

Explorations in Static Pointer Analysis:
Adaptive Scalability and Strong Guarantees

George Kastrinis 1

National and Kapodistrian University of Athens,

Department of Informatics and Telecommunications, Athens, Greece

Abstract. ​Static program analysis aims to automatically reason about certain properties a
given program might exhibit under all possible executions without actually observing
such executions. Static ​pointer analysis is a major subcategory that focuses on the objects
that program expressions might point to during program executions. The evolution of
programming languages has led to the addition of many abstraction layers that, as a
result, have made any automatic reasoning about a program a challenging task at best or
an infeasible one at worst. Thus, any practical static pointer analysis algorithm has to
compromise and aim to approximate results in some way—either computing more or less
than what is actually true.

This dissertation shows how we can obtain ​precise ​yet also ​scalable ​static pointer
analysis algorithms by carefully differentiating policies for different parts of the program.
Furthermore, since a static pointer analysis algorithm with global soundness guarantees
and meaningful results throughout is not realistic, we show that it is possible to design
analyses that offer ​strong guarantees ​on the soundness of the results for specific parts of
the program.

Pointer analyses in the past introduced the concept of ​context-sensitivity in order
to tackle the ever growing problem of imprecision versus scalability. Context is used to
annotate analysis components so that the analysis can be more precise without at the
same time sacrificing scalability. We show beneficial ways to combine different context
flavors for different parts of the program without paying the cost that a naive combination
would incur.

Another attempt at producing precise yet scalable analyses leads us to an
introspective analysis. We employ a common adaptive pattern in which a cheap imprecise
analysis is run first so various metrics can be gathered, and then a more precise (and
costly) analysis can be used only in parts of the program—under the assumption that
more precise handling of the rest would only incur performance penalties.

Subsequently, we shift our attention to an analysis that ​under​-approximates
results (instead of the norm of ​over​-approximating) so that it might report less but can
guarantee those properties to always hold. We build upon observations on the properties
that such analyses have in order to apply a specialized data structure that speeds up our
algorithm by nearly two orders of magnitude.

1 Dissertation Advisor: Yannis Smaragdakis, Professor.

2 G. Kastrinis

Finally, in our last contribution, we revisit an analysis formulation that
over-approximates results to create an analysis algorithm that is truly sound but at the
same time highly efficient. Our analysis is conservative, guaranteeing soundness even in
the presence of arbitrary unknown code, but avoids wasting any work on computations
that will later be invalidated due to soundness concerns.

Keywords: Pointer Analysis ⬩ Alias Analysis ⬩ Object-Oriented Programming ⬩ Precision
⬩ Performance ⬩ Context-Sensitivity

1. Introduction

Static program analysis is the cornerstone of several modern programming facilities and tools for program
development and aided program understanding. Nowadays, it is an umbrella term for many different
methodologies (Hoare logic [10, 11, 21, 25], model checking [4, 5, 9,23], symbolic execution [2, 12, 18,
22], abstract interpretation [6–8], data-flow analysis [13,16, 17, 20, 24, 26], and so on) all with the
ultimate goal of inferring a program’s properties,without the need of an actual execution. It is routinely
employed in many different contexts:compilers, bug detectors, verifiers, security analyzers, IDEs, and a
myriad other tools.

The main intention of any static program analysis algorithm is to reason about the set of all
feasible behaviors (under some abstraction of behaviors) that a given program might exhibit under all
possible executions. For example, could this method throw a runtime exception? or is that type cast
possible to fail under some program input? etc. As a result, virtually all interesting static program analysis
questions are undecidable—indeed the prototypical undecidable problem, the halting problem, is a static
program analysis question: will a program terminate under all inputs?

Pointer analysis (also known as points-to analysis) is a fundamental subdomain of static program
analysis that consists of computing some abstract memory model for a given program. The essence of
such an analysis is to compute a set of possible objects that a program variable or expression may point to
during program execution. A straightforward endeavor at first, it quickly gets too complicated in practice
due to all of the intricate details one has to take into account and the multitude of different features that
mutually depend on each other. Although a challenging task, smart implementations of pointer analysis 2

can bear many benefits to client analyses that will subsequently consume the results to reason about
specialized behaviors (e.g., security vulnerabilities or potential optimization opportunities).

