝐹𝑆𝑖 + 𝑤𝑆𝑡𝑆 ∗ 𝑆𝑡𝑆𝑖

𝑚𝑎𝑥𝐶𝑜𝐷𝑅𝑒𝑆
, 𝑖 = 1, … , 𝑁 𝑑𝑟𝑢𝑔𝑠 

 

    The weights waS, wFS and wStS are user-defined parameters that determine the desired 

influence of each part (a-priori, functional and structural scores respectively) to the final 

score and have equal default values. The a-priori scores can be uploaded by the user and are 

automatically normalized in the unit interval [0, 1] by dividing by the absolute maximum 

a-priori score. The functional score requires the calculation of two different parameters: (i) 

the Confidence Score, which reflects the gene-disease association and (ii) the Ki, which is 

an inhibitory constant, measured in nM, and represents the reciprocal of the binding affinity 

http://bioinformatics.cing.ac.cy/codres/


between the inhibitor (drug) and the enzyme (target). The smaller the Ki, the greater the 

binding affinity. We calculate the FS for each drug as the sum of the products of Confidence 

Score with the inverse value of Ki, for each gene target of the drug that has been related to 

the queried disease. Each drug's FS is finally normalized in [0, 1] by dividing with the 

maximum FS. 

 

𝐹𝑆𝑖 =  

∑ 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑆𝑐𝑜𝑟𝑒𝑗
1

𝐾𝑖𝑗
𝑛𝐺𝑒𝑛𝑒𝑠
𝑗=1

𝑚𝑎𝑥𝐹𝑆
 

 

    The structural score calculates a substance's drug-likeness based on the Lipinski “rules 

of 5” and Veber's rules. According to the Lipinski rules, in order for a drug to be orally 

active in humans, it should conform to the following rules: (i) have ≤ 5 hydrogen bond 

donors, (ii) have ≤ 10 hydrogen bond acceptors, (iii) weigh < 500 Da and (iv) have an 

octanol-water partition coefficient (log P) ≤ 5. The Veber's rules further require that the 

chemical substance (v) contains ≤ 10 rotatable bonds and (vi) its polar surface area does not 

exceed 140 Ǻ2 (angstrom2). The final StS for each drug is a value within the range [0, 1] 

calculated in the following way: 

 

𝑆𝑡𝑆𝑖 = 1 −
𝑛𝑢𝑚𝑉𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠

6
 

 

where “6” is the maximum number of structural rules that a drug might violate. 

 

1.4 Pathway Analysis 

Following, our next work concerns a novel Pathway Analysis methodology, termed 

PathWalks [13]. PathWalks methodology integrates random walks and shortest paths 

computations to walk on a pathway-to-pathway network under the guidance of a synthetic 

gene network that we construct by integrating a-priori molecular information related to a 

disease. The PathWalks methodology exploits two main network components related to a 

disease of interest which need to be constructed before the execution of the algorithm. 

    The first component is the multisource information map; this is a synthetic gene-to-gene 

network which represents integrated information (e.g., gene co-expression, physical 

interactions, miRNA targets) from biological databases in the form of weighted connections. 

Mathematically, the gene network is represented as a graph (Gg) and described as Gg = (Vg, 

Eg), where Vg is the set of nodes (genes) and Eg is the set of connections among nodes. The 

walker performs random walks on the gene network and the visited nodes indicate the 

walker’s new destination on the PathWalks’ second component; the functional connectivity 

network of biological pathways.  



    We construct the pathway-to-pathway network (Gp = (Vp, Ep)), by parsing the biological 

pathways’ functional connectivity information from KEGG. Pathways that contain genes 

already associated with the studied disease, receive higher numeric-value edge scores (i.e., 

visitation probability). The walker moves on the pathway-to-pathway network according to 

the instructions given by the map (gene-to-gene network) in order to explore biological 

pathway relations regarding the disease under examination. 

    A sorted list of the most visited pathways is generated after a set number of iterations. In 

order for the algorithm to converge, the two last sorted pathway-visitation lists must have a 

similarity index above a selected threshold. Finally, the algorithm highlights the most 

frequently visited edges (i.e., pathway-to-pathway connections) and nodes (pathways), 

revealing interesting pathway communities, according to the multisource map. In this study, 

we explore two use case scenarios from different disease settings; AD as a 

neurodegenerative disease and IPF as a fibrotic disease. 

 

1.5 DR Pipeline on Multiple Fibrotic Diseases 

In our final work, we revisit our initial DR pipeline, refine it and apply it on 9 fibrotic 

diseases. We analyze gene expression data and present common and unique: (i) genes, (ii) 

biological pathways and (iii) candidate repurposed drugs among these diseases, in an effort 

to better understand and potentially treat fibrosis, while focusing around IPF. 

