
Channel Coding Techniques with Emphasis on
Convolutional and Turbo Codes

Alexandros Katsiotis ?

National and Kapodistrian University of Athens
Department of Informatics and Telecommunications

akats@di.uoa.gr

Abstract. In this thesis, a family of low complexity convolutional codes
is constructed, by modifying appropriately the trellis diagram of punc-
tured convolutional codes. The goal is to improve performance at the
expense of a reasonable low increase of the trellis complexity. Many
new convolutional codes of various code rates and values of complex-
ity are provided. In many cases, a small increase in complexity can lead
to a great improvement of performance, compared to punctured convo-
lutional codes. Furthermore, a method is presented for designing new
flexible convolutional codes, by combining the techniques of path prun-
ing and puncturing. The new codes can vary their rate, as well as the
complexity of their trellis diagram, and hence the computational com-
plexity of the decoding algorithm, leading to coding schemes that manage
more efficiently the system resources, compared to classical variable rate
convolutional codes. The complexity of the trellis diagram affects the
computational complexity of every trellis based decoding algorithm, like
BCJR and its variations. Thus, the possibility of applying the aforemen-
tioned results using recursive convolutional encoders, which are used as
constituent encoders in turbo codes, is investigated. The goal is to con-
struct efficient flexible turbo coding schemes. Simulation results indicate
that in specific ranges of the signal to noise ratio, a great decrease in the
computational complexity of the decoding procedure can even result to
a decrease in the bit error rate.

1 Introduction

Traditionally, an (n, k,m) convolutional code C can be represented by a “con-
ventional” semi-infinite trellis diagram. Although the trellis is semi-infinite, it
consists, after a short initial segment, of concatenated copies of an 1-section
structure called trellis module. The conventional trellis module consists of 2m

“initial states”, and 2m “final states”. Each “initial state” is connected by a
directed edge to 2k “final states”. Furthermore, each edge is labeled by an n-size
binary tuple, which corresponds to the output of the encoder during the specific
state transition. Thus, the conventional trellis module contains n2m+k edge bits,

? Dissertation Advisor: Nicholas Kalouptsidis, Professor



and this is called the trellis complexity of the module [1]. When a trellis mod-
ule is used for maximum likelihood decoding of C, the decoding complexity is
proportional to the trellis complexity of the module. Particularly, the trellis com-
plexity of the conventional trellis module increases exponentially with k and m,
which means that especially for high rate codes, maximum likelihood decoding
becomes a very complex procedure.

In order to overcome this problem, punctured convolutional codes (PCC)
were introduced by Cain et al. [2]. The trellis module of an (n, k,m) PCC is con-
structed by “blocking” k “conventional” trellis modules of an (N, 1,m) “mother”
code, and then deleting (puncturing) all but n edge bits from each output tu-
ple of this “block”. The semi-infinite trellis diagram of the PCC consists (after
a short initial transient) of repeated copies of the k-section punctured trellis
module. The trellis complexity of an (n, k,m) PCC is equal to n2m+1 and it
is significantly less than the complexity of the “conventional” trellis module of
an (n, k,m) convolutional code. PCCs have been extensively studied for various
rates [2–4]. Bocharova et al. [4] published comprehensive tables with the best
(n, k) PCCs for 3 ≤ n ≤ 8, 2 ≤ k ≤ n− 1.

Apart from the low decoding complexity, another significant advantage of
PCCs is rate variability. That is, a whole family of PCCs of various code rates
can be constructed, using a single mother code and a variety of puncturing ma-
trices [3, 5]. Each one of the respective codes can be decoded using the decoder
(and hence the trellis) of the mother code. Hence, depending on the channel
conditions the suitable code is used, a fact that results in a more efficient use
of bandwidth. The flexibility offered by PCCs is valuable for modern communi-
cation systems, like for instance the IEEE 802.22 standard [6]. Rate variability
can be also achieved by using the technique of path pruning [7]. That is, using
determinate and indeterminate information bits in order to prune away some
codeword paths from the trellis of a convolutional code.

