
Infinite-game Semantics for Logic Programming
Languages

Chrysida Galanaki?

National and Kapodistrian University of Athens
Department of Informatics and Telecommunications

chrysida@di.uoa.gr

Abstract. This thesis focuses on the study of the semantics of logic
programs and the development of infinite games of perfect information
between two players, that capture this semantics. We define a game that,
given a propositional logic program with negation and a ground atom
that belongs to it, may have three possible results (win for any of the
players or tie). The game is determined. Based on this, we get a game
interpretation of the program that is a model. Moreover, it is equiva-
lent to the well-founded semantics of the program. In order to prove
that, we use a new refined game that has infinite possible outcomes.
The refined game is also proved to be determined and its game interpre-
tation is a model of the program and equivalent to the infinite valued
minimum model semantics of the program. Our study then extends to
intensional logic programming a generalization of temporal and modal
logic programming. For the monotonic case we develop a game semantics
equivalent to the existing semantics. More importantly, we extend it to
a three-valued game semantics, the first semantics for the broad class of
non-monotonic intensional logic programming languages.

1 Dissertation summary

The purpose of this dissertation is to use infinite games in order to provide an
alternative, simple and elegant semantics for logic programming languages. We
consider two such languages and provide for each one of them a corresponding in-
finite game that captures its semantics. The first language is that of normal logic
programs, i.e. logic programs that allow negative literals in the bodies of clauses.
The second language is intensional logic programming, i.e. logic programming
extended with intensional operators.

The semantics of logic programming has been extensively investigated. Prob-
ably the most broadly studied topic in the area is the problem of extending logic
programming with negation. The generally accepted computational interpreta-
tion of negated atoms is negation-as-failure. Intuitively, a goal ∼A succeeds iff
the subcomputation which attempts to establish A terminates and fails. After
many years of research, it appears that the most widely acceptable approaches
to the semantics of negation-as-failure are the well-founded semantics [35] and

? Dissertation advisor: Panos Rondogiannis, Associate Professor

the stable model semantics [14]. The former approach provides a unique “distin-
guished” model of the program while the latter allows for the possibility of zero,
one or many models. This thesis focuses on the well-founded semantics.

Game-theoretical semantics has been extensively studied in logic and lan-
guage [15]. Despite the fact that game semantics is well-established for more
mainstream programming languages [2], their application to logic programming
has been very restricted. To our knowledge, there exist two other works that
deal with the problem of giving a game semantics to logic programming. How-
ever, both of them deal with the negation-free case. The first of them, appears
in [34] in which M. H. van Emden develops a probabilistic version of logic pro-
gramming whose proof theory is described using a two-person game. This work,
although ground-breaking, does not treat negation. More recently, the game for
the negation-free case was also studied in [6], and interesting connections with
the classical semantics of logic programming have been established. Less directly
connected to our work but very indicative of the connections between game the-
ory and logic programming, is the work of M. De Vos (see for example [5], [4]).
More specifically, in [4] certain new logic programming formalisms are introduced
in order to model decision-making. It is demonstrated that strategic games and
extensive games of perfect information can be represented in these new for-
malisms in such a way that the equilibria of the games can be retrieved as the
stable models or answer-sets of the programs.

The starting point of our investigation is the simple game semantics for
ordinary negation-less logic programming in [34]. Suppose we have a program
P and a goal clause G. We describe how the question, “does G succeed as a
query to P” can be reduced to the question, “does Player I have a winning
strategy in the game ΓPG

”. The game ΓPG
is a two person infinite game of

perfect information. Player I, who we will also call the Believer, believes that G
will succeed and his first move is to play G, thus asserting his belief. Player II,
who we will also call the Doubter, thinks G will fail. His first move is to choose
one of the variables in G which he thinks will fail on its own, and plays it, thus
asserting his doubts. From then on, the play proceeds as follows: the Believer
(who thinks the variable just played by the Doubter will in fact succeed) must
play a clause in the program whose head is the variable just played; and the
Doubter must, on his turn, play one of the variables in the body of this clause.

Either player can win by making a move for which his opponent has no legal
response. For the Believer, this means playing a clause with an empty body; this
happens when the Doubter choses to doubt an atom for which there is a fact in
the program. For the Doubter, this means choosing a variable for which there is
no rule; in this case the Believer has chosen a rule with a variable in its body
for which there is no evidence. Finally, we must give the Doubter an important
advantage: he wins if the game never ends.