2 Results and Discussion 

2.1 DR Pipeline against IPF 

For our initial DR pipeline, after analyzing the multiple IPF stage-related experiments from 

datasets GSE10667, GSE24206 and GSE44723, we result into two gene lists per experiment 

derived from Limma’s statistical analysis and from NetWalker’s random walk approach. 

To identify the most important genes related to each stage of the disease, we combine the 

two gene lists per experiment, creating a unified over-expressed list and a unified under-

expressed list per experiment. Finally, we integrate the information from all datasets by 

building over- and under-expressed gene lists separately, including genes that are common 

in at least two datasets for each stage of the disease. After we re-rank the candidate-drug 

lists, we propose niclosamide, lycorine, naltrexone and anisomycin for further 

experimentation against IPF. 

    As far as biological pathways are concerned, cell communication, extracellular matrix 

receptor interaction, focal adhesion, cytokine cytokine receptor interaction and colorectal 

cancer are the 5 pathways that we observe in all stages of IPF through our experiments.  



    In the last part of our initial DR pipeline, we search for microRNAs that are related to 

fibrotic diseases in HMDD v2.0 (Human microRNA Disease Database version 2.0). We 

find their gene targets in mirTarBase and compare them with the gene targets of the 

repurposed drugs from our study. The hsa-miR-208a-5p miRNA targets the CYP1B1 gene 

that we identify with NetWalker to be over-expressed in IPF experiment “stage 2 vs normal” 

and we suggest that further experiments should be carried out to test any potential anti-

fibrotic action. 

 

2.2 CoDReS 

In the following section, we discuss the validity of our CoDReS algorithm, where we 

consider examples disregarding a-priori scores. We choose the top-40 diseases from 

DisGeNET with the most correlated genes that have at least 20 drug candidates in Malacards. 

For each disease, we create a mixture list of 200 drugs: 95% randomly selected from 

DrugBank and 5% of the top drugs reported from Malacards repository as developed/used 

for the selected disease. 

    After executing CoDReS for each experiment, we count the number of the actual disease-

related drugs that we observe in the top-5% of the ranked drugs based on their CoDReS 

along with a p-value calculated through a hypergeometric distribution test. We repeat this 

procedure 100 times for each disease and then calculate the median, maximum, minimum 

and average p-value metrics for each disease. 

    CoDReS ranked effectively (median p-value < .05) the input drugs in 35/40 diseases. 

CoDReS failed to rank drugs correctly in 5 out of 40 diseases. This failure can be partially 

explained since the top-10 drugs corresponding to most of these diseases contain abstract 

substances or generic categories such as “Anti-Inflammatory Agents”, “Cytochrome P-450 

Enzyme Inhibitors”, “Immunologic Factors” or drugs with close to zero gene targets 

participating in the disease. 

 

2.3 PathWalks 

PathWalks implements shortest path traversing on a functional connectivity network of 

biological pathways. Due to the network's topology and the assigned edge weights, certain 

pathway nodes are consistently highlighted in the results. We perform a PathWalks 

execution with random biological pathway selection at each iteration (without gene map 

guidance) to identify these topology-favored nodes that are not necessarily highlighted due 

to their association with each use case disease. For this random-PathWalks experiment, we 

use our functional connectivity network of biological pathways and assign edge weights 

equal to the number of common genes between two pathways. We first compare the top-

10% ranked pathway lists among the respective IPF and AD PathWalks and the random 

PathWalks experiments to identify which pathways are reranked due to direct association 



with the biological map and which mostly due to the topology. We then compare the top-

10% PathWalks results (31 pathways) with the respective top-31 significant results from 

other pathway analysis tools to evaluate our results. 

    PathWalks brings 19 pathways to the top of the results of AD and 25 of IPF due to the 

integrated biological information rather than due to topology. “Serotonergic synapse” and 

“Notch signaling” pathways are the first two entries highlighted directly by AD’s gene map. 

“Cytokine-cytokine receptor interaction”, “TGF-beta signaling” and “Chemokine signaling” 

pathways are the top-3 IPF related results with direct biological connection to the disease.  

   Nevertheless, we do not necessarily consider topology-favored nodes as true negative 

entries. Topology-favored nodes either contain functional connections with multiple 

biological pathways (high degree-value) or connect distinct functional subnetworks (high 

betweenness-value). Therefore, perturbations in the functional connectivity network 

potentially affects these nodes indirectly. However, we observe that several of the topology-

favored pathways decrease in rank for non-relevant diseases. For example, the “Oxidative 

phosphorylation” pathway is ranked 2nd in the random PathWalks example and 9th in the 

AD use case, but only 162nd in the use case of IPF. 