A closely related analysis, sometimes confused with pointer analysis, is alias analysis in which
one computes sets of program expressions that may alias (i.e., point to common objects) with each other.
Pointer analysis could—although it is not the only possible alternative—be used to implement an alias
analysis algorithm, and vice versa.

At the same time, programming languages are evolving, becoming ever higher-level and more
complex. Many abstraction levels are added throughout the years with the aim of making the very task of
programming easier for developers allowing them to express more with less effort (e.g., in terms of lines

2 The analysis inputs are large and the analysis algorithms are typically quadratic or cubic, but try to maintain
near-linear behavior in practice, by exploiting program properties and maintaining precision—more precise (i.e.,
smaller) inference sets lead to less work.

Explorations in Static Pointer Analysis: Adaptive Scalability and Strong Guarantees 3

of code). Frequently, new features come with complicated semantics regarding their possible
implementations and usually they interact in intricate ways with pre-existing ones.

Additionally, modern software paradigms have evolved as well. Complex design patterns have
become the norm for experienced developers, immense libraries and frameworks are accepted as a
prerequisite for any non-trivial software, and over-involved build tools often make even the task of
understanding all of the program’s dependencies a challenge.

It comes as no surprise that any kind of static analysis has struggled to keep up with this
ever-increasing complexity both in programming languages and software. Even the seemingly simple task
of computing a program’s call-graph (i.e., which methods are called at every invocation site) requires
sophisticated analysis for achieving acceptable precision. Thus, the main emphasis of pointer analysis
algorithms is on combining fairly precise modeling of pointer behavior and memory abstractions with
scalability.

Thesis.

Precise yet scalable static pointer analysis algorithms can be obtained by careful choice of
different policies for different parts of the program. In a complementary fashion, analyses
can be designed to offer (uniquely) strong guarantees on the soundness of results, but for
a part of the program only.

We provide a number of techniques for implementing scalable static pointer and alias analyses in
the setting of Java programs by configuring the analysis strategy differently for different code parts.
Additionally, we present a couple of defensive algorithms for reporting highconfidence results even in the
presence of hostile or unknown program points.

1.1 Pointer Analysis Crash Course

Before enumerating the scientific contributions of this dissertation, it is mandatory to introduce certain
concepts related to pointer analysis, that comprise the scientific and technical base of this work. This is by
no means a detailed presentation of said concepts—a more elaborate introduction will follow in Chapter
2.

Implementation Platform & Target Language. Most of the following work and algorithms have been
expressed in the Doop framework [3]. Doop is a well established pointer analysis framework offering a
wide variety of full-fledged algorithms for static pointer analysis of Java programs. More in Section 2.11.

Context Sensitivity. ​Implementing any sophisticated pointer analysis algorithm quickly turns out to be a
balancing act between precision and performance tradeoffs. Any attempt for a scalable algorithm might
inadvertently be accompanied by significant precision losses whereas an endeavour for highly precise
results might also enforce huge performance penalties.

Throughout the years, the scientific community has amassed a few tools in its arsenal in order to
tackle this conundrum of precision versus performance. Among those tools, a widely employed notion,
that aims to improve precision without having to pay an unbearable performance cost, is that of context

4 G. Kastrinis

resulting in context-sensitive algorithms. An algorithm will use additional information (also known as
context) to annotate analysis components with the aim of countering potential precision losses. The key
idea is that the analysis will differentiate the handling of program elements under some contexts while it
will collapse it under others. For instance, an algorithm might differentiate the analysis of a method when
called from method A or method B or anywhere else (thus under three different contexts).

Two main kinds of context have been widely used in the past; in call-site-sensitive analyses call
instructions comprise the context elements, whereas in object-sensitive analyses context is based on the
identity of the calling object at each method invocation. More in Section 2.2.