It is not hard to argue informally about the correctness of the game semantics
for negation-less programs. If G actually fails, the Doubter’s winning strategy is
to repeatedly choose variables which themselves fail. If G succeeds, the Believer’s
winning strategy is to repeatedly choose rules that are applicable, ie., for which

all the variables in the body succeed. The only subtle point is that the Believer,
in choosing applicable rules, must avoid ones like p ← p which do not actually
advance the game.

Once the standard game is understood in terms of the informal anthropomor-
phic description given above, it is not hard to see how to extend it to programs
with negation. There is one new rule: when one of the players plays a formula of
the form ∼p, his opponent must, on the next move, play p. And this move must
then be answered by playing a clause whose head is p, and so on. The significance
of the new rule is that when a negation is encountered, the players swap roles
- the Believer becomes the Doubter and vice-versa. For example, suppose that
Player II, who doubts q, has just played it. Player I, who believes q, plays the
clause q ← r,∼ p. Then Player II, who doubted q, thinks the weak link is ∼ p,
and plays it. Player I, who believes q, must believe ∼ p, which means doubting
p, and playing it. Thus Player I, who was a believer and believed in q, has now
become a doubter, who doubts p. His opponent, who was a doubter, is now a
believer (in p) and must find a rule for p to play.

The rules for winning or losing require modification. As before, any player
who has no legal move loses immediately. Thus either Player I or II can lose if
they find themselves, in the doubter’s role, doubting a fact or, in the believer’s
role, believing without evidence. Furthermore, if the game play is infinite and
after a certain point one of the players remains a doubter, he wins. Finally, if
the players swap roles infinitely often, the result is a tie.

The game we have just described is determined, i.e. it always has a value, and
equivalent to the well-founded semantics of negation. The well-founded semantics
is based on a three-valued logic, namely a logic that uses the truth values False,
0 and True. Intuitively, we need to demonstrate that an atom has value True
(respectively False) in the well-founded model iff Player I (respectively Player II)
has a winning strategy in the corresponding game. Additionally, we have to show
that the value 0 corresponds to the case where the best choice for both players
is to lead the game to a tie. Establishing the equivalence that we just described
is not straightforward. The reason is that, as we are going to see, the well-
founded model is constructed in stages, and the truth values that are introduced
in different stages can be thought of as having different “strengths”. On the other
hand, the game we have described does not have any notion of different levels
of winning or losing. Therefore, in order to establish the equivalence it would be
convenient if we had on the one hand a refinement of the well-founded model in
which the strengths of truth values are as explicit as possible and on the other
hand a refinement of the game that uses different degrees of winning and losing.

A characterization of the well-founded model that captures in a logical way
this notion of different strengths of truth values has been introduced by P. Ron-
dogiannis and W. W. Wadge in [29, 28]. More specifically, the infinite-valued
semantics introduced in [29, 28] is a refinement of the well-founded semantics
and it uses instead an infinite number of truth values ordered as follows:

F0 < F1 < F2 < · · · < 0 < · · · < T2 < T1 < T0

Inspired by this semantics, we define a refined game which supports different
degrees of winning and losing. We show that this game is also determined. We
then demonstrate that the interpretation of the program that we get using this
new infinite-valued game, is equivalent to the infinite-valued semantics. This will
immediately imply that the game interpretation of the initial three-valued game
is equivalent to the well-founded semantics.

Our study then focuses on Intensional logic programming, an extension of
logic programming based on intensional logic. Intensional Logic is an extension
of classical logic that was introduced by R. Montague [17] in order to capture the
semantics of natural languages. Roughly speaking, intensional logic was proposed
as a formal system for understanding and reasoning about context-dependent
properties of natural language expressions. In its initial form, intensional logic
was a higher-order one, equipped with modal and temporal operators [13]. How-
ever, the term “intensional logics” can also be used more loosely in order to
describe a large class of logics for reasoning about context-dependent phenom-
ena [20]. Temporal logics and modal logics are special cases of intensional logic.