    To evaluate our findings, we compare our PathWalks results with those derived from 

pathway analysis tools including GeneTrail3, Enrichr and EnrichNet. We feed as input to 

these tools the gene nodes of each map. Subsequently, we establish common highlighted 

pathway entries between PathWalks and the tools in discussion. This exercise partially helps 

validate our PathWalks-derived results and constitutes a common pathway analysis 

technique. For example, Glaab and colleagues have successfully used the intersection of the 

results of the enrichment analysis tools SAM-GS and GAGE while testing for the 

confidence of their EnrichNet tool’s pathway analysis results. PathWalks also exclusively 

highlights several biological pathways not necessarily favored by the topology. Furthermore, 

the key value-added of PathWalks compared to prior pathway analysis approaches, is that 

it yields functional connections among pathways as well as proposes pathway clusters. In  

    Validating pathway analysis methodologies is an invariably challenging task since 

ground truths and gold standards are often unavailable. Yu and colleagues [14] discuss these 

difficulties and present a model which can evaluate a pathway analysis methodology based 

on the consistency of its results on smaller subsets of a main gene expression dataset. 

However, such an approach can only be followed when parsing gene expression datasets. 

In our case, that entails gathering of multi-omics data from various sources, we choose to 

validate our PathWalks results by comparing our results with the results from other tools, 

similar to Glaab’s approach [15]. Furthermore, we identify corroborating bibliographic 

evidence to further ascertain the effectiveness of PathWalks mechanisms in AD and IPF. 

Without doubt, there is no single best approach in pathway analysis or in validating its 

results. Although common indications provided by several tools offer a baseline for 

validating results, one should keep in mind that every individual tool contributes its own 

incremental value-added through its own unique produced outcome(s). 



    A number of PathWalks results for IPF are neither highlighted by the benchmark tools 

we explore in our analysis nor by the random (no-map) PathWalks execution. The pathway 

of “Endocytosis”, which is directly connected to “Cytokine-cytokine receptor interaction”, 

is ranked 11th but there is little evidence in bibliography associating this pathway with IPF. 

Specifically, Hsu and others show that IPF and Systemic Sclerosis-Pulmonary Fibrosis 

share enriched functional groups regarding genes involved in caveolin-mediated 

endocytosis [16]. Caveolins are a family of plasma membrane proteins which form caves 

that are involved in receptor-independent endocytosis [17]. In another study, Shi and 

colleagues suggest a possibility that IPF patients may have perturbations in extracellular 

matrix endocytosis due to caveolin-1 turnover of the fibronectin matrix [18]. 

    Similarly, the “Apelin signaling” pathway, which is directly connected to “MAPK 

signaling”, ranked 23rd and was uniquely produced by PathWalks. Apelin is an endogenous 

ligand that binds to the G-protein-coupled receptor, is expressed in multiple tissues and 

organ systems and is implicated in various physiological processes [19]. There is no 

bibliographic evidence directly associating this pathway with IPF. Hence, both “Apelin 

signaling” and “Endocytosis” pathways should be further explored for potential 

contribution to the fibrogenesis of IPF patients. 

 

2.4 DR Pipeline on Multiple Fibrotic Diseases 

In the final results section, we present our DR findings regarding fibrotic diseases. IPF has 

the most common over-expressed genes with Dupuytren’s Disease (35) and the most 

common under-expressed genes with Myelofibrosis (28). Schistosomiasis has the fewest 

common genes with IPF (3 over- and 3 under-expressed). Through our dataset analysis, we 

identify the upregulated gene LCN2 associated with IPF, Cystic Fibrosis (CF), 

Schistosomiasis and Systemic Sclerosis (SSc) and the under-expressed gene FBLN1 

associated with CF, Myelofibrosis, Polycystic Kidney Disease and SSc. According to the 

bibliography, even though FBLN1’s mRNA levels might be decreased in Chronic 

Obstructive Pulmonary Disease where small airway fibrosis occurs, on the protein level it 

might have already been accumulated in the ECM. FBLN1 levels were found increased in 

serum and bronchoalveolar lavage fluid of asthma patients [20] and in the plasma and lung 

tissue of IPF patients [21]. Based on our results (under-expression of FBLN1) and the 

bibliography, we observe an association among FBLN1 and fibrotic diseases but only 

regarding specific tissues (e.g., lung, myocardium). We suggest that further proteomics 

analyses should be carried out to identify the quantity of the fibulin-1 translated protein in 

the related fibrotic tissues and its potential involvement in fibrosis. 

    Following, through the PathWalks runs we identify key disease-specific as well as 

common pathways between the 9 fibrotic maladies. We observe seven common pathways 

(favored by the topology) across all nine diseases. These include “Metabolic”, “Cancer”, 

“MAPK signaling”, “PI3K-Akt signaling”, “Non-alcoholic fatty liver disease”, “Oxidative 



phosphorylation” and “Calcium signaling” pathways. We also observe unique pathways 

highlighted for some of the diseases, with the most interesting ones potentially linking Oral 

Submucous Fibrosis to myocardial diseases. 