May vs. Must Analyses​. The goal of any static program analysis algorithm is to reason about a set of
behaviors under all potential program executions. This endeavour is an undecidable problem for any set
of behaviors other than the most trivial ones. As a consequence, any practical algorithm has to
approximate results in one of two directions; either over-approximate and both report all possible
behaviors and also some that will never actually arise, or to under-approximate and be conservative by
reporting only a subset of potential arising behaviors. Analyses are often categorized as may-analyses
when they overapproximate results, and as must-analyses when they under-approximate results. More in
Section 2.6.

Soundness. A formal term often used to accompany static pointer analysis algorithms is that of
soundness. In layman’s terms, an algorithm is said to be sound when it actually does what it claims. For
instance, a may-pointer analysis claims that it aims to over-approximate the set of objects that various
program expressions may point to in all possible program executions. If the results are not missing any
such inference that could arise in a program execution, then the algorithm is sound. Due to various
factors, most may-pointer analysis algorithms forgo soundness in order to maintain scalability. A more
detailed discussion regarding soundness will follow in Sections 2.7-2.9.

1.2 Scientific Contributions

In this section, we will briefly explain the main scientific contributions of this dissertation. As already
mentioned, the exploration happens in the context of analyzing Java—mainly by use of the Doop
framework—although it is not far-fetched to generalize results to other languages that offer similar
features and follow similar paradigms.

Ever since the introduction of object sensitivity by Milanova et al. [19], there has been increasing
evidence that it is the superior context choice for programs expressed in object oriented languages,
yielding a high precision to cost ratio. Such has been its success that in practice it has almost superseded
the use of more traditional call-site-sensitive analyses in object-oriented languages. Nevertheless, a
call-site-sensitive analysis is not always inferior as there are language features and code patterns that may
partially favor this kind of context abstraction.

Consequently, one might consider an approach where both context flavors are—naively—
combined in every program point with the goal of increasing the precision of the end result. Truly, such a
combination would bear some precision benefits but in most cases it would be accompanied by an
infeasibly high cost.

Explorations in Static Pointer Analysis: Adaptive Scalability and Strong Guarantees 5

First contribution. Our first scientific contribution is a step towards a more sophisticated handling,
aiming to achieve a beneficial combination of both context flavors. We propose a hybrid context flavor
for defining a family of analyses where classical contexts are mixed and combined only in those program
points where it is profitable for the analysis. The resulting selective combination of both context kinds
vastly outperforms not only analyses following the naive non-selective combination approach, but also
their “normal” object-sensitive counterparts. This result holds for a large array of context-sensitive
analyses establishing a new set of performance/precision sweet spots. Figure 1 depicts performance vs.
precision metrics for eight of our benchmarks over all analyses.

Second contribution. The second scientific contribution tries to tackle an oft-reported issue with
context-sensitive analyses, in that they mostly operate in two extremes: either the analysis is precise
enough that it manipulates only manageable sets of data, and thus scales impressively well, or the analysis
gets quickly derailed at the first sign of—massive— imprecision and becomes orders-of-magnitude more
expensive than would be expected given the program’s size. Currently, there is no approach for a precise,
context-sensitive (of any context flavor) analysis that would scale across the board at a level comparable
to that of a context-insensitive one. Instead, we propose a two step process by means of introspective
analysis: the approach uniformly scales context-sensitive analyses by eliminating the
performance-detrimental behavior, only at a small precision expense.

Introspective analysis employs a common adaptive pattern: it first performs a context insensitive
analysis and then it uses the results to selectively refine (i.e., analyze contexts ensitively) only those
program elements that are expected not to cause an explosion in running time or memory space. The
technical challenge is to appropriately identify such program elements. We show that a simple but
principled approach can be remarkably effective, achieving scalability (often with dramatic speedup) for
benchmarks previously completely out-of-reach for deep context-sensitive analyses. Figure 2 depicts
experimentals results for a subset of our analyses.

For the last two contributions, we shift our attention towards analyses that aim for the highest confidence
in their claims. Although quite reluctant and conservative in making a claim, when they actually do they
make certain that it is the correct decision.