Based on this broad interpretation of the term, M. Orgun and W. W. Wadge
introduced in [24] the notion of intensional logic programming, which includes
as special cases many non-classical extensions of logic programming (such as
temporal logic programming, modal logic programming, and so on). As pointed
out in [24], numerous logic programming languages that have been proposed
in the literature can be characterized as “intensional” (such as Chronolog [24],
Tempura [19], Molog [7], Cactus [27], MProlog [22] and so on). It was there-
fore natural to wonder whether there exists a common semantic framework for
handling all these systems in a uniform way. As it was demonstrated in [24], if
the intensional operators of the source intensional logic programming language
obey some simple semantic properties, then the programs of the language are
guaranteed to possess the minimum model property. However, all the intensional
operators allowed in [24] are assumed to satisfy the monotonicity property and
this excludes many interesting applications that involve non-monotonicity, which
is a crucial concept involved in knowledge representation and reasoning.

Our purpose is to extend the framework of [24] to allow arbitrary (non-
monotonic) intensional operators in the bodies of program clauses and to define
a general semantic framework for non-monotonic intensional logic programming.
Our approach is again based on game semantics.

We begin by constructing a simple two-person game for the class of inten-
sional logic programs considered in [24] (in which the intensional operators are
monotonic, universal and conjunctive). We demonstrate that the outcome of the
game coincides with the minimum model semantics obtained in [24]. In this way
we provide an equivalent formulation to the approach of Orgun and Wadge for
facilitating the further study of intensional logic programs.

We then extend the proposed game to handle intensional logic programs
that even use non-monotonic operators in the bodies of clauses and show that
the games are determined. In this way we obtain the first general semantic
framework for non-monotonic intensional logic programming. It should be noted

that intensional logic programming, due to its variety of operators, allows a much
broader framework for non-monotonicity than classical logic programming where
the main source of non-monotonicity is the operator of negation-as-failure.

2 Main results

Game Semantics of Normal Logic Programming

Let P be a logic program and G a goal clause. We define a corresponding PI-game
ΓPG

= (X,Tω, D, Φ), as follows: The set of moves X is:
X = {G} ∪ P ∪ literals(PG) ∪ negvars(P) ∪ 〈I’ve lost〉 ∪ 〈I’ve won〉

In other words, a player can choose one of the following moves: a) he can play
the goal clause, or b) play a clause of the program, or c) a literal that appears
in G or in the body of a clause of P , d) a propositional variable that appears
in a negative literal in the body of some clause of p, or finally, declare losing or
winning.

We can now specify the rules that the two players must obey:

– (R1) The first move of Player I is the goal clause G and the next move, by
Player II, is the literal in the body of the goal clause.

– (R2) If the previous move is a clause (with non-empty body), the next move
is one of the literals in the body of the clause.

– (R3) If the previous move is a positive literal p, the next move is a clause in
P whose head is p (and whose body could possibly be empty).

– (R4) If the previous rule is a negative literal ∼p, the next move must be p
itself (this last move is called a role-switch).

– (R5-6) If none of the above rules is applicable, the player breaks the rules
and loses (plays the 〈I’ve lost〉 move from then on) while the other player
wins (plays the 〈I’ve won〉 move from then on).

Notice that if in rule (R2) the body of the clause is empty, then we will say that
the player is forced to break rule (R2). Similarly, the player is forced to break
rule (R3) if he can not can find a clause in P whose head is p. We should note
here that since our game is infinite, a play continues even after one of the two
players has broken the rules and the game has essentially ended in favor of one
of the two players. The player who is forced to break the rules keeps on playing
the move 〈I’ve lost〉 while the other, who has won the play, keeps on playing the
move 〈I’ve won〉. However, the moves beyond this point will be irrelevant to the
outcome of the play. This way every play is infinite. A play that does not contain
〈I’ve won〉 and 〈I’ve lost〉 moves will be called a genuinely infinite play.

More formally, the infinite tree Tω of the game ΓPG
consists of all infinite

sequences 〈x0, x1, . . . , xk, . . .〉, which satisfy the following restrictions:

R1: x0 = 〈← p〉, where G =← p is a goal clause, and x1 = 〈p〉.
R2: If xk = 〈q ← q1, · · · , qn〉, then xk+1 = 〈qi〉, where 0 < i ≤ n.
R3: If xk = 〈p〉, then xk+1 = 〈C〉, where C is a clause whose head is p.