An (n, k,m) convolutional code C can be represented by various trellis dia-
grams (periodic in general), and hence various trellis modules [1, 8]. Apart from
the trellis complexity, an important quantity associated with a trellis module is
the total number of merges contained in it. The number of merges at a specific
state is equal to the total number of branches reaching it minus one [9]. The
trellis complexity and the total number of merges are equal to the number of
real additions and real comparisons respectively, the Viterbi algorithm has to
perform per trellis module [1, 9]. Hence, they constitute the computational com-
plexity of the decoding procedure of C, for a specific trellis module. McEliece et
al. demonstrate in [1] that any (n, k,m) convolutional code has a minimal trel-
lis representation, which in most cases is significantly less complex (in terms of
trellis complexity), than the conventional trellis diagram. A minimal trellis has
the minimum possible complexity and can be constructed directly by a trellis
canonical generator matrix. The minimal trellis module minimizes many other
quantities, like the total number of states, the total number of merges, etc. They
also show that PCCs are simply convolutional codes whose generator matri-
ces have a special structure, and this fact explains the reason why they can be



represented by trellis diagrams of low complexity. Finally, they set under con-
sideration the existence of other classes of low complexity convolutional codes,
that contain good codes.

2 New Constructions of Low Complexity Convolutional
Codes

In this section, we introduce a class of low complexity convolutional codes, pro-
duced by modifying the time varying punctured trellis module [10]. Our goal is
to achieve better performance than the initial PCC code, at the expense of a
reasonable low increase of the trellis complexity. The increase of the complexity
is achieved by allowing variations in the state dimension of the trellis module.

We consider a periodic time-varying linear encoder of period k [11], described
by the 1× nt binary matrices Gj(t), for 0 ≤ j ≤ mt, such that

υt =

mt∑
j=0

ut−jGj(t), t ≥ 0 (1)

where ut and υt denote the input value of size 1 and output value of size nt
respectively at time instant t. By way of convention, Gj(t) = 0 for j < 0 and
j > mt, where mt is the memory of the encoder at the t-th time instant. It holds,
Gj(t+ k) = Gj(t), mt+k = mt, and nt+k = nt for all j and t.

The trellis diagram representing the above construction is periodic (after a
short initial transient) and consists of repeated copies of a k-section structure,
called trellis module. During a trellis module, k information bits are associated
to n encoded bits, where n =

∑k−1
t=0 nt. The state space dimension of the trellis

module at the t-th time instant is mt, 0 ≤ t ≤ k− 1. We call the time interval of
the trellis module between the t-th and the (t + 1)-th time instant, as the t-th
trellis section. vt,i denotes the i-th output bit which is transmitted during the
t-th trellis section, for 1 ≤ i ≤ nt, and for 0 ≤ t ≤ k− 1, and is produced by the

generator sequence g(t,i) = [g
(t,i)
0 g

(t,i)
1 · · · g(t,i)mt ].

Given a positive integerm, we impose the following restrictions:mt ∈ {m,m+
1}, and m0 = m. We denote by Tζ1,ζ2 the set of trellis sections t, 0 ≤ t ≤ k − 1,
during which the state dimension changes from ζ1 to ζ2, where ζ1, ζ2 ∈ {m,m+
1}. That is, Tζ1,ζ2 = {t|mt = ζ1, mt+1 = ζ2, 0 ≤ t ≤ k − 1}. We further confine

the code structure so that the encoding matrices Gj(t) = [g
(t,1)
j g

(t,2)
j · · · g(t,nt)

j ]
satisfy the following properties:
P1. G0(t) = 1, 0 ≤ t ≤ k − 1,
P2. Gm(t) = 1, when t ∈ Tm,m,
P3. Gm+1(t) = 1, when t ∈ Tm+1,m+1,

P4. g
(t,i)
m 6= 0 or g

(t,i)
m+1 6= 0, for all 1 ≤ i ≤ nt, and Gm(t) and Gm+1(t) are

linearly independent, when t ∈ Tm+1,m.
Note that from Property P4, it holds that nt ≥ 2, when t ∈ Tm+1,m. We denote
by pt the smallest integer, 1 ≤ pt < nt, such that

g(t,pt+1)
m = · · · = g(t,nt)

m and g
(t,pt+1)
m+1 = · · · = g

(t,nt)
m+1



when t ∈ Tm+1,m.
The trellis complexity (TC) of a T -section trellis module M is defined as the

total number of edge symbols contained in the module per information bit [1].