Third contribution. The next, third, contribution features a different flavor of static program analysis.
Instead of the more commonly researched paradigm of may-analyses, we chose to explore the alternative
approach of a must-analysis. More specifically, we focus on an instance of a must-alias (also known as
definite-alias) analysis that aims to infer aliasing relationships among program expressions that are
guaranteed to always hold. The applications of a must-alias analysis are manifold: (1) it is useful for 3

enabling optimizations such as constant folding and register allocation, (2) it can increase the precision of
bug detectors, e.g., greatly benefiting a null-reference detector and a non-termination detector, and (3) it
can be used internally as part of more complex analyses, e.g., one that can reason correctly about “strong
updates” at instructions that modify the heap. In order to compute high-confidence, non-trivial results, the
analysis needs to be flow-sensitive, i.e., compute information at each program point and propagate it
forward while respecting the control flow of the program.

3 ​As previously mentioned, a must-analysis will aim to compute an under-approximation of behaviors that will
happen in every possible program execution.

6 G. Kastrinis

Figure 1​: (​re 1st Contribution​) ​Graphical depiction of performance vs. precision metrics for eight of our
benchmarks over all analyses. Lower is better on both axes. The Y axis is truncated for readability.
Out-of-bounds points are included at lower Y values, with their real running time in parentheses.

Explorations in Static Pointer Analysis: Adaptive Scalability and Strong Guarantees 7

Figure 2: (​re 2nd Contribution​) ​Performance and precision (3 separate metrics: calls that cannot be
devirtualized, reachable methods, casts that cannot be eliminated) for introspective context-sensitive
variants of a 2objH analysis, compared with baselines (2objH and insensitive).

8 G. Kastrinis

Furthermore, we observe that a must-alias analysis exhibits certain properties that can be
exploited in order to achieve a more efficient algorithm without any compromise in the precision or the
validity of its results. We present a custom specialized data structure (implemented both in Java and in
Datalog) that speeds up a must-alias analysis by nearly two orders of magnitude. The data structure
achieves its efficiency by encoding multiple alias sets in a single linked structure, and compactly
representing the aliasing relations of arbitrarily long program expressions. Under this approach,
must-alias analysis can be performed efficiently, over large Java benchmarks, in under half a minute,
making the analysis cost acceptable for most practical uses. The performance benefits of the specialized
data structure are shown in Figure 3.

Figure 3:​ (​re 3rd Contribution​) Speedups of employing the optimized data structure.

Fourth contribution. For our last contribution, we revisit the setting of a may-analysis but this time
while aiming to explore the potential of a truly sound—instead of just soundy—yet practical analysis. We
present such an approach in a defensive may-point-to analysis, which can guarantee soundness even in the
presence of arbitrary opaque code. A key design tenet of our approach is laziness: the analysis computes 4

points-to relationships only for program expressions that are guaranteed to never escape into opaque code.
The defensive nature of our analysis means that it might miss some valid inferences, but because

of its laziness it will never waste work to compute sets that are not “complete”, i.e. that may be missing
elements due to opaque code. This frugal approach is what enables the great efficiency of the algorithm,
allowing for a highly precise points-to analysis (such as a 5-call-site-sensitive, flow-sensitive analysis).
Despite its conservative nature, the analysis yields sound, actionable results for a large subset of the

4 Code that cannot be analyzed such as dynamically generated or native code, or dynamic language features such as
reflection, invokedynamic, etc

Explorations in Static Pointer Analysis: Adaptive Scalability and Strong Guarantees 9

program code, achieving (under worst-case assumptions) 34-74% of the program coverage of an unsound
state-of-the-art analysis for real-world programs.

Figure 4: (​re 4th Contribution​) Execution time (in seconds) of defensive analysis, with running time of
2objH (with unsound reflection handling) shown as a baseline. Labels are shown for defensive analysis
only to avoid crowding the plot.

Figure 5: (​re 4th Contribution​) ​Virtual call sites that are found to have receiver objects of a single type.
These call sites can be soundly devirtualized. Numbers are shown as percentages of devirtualization
achieved by unsound 2objH analysis.

10 G. Kastrinis

1.3 Outline

The dissertation is organized as follows:

● Chapter 2 offers a quick yet non-trivial introduction to certain notions or properties that are
important to take under consideration when designing a sophisticated static pointer analysis
algorithm.