R4: If xk = 〈∼p〉, then xk+1 = 〈p〉 .
R5: If after xk has been played none of the above rules is applicable, then xk+1 =

〈I’ve lost〉.
R6: If xk = 〈I’ve lost〉, then xk+1 = 〈I’ve won〉 (and vice-versa).

The set D of rewards is the set {F, 0, T}. Intuitively, F corresponds to the
False truth value, T to the True truth value and 0 to an intermediate truth value
that is above False and below True. From the game point of view, F corresponds
to a win of Player II, T to a win of Player I, and 0 to a tie of the two Players.

Let a ∈ StratI(Γ) and b ∈ StratII(Γ) be two strategies, and let s = a ? b
be the unique play determined by a and b. The following two definitions will be
useful in defining the payoff function:

Definition 1. Let P be a program, G a goal, and let s be a play of the corre-
sponding game ΓPG

. Then, s is called a true-play if either Player II plays the
〈I’ve lost〉 move in s or if s is a genuinely infinite play that contains an odd
number of negative literals.

Definition 2. Let P be a program, G a goal, and let s be a play of the corre-
sponding game ΓPG

. Then, s is called a false-play if either Player I plays the
〈I’ve lost〉 move in s or if s is a genuinely infinite play that contains an even
number of negative literals.

We are now in a position to give a formal definition of the payoff function Φ:

Φ(s) =

T, if s is a true-play
F, if s is a false-play
0, otherwise

Notice that in the above definition of the payoff function, the value 0 corresponds
to the case where s is a genuinely infinite play that contains an infinite number
of negative literals i.e. there is an infinite number of role switches in the play.

Corollary 1. Let P be a program, G a goal clause and let ΓPG
be the corre-

sponding game. Then, ΓPG
is determined.

Since the negation game is determined, we have the following definition:

Definition 3. Let P be a program. We define the game interpretation NP of
P as the interpretation such that for every p in the Herbrand base BP of the
program, NP (p) is equal to the value of the game ΓP∪{←p}.

The following theorem states that the game interpretation of a program is actu-
ally a model of the program:

Theorem 1. Let P be a program. Then, NP is a model of P .

The above theorem provides a novel, purely game-theoretic characterization
of the semantics of negation in logic programming. Subsequently, we investigate
how this approach relates to the existing semantic approaches for negation and
we prove the equivalence between NP and the well-founded model semantics.

Theorem 2. Let P be a program and let p be an atom that appears in P . Con-
sider the goal G =← p and let ΓPG

= (X,Tω, {F, 0, T}, Φ) be the corresponding
(unrefined) game. Moreover, let M be the well-founded model of P . Then, ΓPG

has value v ∈ {F, 0, T} if and only if M(p) = v.

In order to prove the above theorem we use a new refined game that has
infinite possible outcomes. The value of that game depends on the number of
role switches that take place during it. The value of the game is Tk (respectively
Fk) if Player I (respectively Player II) wins after k role-switches.

Corollary 2. Let P be a program, G a goal clause and let ΓPG
be the corre-

sponding refined (infinite-valued) negation game. Then, ΓPG
is determined.

Theorem 3. Let P be a program and let p be an atom that appears in P . Con-
sider the goal G =← p and let ΓPG

= (X,Tω, V, Φ) be the corresponding refined
(infinite-valued) game. Moreover, let MP be the minimum infinite-valued model
of P . Then, ΓPG

has value v ∈ V if and only if MP (p) = v.

Therefore, the semantics captured using the refined game is equivalent to the
minimum infinite-valued model of the logic program.

Game Semantics of Intensional Logic Programming

We introduce a two-player game ΓP (C,w) during which, Player I has the role of
the Doubter and Player II the role of the Believer.