That is, TC(M) =
∑T−1
t=0 nt2

mt+kt , where kt is the number of information bits
associated with the t-th trellis section. It is straightforward to verify that the
trellis complexity of the new module M associated with the new code is given
by

TC(M) =
∑

t∈Tm,m

nt2
m+1 +

∑
t∈Tm,m+1

nt2
m+1

+
∑

t∈Tm+1,m+1

nt2
m+2 +

∑
t∈Tm+1,m

nt2
m+2 (2)

since kt = 1, for 0 ≤ t ≤ k − 1.

Theorem 1. The complexity of the minimal trellis module Mmin of C is given
by

TC(Mmin) =
∑

t∈Tm,m

nt2
m+1 +

∑
t∈Tm,m+1

nt2
m+1

+
∑

t∈Tm+1,m+1

nt2
m+2 +

∑
t∈Tm+1,m

(nt + pt)2
m+1. (3)

Comparison of (3) and (2), indicates that the initial trellis module is not minimal.
Next, we show that if we replace every trellis section t ∈ Tm+1,m by an equivalent
pair of trellis sections, the resulting trellis module is minimal.

Theorem 2. The trellis section t ∈ Tm+1,m is equivalent to a pair of trellis
sections, where the first trellis section t1 carries the first pt of the nt output bits
and has one bit input. Furthermore, it has 2m+1 initial states and 2m+1 final
states. The second section t2 produces the last nt − pt output bits of the original
trellis section t and it is informationless. Moreover, it has 2m+1 initial states
and 2m final states.

The first and second sections of the pair contain pt2
m+2 and (nt− pt)2m+1 edge

symbols respectively (the second section is informationless, thus only one edge
diverges from each initial state). Thus, in total the pair of sections contains
(nt + pt)2

m+1 edge symbols. If we replace in (2) the term
∑
t∈Tm+1,m

nt2
m+2

with
∑
t∈Tm+1,m

(nt + pt)2
m+1, relation (3) results. That is, by simply replacing

in the initial trellis module of a code C each one of the trellis sections t ∈ Tm+1,m

with its equivalent pair of sections, the result is a minimal trellis module for C.

2.1 Search Results

The proposed search procedure initializes with the punctured trellis module of an
(n, k,m) convolutional code, and increases the state space dimension of specific



trellis sections from m to m+ 1, performing search over the generator sequences
g(t,i). The objective is to determine codes of better spectra at the expense of
higher trellis complexity. However complexity is maintained at affordable levels,
as it remains less than the trellis complexity of the respective (n, k,m+1) PCC.
The search was conducted over a range of rates and memory sizes, and many
good codes were found. The following comments are worth to point out:

– Some of the new codes achieve greater df than the respective PCCs of mem-
ory m, at the expense of a small increase of the TC.

– Some of the new codes achieve df equal to the df of the PCCs of memory
m + 1. That is, they have similar asymptotic performance (for high signal
to noise ratio) with the corresponding (n, k,m + 1) PCCs but less trellis
complexity.

– Many of the new codes achieve a specific df , with the least known trellis
complexity (for specific rate).

– In many other cases, a small increase of TC was enough to significantly
improve the spectra (for equal df ) of the best PCC of memory m.

3 Flexible Convolutional Codes: Variable Rate and
Complexity

In this section, we present a method that combines the techniques of path-
pruning and puncturing, in order to construct convolutional codes that can vary
both their rate and the computational complexity of the decoding procedure
[12]. Starting from an (n, 1,m) mother convolutional code, we construct a large
family of codes of various code rates. For each code rate the family contains trellis
modules of various values of computational complexity. Path pruning is used in
order to remove from the mother trellis an amount of state transitions (branches),
a fact that results into a less complex trellis. Furthermore, puncturing is utilized
for adjusting the code rate. Particularly, the two aforementioned techniques are
employed as follows.