    We use the key differentially expressed gene lists from our dataset analysis, as input in 

two signature-based DR tools; CMap and L1000CDS2. We then re-rank the drug lists based 

on our CoDReS tool. Two of the drug candidates returned by CoDReS are common entries 

among 3 of the 9 fibrotic diseases. Hydrocortisone is selected as an anti-fibrotic drug 

candidate from the re-ranking procedure for IPF, CF and SSc. Similarly, memantine is 

highlighted in the use cases of IPF, Dupuytren’s Disease and Schistosomiasis. In an effort 

to further screen the repurposed and re-ranked drug candidates, we explore structural 

similarities among them and drugs that have previously failed in clinical trials against 

fibrotic diseases. Memantine’s action has not been studied against fibrotic diseases but there 

are hints suggesting further experimentation [22, 23]. On the other hand, low doses of 

hydrocortisone have shown to attenuate fibrosis especially in the early stages [24, 25]. 

However, hydrocortisone has high structural similarity with drugs that have previously 

failed in clinical trials against fibrosis. Even though we suggest prioritizing drugs that are 

dissimilar to “failed” ones, we do not reject the possibility that even these candidates might 

succeed in combination with other drugs or at different dosages and/or stages of fibrosis.  
    In the sequel, we highlight the most promising anti-fibrotic candidates while focusing on 

IPF, by identifying the drugs’ gene targets inside key pathway communities. We focus on 

the targeted IPF highlighted pathways that are directly associated with its integrated genetic 

information map in an effort to explore and distinguish anti-fibrotic candidates among these 

89 drugs. Specifically, these are the “Pancreatic secretion”, “Protein digestion and 

absorption” and “Complement and coagulation cascades” pathways. There are 34/121 re-

ranked drugs that target at least one gene participating in these pathways. We 

bibliographically explore the 7 candidates that target at least 2 out of the 3 most important 

pathways of IPF, namely celecoxib, digoxin, captopril, ibuprofen, staurosporine, nafcillin 

and wortmannin. Among these, 4 seem most appropriate to further study against fibrosis; 

captopril, ibuprofen, nafcillin and digoxin. 

    We observe gene, pathway and repurposed candidate similarities among IPF and the rest 

of the fibrotic diseases. Specifically, IPF shares several terms with Dupuytren’s Disease 

having 35 common over-expressed and 16 common under-expressed genes, 2 common key 

pathways with direct association to the respective genetic information maps and 2 common 

identified drug candidates. IPF and Myelofibrosis share 28 under-expressed genes. IPF and 

IgG4-related Disease share 23 over-expressed genes and 3 key pathways. Finally, IPF 

shares 20 over-expressed genes and 1 key pathway with SSc and 3 drug candidates and 1 

key pathway with CF. We suggest that common treatments for IPF and the aforementioned 

diseases, especially Dupuytren’s Disease, should be further pursued. 



3 Conclusions 

During my PhD thesis I studied and analyzed gene expression datasets mainly revolving 

around IPF as well as other fibrotic diseases. My contribution lies in the suggestion of 

potential unique and shared (i) genes, (ii) biological pathways and (iii) anti-fibrotic drug 

candidates among IPF and other fibrotic diseases. I also designed and developed in silico 

DR-related tools (CoDReS, ChemBioServer 2.0 [26]) as well as implemented and presented 

a methodology for pathway community detection (PathWalks). 

    More specifically, some of the most promising drug candidates that we suggest for further 

experimentation against fibrosis are: niclosamide, lycorine, naltrexone, anisomycin, 

captopril and ibuprofen. Niclosamide already has positive results against fibrotic cell lines 

and pulmonary fibrosis mouse models. We are currently testing niclosamide against 

myofibroblasts from lungs of IPF patients and healthy individuals in the Department of 

Medicine in Democritus University of Thrace. 

    We identify “Apelin signaling” and “Endocytosis” pathways as novel indications through 

our PathWalks methodology that should be further experimentally pursued for their 

potential contribution to the fibrogenesis of IPF. 

    Finally, we suggest further pursuing of common treatments among IPF and the fibrotic 

diseases that, based on our results, seem more “similar” to IPF. We conclude that these 

diseases are Dupuytren’s Disease, SSc, CF and IgG4-related Disease. 

    As far as our developed DR tools are concerned, (i) CoDReS concerns the re-ranking and 

repurposing of drug candidates based on their functional relation to a disease of interest as 

well as their drugability and (ii) ChemBioServer concerns DR based on structural similarity 

of substances. 

    Our in silico bioinformatics analyses and tools face certain limitations regarding the 

validation of results compared to those from wet-lab experiments.  Our suggestions 

constitute indications that require further experimental validation. However, since our input 

data come from biologically curated databases and our methodologies are scientifically 

valid, we consider our indications as reliably screened candidates. 
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