● Chapter 3 examines how a naive combination of object sensitivity and call-site sensitivity into a
single analysis can be massively penalizing in terms of performance. Following that, we presents
a hybrid context-sensitive approach for implementing points-to analyses that leverage the benefits
of combining both object and a call-site sensitivity while avoiding to pay most of the cost of a
naive combination. This chapter presents research previously published in “​Hybrid
Context-Sensitivity for Points-To Analysis​” [14].

● Chapter 4 examines the well-known, bi-modal nature of classical static program pointsto analyses
in regards to scalability; they are either quite scalable or not scalable at all. In order to counter
that discrepancy, we propose an adaptive approach in introspective analysis, where an imprecise
analysis is used as a stepping stone in order to fine-tune program points in which a more precise
handling is both beneficial and not detrimental to the overall analysis’s performance. This chapter
presents research previously published in “​Introspective Analysis: Context sensitivity, Across the
Board​” [28].

Both aforementioned contributions aim for more scalable analyses that achieve superior performance
without foregoing precision. The next three contributions aim for analyses that although more restrained
on what they report, they do so with much more confidence in the accuracy of their claims.

● Chapter 5 examines how to compose a declarative model of a rich family of must-alias analyses,
with emphasis on careful and compact modeling, while at the same time exposing the key points
where the algorithm’s inference power can be adjusted. This chapter presents research previously
published in “​A Datalog Model of Must-Alias Analysis​” [1].

● Chapter 6 builds upon the previous chapter and goes forth to provide a specialized data structure
that by exploiting the nature of a must-alias analysis it achieves high performance without any
sacrifice on the accuracy of its results. We explore the data structure’s performance in both an
imperative (implemented in Java) and a declarative (implemented in Datalog) setting and contrast
it extensively with prior techniques. This chapter presents research previously published in “​An
Efficient Data Structure for Must-Alias Analysis​” [15].

● Chapter 7 examines how a defensive reasoning in the presence of opaque code can be combined
along with computational laziness in order to produce a highly efficient, highly precise and truly
sound may-points-to analysis. This chapter presents research previously published in “​Defensive
Points-To Analysis: Effective Soundness via Laziness​” [27], that also received a Distinguished
Paper award.

Explorations in Static Pointer Analysis: Adaptive Scalability and Strong Guarantees 11

● Chapter 8 first discusses related work that is specific to previous chapters, and then expands to
various other interesting subjects in the broader realm of static analysis.

● Chapter 9 concludes this dissertation by assessing our initial thesis and discussing future work.

2. Conclusions

To summarize, we advocate that modern, sophisticated, static pointer analyses need not make a sacrifice
over precision or scalability, to achieve the other. Both properties are achievable with appropriate tuning
and design choices, for different parts of the program. Complementary, it is possible for analyses to
compute results alongside with strong soundness guarantees, again focusing at specific parts of the
program. To conclude, a static pointer analysis algorithm doesn’t have to use a one-size-fits-all handling
of every language feature and program point, but instead it is favorable to methodically differentiate its
policies for different parts of the code, towards different desired outcomes.

References

1. George Balatsouras et al. “A Datalog Model of Must-Alias Analysis”. In: International
Workshop on State Of the Art in Program Analysis (SOAP). SOAP ’17

2. Robert S. Boyer, Bernard Elspas, and Karl N. Levitt. “SELECT—a Formal Systemfor Testing
and Debugging Programs by Symbolic Execution”. In: SIGPLAN Notices 10.6 (1975)

3. Martin Bravenboer and Yannis Smaragdakis. “Strictly Declarative Specification of Sophisticated
Points-to Analyses”. In: Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA). OOPSLA ’09

4. Edmund M. Clarke and E. Allen Emerson. “Design and Synthesis of Synchronization Skeletons
Using Branching-Time Temporal Logic”. In: Logics of Programs, Workshop. Vol. 131. LOP ’81

5. Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. “Automatic Verification of
Finite-State Concurrent Systems Using Temporal Logic Specifications”. In: ACMTrans. on
Programming Languages and Systems 8.2 (1986)