Let ut be the information bits and ût the input bits of the mother encoder.
The path-pruning on the trellis of a convolutional code can be implemented by
mapping the information ut and register state bits into the final input ût of the
encoder.

More precisely, every Tpr time units the single input bit of the encoder is not
an information bit, rather it is computed as a linear combination of bits of the
current state St = {ût−1, · · · , ût−m}, i.e.

ût1Tpr+t2 =

{
ut1(Tpr−1)+t2 , if t2 6= 0∑d̂
i=1 ciût1Tpr−i, if t2 = 0

(4)

where t1 =
⌊

t
Tpr

⌋
, t2 = t mod Tpr, t = 1, 2, . . . , and d̂ is the degree of the

polynomial c(X) =
∑m
i=1 ciX

i. The binary coefficients are chosen, such that



ci = 0 for 0 = i mod Tpr, i.e. the non information bits are produced by the
linear combination of information bits only.

Path-pruning results to an (nTpr, Tpr − 1) time-varying convolutional code.
The resulting semi-infinite trellis diagram starts at the all zero state, and after
a short initial transient, it becomes periodic, consisting of concatenations of a
Tpr-section trellis module Mpr.

Theorem 3. The state space dimension sprl at depth l and the branch space
dimension bprl of the l-th trellis section of trellis module Mpr are given by

sprl =

{
m− 1− β̂, for 1 ≤ l ≤ α̂
m− β̂ , for α̂+ 1 ≤ l ≤ Tpr

bprl =

{
m− β̂ , for 1 ≤ l ≤ α̂ or l = Tpr

m+ 1− β̂, α̂+ 1 ≤ l ≤ Tpr − 1

where α̂ = m− d̂ mod Tpr, β̂ =
⌊
m−d̂
Tpr

⌋
.

The final trellis module Mpu is constructed by concatenating p copies of the
Mpr module, and puncturing a portion of the encoded bits based on a specific
puncturing matrix P , in order to adjust the rate. The final trellis module consists
of Tpu = pTpr trellis sections. The total number of merges Epu contained in Mpu

are

Epu = p(Tpr −
â

2
− 1) · 2m−b̂. (5)

Depending on the puncturing matrix, the trellis complexity of the final trellis
module Mpu is equal to

TC(Mpu) =

pTpr∑
j=1

nj2
bprj mod Tpr , (6)

where 0 ≤ nj ≤ n is the number of output bits of the j-th section of Mpu, for
1 ≤ j ≤ pTpr. The final trellis moduleMpu corresponds to a (pTprn−ñ, p(Tpr−1))
convolutional code, where ñ is the number of the punctured encoded bits, i.e.

pTprn− ñ =
∑pTpr

j=1 nj .
Given an (n, 1,m) mother code, for various choices of Tpr, p, c(X) and punc-

turing matrix P , arbitrarily many codes of different code rates and values of
computational complexity can be constructed. In this study, we restrict our-
selves to a subset according to the following criterion.

Given a rate k′/n′, we construct codes with computational complexity (i.e.
trellis complexity and number of merges) equal to the computational complexity
of the trellis module of a PCC with memory size m′, for various values of m′.

3.1 Results and Simulations

In this study we present three families of flexible codes, generated by a (2, 1, 8),
a (3, 1, 8) and a (4, 1, 8) mother convolutional code respectively. All codes are of



rates (n′ − 1)/n′, for 2 ≤ n′ ≤ 8. Many of the codes have the same free distance
with the best codes of the same rate and complexity presented in [4, 13].

We have simulated the performance of various codes produced by the (4, 1, 8)
mother convolutional code, for the AWGN channel, using BPSK modulation.
Some of the results are depicted in Figure 1, which indicates BER plots for all
values of m′ and rates 1/2, 2/3 and 3/4.