The infinite tree Tω of the game ΓP (C,w) consists of all the infinite sequences
〈x0, x1, . . . , xk, . . .〉 which satisfy the following restrictions (in which A denotes
a propositional atom, Bi denotes an intensional atom, u, v, z, y denote elements
of W and S, S′ denote subsets of W) for each k ≥ 0:

R1: x0 = 〈C,w〉−.
R2: If xk = 〈OA, u〉−, then xk+1 = 〈A,S〉+, where u ∈ ||O||(S).
R′3: If xk = 〈A,S〉+ and xk−1 = 〈OA, u〉−, then either (i) xk+1 = 〈A, v〉−, where

v ∈ S, or (ii) xk+1 = 〈A,S, S′〉+, where S′ ⊃ S and u 6∈ ||O||(S′). A move
of type (ii) will be called a role switch.

R′′3: If xk = 〈A,S, S′〉+, then xk+1 = 〈A, y〉−, where y ∈ (S′ − S).
R4: If xk = 〈A, v〉−, then xk+1 = 〈C, z〉+, where C is a clause in P of the form

B0 ← B1, . . . , Bn, such that either (i) B0 = A and z = v, or (ii) B0 = OA
and for every S satisfying z ∈ ||O||(S) it holds v ∈ S.

R5: If xk = 〈B0 ← B1, . . . , Bn, z〉+, then xk+1 = 〈Bj , z〉−, for some j with
1 ≤ j ≤ n.

R6: If after xk has been played, none of the above rules is applicable, then xk+1 =
〈I’ve lost〉.

R7: If xk = 〈I’ve lost〉, then xk+1 = 〈I’ve won〉 (and vice-versa).

Some explanations are in order. Suppose that C = OA (the explanation for
C = A is similar). Initially, Player I plays the move 〈OA,w〉−. The intuitive
explanation for this move is “I doubt that OA is true in world w”. Player II

believes the truth of OA in world w and for this reason he replies to the move of
Player I with a pair 〈A,S〉+, where w ∈ ||O||(S). The explanation for this move
is “I believe that OA is true in w; actually, I believe A is true in all the worlds
contained in S and this implies that OA is true in w”. Player I now responds
with a pair 〈A, v〉− where v ∈ S. The intuition now is: “I doubt that A is true
in the world v of S (and therefore I continue to believe that OA is not true in
w)”. Player II must now establish that A is true in v. One way to achieve this
is to use a clause with head A. A second (less direct) way is to prove that OA
holds at some world z with the property mentioned in Case (ii) of rule R4; this
property guarantees that if OA holds at z, then A holds at v. Therefore, Player
II provides a pair 〈C, z〉+ where C is a program clause with head A or OA. If the
head is A then z coincides with v; otherwise z is selected so that for all S ⊆W
satisfying z ∈ ||O||(S) it holds v ∈ S. The intuition is “Using this rule and the
context z I can establish that A is true in the world v”. Now Player I responds
with a pair of the form 〈Bi, z〉−, where Bi is one of the intensional atoms in the
body of the rule that Player II has just played. The intuition is “I doubt that Bi
is true in world z”.

As the game proceeds, the two players may swap roles (the Believer may
become Doubter and vice-versa). Suppose now that at some point of the game,
the Believer replies to a move of the form 〈OA, u〉− of the Doubter by playing
〈A,S〉+, where u ∈ ||O||(S). The Doubter can respond in two different ways.
His first option is to play 〈A, v〉− where v ∈ S. The intuition is: “I doubt that A
is true in the world v of S (and therefore I continue to believe that OA is not
true in u)”. Alternatively, the Doubter can play 〈A,S, S′〉+ where S′ ⊃ S and
u 6∈ ||O||(S′). The intuition here is “I believe that the set of worlds where A is
true is S′ ⊃ S and not S (as the Believer just claimed); since u 6∈ ||O||(S′), I
was right in my belief that OA is not true in u”. This second type of move has
made the player that was a Doubter to become a Believer and his opponent to
become a Doubter (role-switch). In move R′′3, the new Doubter plays 〈A, y〉−
where y ∈ (S′ − S). The intuition is “I doubt that the set of worlds where A is
true coincides with S′; more specifically, I doubt that A is true in the world y”.

The set of rewards is D = {0, 12 , 1} i.e., a play of the game can be assigned
the value 0 (Player I has won the play), value 1 (Player II has won), or the value
1
2 (the result is a tie). Finally, the payoff function is defined as follows:

Φ(s) =


1, if Player II plays the 〈I’ve won〉 move in s or s is a genuinely

infinite play that contains an odd number of role-switches
0, if Player I plays the 〈I’ve won〉 move in s or s is a genuinely

infinite play that contains an even number of role-switches
1
2 , if s contains an infinite number of role-switches

According to the above definition, a player wins a play of the game if he manages
either to play the 〈I’ve won〉 move or to remain the doubter after a certain point
of the play; otherwise the result of the play is a tie.