6. Patrick Cousot and Radhia Cousot. “Abstract Interpretation and Application to LogicPrograms”.
In: Logic Programming 13.2 & 3 (1992)

7. Patrick Cousot and Radhia Cousot. “Abstract Interpretation Frameworks”. In: Logic and
Computation 2.4 (1992)

8. Patrick Cousot and Radhia Cousot. “Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints”. In: Principles of
Programming Languages (POPL). POPL ’77

9. E. Allen Emerson and Edmund M. Clarke. “Characterizing Correctness Properties of Parallel
Programs Using Fixpoints”. In: Proc. of the 7th International Colloquiumon Automata,
Languages and Programming. Vol. 85. ICALP ’80

10. Robert W Floyd. “Assigning Meanings to Programs”. In: Proc. of Symp. in Applied
Mathematics. Mathematical Aspects of Computer Science. Vol. 19

12 G. Kastrinis

11. C. A. R. Hoare. “An Axiomatic Basis for Computer Programming”. In: Commun.ACM 12.10
(1969)

12. William E. Howden. “Symbolic Testing and the DISSECT Symbolic Evaluation System”. In:
IEEE Trans. Software Engineering 3.4 (1977)

13. John B. Kam and Jeffrey D. Ullman. “Monotone Data Flow Analysis Frameworks”. In: Acta
Informatica 7 (1977)

14. George Kastrinis and Yannis Smaragdakis. “Hybrid Context-Sensitivity for Points-To Analysis”.
In: Programming Language Design and Implementation (PLDI). PLDI ’13

15. George Kastrinis et al. “An efficient data structure for must-alias analysis”. In: International
Conference on Compiler Construction (CC). CC ’18

16. Uday P. Khedker, Amitabha Sanyal, and Bageshri Sathe. Data Flow Analysis - Theory and
Practice. CRC Press, 2009

17. Gary A. Kildall. “A Unified Approach to Global Program Optimization”. In: Proc.of the 1st ACM
Symp. on Principles of Programming Languages. POPL ’73

18. James C. King. “Symbolic Execution and Program Testing”. In: Commun. ACM 19.7 (1976)
19. Ana Milanova, Atanas Rountev, and Barbara G. Ryder. “Parameterized object sensitivity for

points-to and side-effect analyses for Java”. In: International Symposium on Software Testing and
Analysis (ISSTA). ISSTA ’02

20. Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann, 1997
21. Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. “Local Reasoning about Programs

that Alter Data Structures”. In: Proc. of the 15th International Workshop on Computer Science
Logic. Vol. 2142. CSL ’01

22. Corina S. Pasareanu and Neha Rungta. “Symbolic PathFinder: symbolic execution of Java
bytecode”. In: Proc. of the 25th IEEE/ACM International Conf. on Automated Software
Engineering. ASE ’10

23. Jean-Pierre Queille and Joseph Sifakis. “Specification and verification of concurrent systems in
CESAR”. In: Proc. of the 5th International Symp. on Programming. Vol. 137. Springer, 1982

24. Thomas W. Reps, Susan Horwitz, and Shmuel Sagiv. “Precise Interprocedural Dataflow Analysis
via Graph Reachability”. In: Proc. of the 22nd ACM SIGPLAN-SIGACT Symp. on Principles of
Programming Languages. POPL ’95

25. John C. Reynolds. “Separation Logic: A Logic for Shared Mutable Data Structures”. In: Proc. of
the 17th IEEE Symp. on Logic in Computer Science. LICS ’02

26. Micha Sharir and Amir Pnueli. “Two approaches to interprocedural data flow analysis”. In:
Program Flow Analysis: Theory and Applications. Prentice-Hall, 1981

27. Yannis Smaragdakis and George Kastrinis. “Defensive Points-To Analysis: Effective Soundness
via Laziness”. In: European Conference on Object-Oriented Programming (ECOOP). ECOOP ’18

28. Yannis Smaragdakis, George Kastrinis, and George Balatsouras. “Introspective Analysis:
Context-sensitivity, Across the Board”. In: Programming Language Design andImplementation
(PLDI). PLDI ’14