Theorem 4. Let P be a program, C be a propositional or intensional atom and
w ∈W . Then, the game ΓP (C,w) is determined.

Definition 4. Let P be an intensional logic program. We define the game in-
terpretation NP of P such that for every propositional atom A that appears in
P and for every w ∈W , NP (A)(w) is equal to the value of the game ΓP (A,w).

Definition 5. Let P be an intensional logic program and assume that the two-
valued denotations of all intensional operators in the heads of the clauses of
P are universal, monotonic and conjunctive while the two-valued denotations
of the intensional operators in the bodies of clauses are arbitrary functions in
{0, 1}W → {0, 1}W . We define the game interpretation NP of P to be the inter-
pretation which for every propositional atom A that appears in P and for every
w ∈W has the property that NP (A)(w) = v if and only if the value of the game
ΓP (A,w) is equal to v.

Lemma 1. Let P be a program and assume that the denotations of all inten-
sional operators that appear in the heads of the clauses in P are universal, mono-
tonic and conjunctive, while the denotations of intensional operators in the bod-
ies of clauses are arbitrary functions in {0, 1}W → {0, 1}W . Then, the game
interpretation NP of P is a model of P .

Theorem 5. Let P be a program and assume that the denotations of all in-
tensional operators in the heads of the clauses of P are universal, monotonic
and conjunctive while the denotations of the intensional operators in the bod-
ies of clauses are arbitrary functions in {0, 1}W → {0, 1}W . Then, the game
interpretation NP of P is a minimal model of P with respect to �.

If we restrict our focus to monotonic programs, we have a simpler version of
the game, with two values (0, 1) and without role switches. This game is also
proved to be determined and it gives a game interpretation that is a model of
the program and is identical to the unique minimum model MP of [24]:

Theorem 6. Let P be an intensional logic program and assume that the de-
notations of all intensional operators in the heads of the clauses are universal,
monotonic and conjunctive, and the denotations of all intensional operators that
appear in the bodies of the clauses are monotonic. Then, the minimum inten-
sional model MP and the game interpretation NP of P coincide.

3 Conclusions

In this work we presented infinite-game semantics for logic programs. Initially,
we proposed an infinite-game characterization of the well-founded semantics for
function-free logic programs with negation. The game is a simple generalization
of the standard game for negation-less logic programs introduced in [34] in which
two players, the Believer and the Doubter, compete by trying to prove (respec-
tively disprove) a query. The game for programs with negation that we proposed
follows the same rules as the standard one, except that the players swap roles
every time the play ”passes through” negation. We showed the determinacy of
the new game by using some classical tools from the theory of infinite-games.

Our determinacy result immediately provides a novel and purely game-theoretic
characterization of the semantics of negation in logic programming. More specif-
ically it is equivalent to the well-founded semantics of logic programming.

In order to prove that equivalence, we defined a refined version of the game,
i.e. an infinite-valued game that uses infinite degrees of winning and losing for the
two players. We then demonstrated that this refined game corresponds exactly
to the infinite-valued minimum model semantics of negation of [28]. This implied
that the unrefined game is equivalent to the well-founded semantics.

The study continued with Intensional logic programming, an extension of
logic programming, which includes as special cases both temporal and modal
logic programming. A new game was defined and shown to be determined and
equivalent to the semantics of M. Orgun and W. W. Wadge [24] for the case
of programs in which the denotations of intensional operators in the heads of
the clauses are monotonic, universal and conjunctive and the denotations of
intensional operators in the bodies of the clauses are monotonic.

We then extended the game to a three-valued one that also applies to pro-
grams with non-monotonic operators and showed its determinacy. We proved
that this extended game provides minimal model semantics for intensional logic
programs. This way we have introduced the first (to our knowledge) general
semantic framework for non-monotonic intensional logic programming. The pro-
posed game can be used as a yardstick in order to develop alternative semantical
approaches for non-monotonic temporal and modal languages.

There are many aspects of this work that we feel that should be further
investigated. First of all, the (unrefined) negation game could apply as it is to
infinite propositional programs. However, the proof of correctness has to be more
involved. This is mainly due to the fact that the construction of the well-founded
model of an infinite propositional program may require a transfinite number of
iterations. This is also reflected in the construction of the minimum infinite-
valued model of such programs: the set V of truth values contains a Fα and a Tα
for each countable ordinal α (see [28] for details). Therefore, in the correctness
proof for the case of infinite programs, one has to appropriately redefine the
refined game so as that the payoff function ranges over this new extended set of
truth values. In the theory of infinite games such a situation is usually treated
by introducing an auxiliary ordinal in the game that can be considered as a
type of clock which imposes a “time limit” to the moves of the players (see for
example [31]). A first attempt towards this direction appears in [11].

A game semantics for (negation-free) disjunctive logic programming, similar
to our approach, has recently been developed in [32]. It would be interesting to
further broaden our understanding regarding the interplay between logic pro-
gramming and game-theory, by extending the game semantics to apply to other
logic programming languages since many recent results ([6, 4, 10, 9, 11, 32]) and
the present work suggest that this is a fruitful avenue of research. For example,
it would be desirable to devise a game semantics for answer-set programming.

The use of any new semantic approach for a programming language, can
only be tested by its applications. It would therefore be interesting to apply

the proposed approach in order to establish properties of logic programs that
use well-founded negation. We conjecture that the game semantics can be used
to demonstrate the correctness of program transformations as well as to define
new ones. Since games are intuitive and natural, it is interesting to investigate
whether they can offer certain benefits when compared against the classical
semantics approaches.

References

1. Apt, K., Bol, R.: Logic Programming and Negation: A Survey. Journal of
Logic Programming, 19,20:9–71 (1994)

2. Abramsky, S., McCusker, G.: Game Semantics. In H. Schwichtenberg and U.
Berger, editor, Computational Logic: Proceedings of the 1997 Marktoberdorf
Summer School, pages 1–56. Springer-Verlag (1999)

3. Baral, C., Gelfond, M.: Logic Programming and Knowledge Representation.
Journal of Logic Programming, 19(20):73–148 (1994)

4. De Vos, M.: Logic Programming, Decisions and Games. PhD thesis, Vrije
Universiteit Brussel (2001)

5. De Vos, M., Vermeir, D.: Choice logic programs and Nash equilibria in strate-
gic games. In Computer Science Logic, pp. 266–276, Springer (1999)

6. Di Cosmo, R., Loddo, J. V., Nicolet, S.: A Game Semantics Foundation for
Logic Programming. Proceedings of PLILP, LNCS 1490, 355–373 (1998)

7. Fariñas del Cerro, L.: MOLOG: A System that Extends PROLOG with
Modal Logic. New Generation Computing, 4:35–50(1986)

8. Fitting, M.: Fixpoint Semantics for Logic Programming: A Survey. Theoret-
ical Computer Science, 278(1-2):25–51 (2002)

9. Galanaki, Ch., Nomikos, Ch., Rondogiannis, P.: Game Semantics for Non-
monotonic Intensional Logic Programming. In: Logic Programming and Non-
monotonic Reasoning, Cabalar, P., Son, T. (Eds.) vol. 8148 of Lecture Notes
in Computer Science, pp. 329-341, Springer Berlin Heidelberg (2013)

10. Galanaki, Ch., Rondogiannis, P., Wadge, W., W.: An Infinite-Game Seman-
tics for Well-Founded Negation in Logic Programming. Annals of Pure and
Applied Logic, 151(2–3):70–88 (2008)

11. Galanaki, Ch., Rondogiannis, P., Wadge, W., W.: General Logic Programs as
Infinite Games. In: Topological and Game-Theoretic Aspects of Infinite Com-
putations, Hertling, P., Selivanov, V., Thomas, W., Wadge, W., W., Wagner,
K. (Eds.) no. 08271 in Dagstuhl Seminar Proceedings, Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, Germany (2008)

12. Gale, D., Stewart, F., M.: Infinite Games with Perfect Information. Annals
of Mathematical Studies, 28:245–266 (1953)

13. Gallin D.: Intensional and Higher-Order Modal Logic: With Applications to
Montague Semantics. American Elsevier Pub. Co. (1975)

14. Gelfond, M., Lifschitz, V.: The Stable Model Semantics for Logic Program-
ming. In: Proceedings of the Fifth Logic Programming Symposium, pages
1070–1080. MIT Press (1988)

15. Hintikka J., Sandu G.: Game-Theoretical Semantics. In: Handbook of Logic
and Language (Second Edition), J. v. Benthem, A. t. Meulen, Eds. Elsevier
(2011)

16. Martin, D., A.: Borel Determinacy. Annals of Math., 102:363–371 (1975)

17. Montague, R.: English as a Formal Language. In R. H. Thomason (Ed.),
Formal Philosophy: Selected Papers of Richard Montague. Yale University
Press, 108–221 (1974)

18. Moschovakis, Y., N.: Descriptive Set Theory. North-Holland (1980)
19. Moszkowski, B., C.: Executing Temporal Logic Programs. Seminar on Con-

currency, 111–130 (1984)
20. Muskens, R.: Higher Order Modal Logic. In Handbook of Modal Logic, (P.

Blackburn and J.F.A.K. van Benthem and F. Wolter eds.) Studies in Logic
and Practical Reasoning, pp. 621-653, Dordrecht: Elsevier (2006)

21. Mycielski, J.: Games with Perfect Information. In R. J. Aumann, S. Hart
(Eds.), Handbook of Game Theory, Elsevier, 41–70 (1992)

22. Nguyen, L., A.: MProlog: An Extension of Prolog for Modal Logic Pro-
gramming. In: Proceedings of the 20th International Conference on Logic
Programming, 469–470 (2004)

23. Orgun, M., A., P., Wadge, W., W.: Chronolog: A Temporal Logic Program-
ming Language and its Formal Semantics, Technical Report, Department of
Computer Science, University of Victoria, Canada (1988)

24. Orgun, M., A., P., Wadge, W., W.: Towards a Unified Theory of Intensional
Logic Programming. Journal of Logic Programming, 13(4):413–440 (1992)

25. Przymusinska, H., Przymusinski, T.: Semantic Issues in Deductive Databases
and Logic Programs. In: Banerji, R. (ed), Formal Techniques in Artificial
Intelligence: a Source-Book, pages 321–367. North Holland (1990)

26. Przymusinski, T.C.: Every Logic Program has a Natural Stratification and an
Iterated Fixed Point Model. In: Proceedings of the 8th Symposium on Prin-
ciples of Database Systems, pages 11–21. ACM SIGACT-SIGMOD (1989)

27. Rondogiannis, P., Gergatsoulis, M., Panayiotopoulos, T.: Branching-Time
Logic Programming: The Language Cactus and its Applications. Computer
Languages, 24(3):155-178 (1998)

28. Rondogiannis, P., Wadge, W. W.: Minimum Model Semantics for Logic Pro-
grams with Negation-as-Failure. ACM Transactions on Computational Logic,
6(2):441–467 (2005)

29. Rondogiannis, P., Wadge, W.W.: An Infinite-Valued Semantics for Logic
Programs with Negation. In: Proceedings of the 8th European Conference on
Logics in Artificial Intelligence (JELIA’02), pages 456–467. Springer-Verlag
(2002)

30. Scott, D.: Advice on Modal Logic. In K. Lambert (Ed.), Philosophical Prob-
lems in Logic, D. Reidel Publishing Company, 143–173 (1970)

31. Wadge, W. W.: Reducibility and Determinateness on the Baire Space. PhD
thesis, University of California, Berkeley, 1984.

32. Tsouanas, T.: A game semantics for disjunctive logic programming. Annals
of Pure and Applied Logic, vol.164, no. 11, pp. 1144-1175 (2013)

33. Ullman, J.: Database and Knowledge-Base Systems. Computer Science Press
(1989)

34. van Emden, M., H.: Quantitative Deduction and its Fixpoint Theory. Journal
of Logic Programming, 3(1):37–53 (1986)

35. van Gelder, A., Ross, K.A., Schlipf, J.S.: The Well-Founded Semantics for
General Logic Programs. Journal of the ACM, 38(3):620–650 (1991)