In contrast to the classical variable rate convolutional codes [3, 5] (i.e. a
mother convolutional encoder and a set of puncturing matrices), which “ex-
change” coding gain for bandwidth and vice versa, the proposed constructions
add one more “dimension”, i.e. the computational complexity of decoding, hence
leading to coding schemes that manage more efficiently the system resources. In-
deed, consider the family of codes produced by the (4, 1, 8) mother convolutional
code. Assume that the SNR is equal to 7.1dB, and that the code of rate 3/4 and
m′ = 4 (TC = 42.7, Epu = 16, all normalized by k′) is used. Then, an error
probability of 10−7 is achieved (Fig. 1(c)). Furthermore, assume that the SNR
decreases by 0.8dB. There are many strategies that can be followed during the
next transmission, for the anticipation of the SNR’s decrease. For instance, one
choice is the use of the code of rate 1/2 and m′ = 4 (TC = 64, Epu = 16)
(Fig. 1(a)), i.e. decreasing the rate and keeping the complexity in similar lev-
els. Another option is the use of the code of rate 3/4 and m′ = 6 (Fig. 1(c))
(TC = 170.7, Epu = 64), i.e. keeping the rate constant and increasing the com-
plexity. Finally, the code of rate 2/3 and m′ = 5 (TC = 96, Epu = 32) (Fig. 1(b))
could be used, resulting in a small decrease in the rate and a small increase in
complexity.

4 Recursive Flexible Convolutional Encoders for Parallel
Concatenation

In this section, we extend the previous analysis and we combine path-pruning
and puncturing for the construction of flexible convolutional codes for parallel
concatenation that can vary both the rate and the computational complexity of
the decoding procedure, leading to flexible turbo codes.

Consider a trellis module as it is constructed in section 3, that corresponds
to a code of rate k′/n′ and has the complexity profile of the respective PCC with
memory m′. It can be shown that if the Max-Log-MAP algorithm is used for
decoding, then (n′+q+2k′)2m

′+1+k′ additions and 4k′2m
′−k′ comparisons have

to be performed in order to decode k′ information bits. q denotes the number of
trellis section that carry encoded bits

Consider a feedforward (n, 1,m) mother convolutional encoder, described by
the polynomial generator matrix G(D) =

[
g(0)(D) g(1)(D) . . . g(n−1)(D)

]
. As-

sume that for particular path-pruning and puncturing parameters (i.e. c(X), Tpr,
p, P ), a specific code Cpu and its respective trellis module Mpu are constructed.
Consider also the equivalent (n, 1,m) recursive systematic mother encoder given

by Gsys(D) =
[
1 g(1)(D)

g(0)(D)
. . . g

(n−1)(D)
g(0)(D)

]
. It can be shown that by using the same



3 3.5 4 4.5 5 5.5 6 6.5
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

E
b
/N

0
 (dB)

B
E

R

 

 

m
′
=8

m
′
=6

m
′
=5

m
′
=4

(a)

4 4.5 5 5.5 6 6.5 7

10
−7

10
−6

10
−5

10
−4

10
−3

E
b
/N

0
 (dB)

B
E

R

 

 

m
′
=8

m
′
=7

m
′
=6

m
′
=5

m
′
=4

(b)

4.5 5 5.5 6 6.5 7 7.5
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

E
b
/N

0
 (dB)

B
E

R

 

 

m
′
=8

m
′
=7

m
′
=6

m
′
=5

m
′
=4

(c)

Fig. 1. BER simulations of codes produced by the (4, 1, 8) mother convolutional code,
for various values of m′ and rates (a) 1/2, (b) 2/3 and (c) 3/4.



parameters Tpr, p, P and the pruning polynomial c′(X) =
∑m
i=1(ci + g

(0)
i )Xi

instead of the polynomial c(X), the same code Cpu is produced and a corre-

sponding trellis module M ′pu. ci and g
(0)
i are the coefficients of polynomials c(X)

and g(0)(D) respectively. Trellis modules Mpu and M ′pu have identical complexity
profiles and they produce the same code. However, they correspond to different
encoders. Hence, we can apply the results and the analysis presented in section
3, in case where recursive mother convolutional encoders are used.

In this thesis we provide a family of recursive systematic convolutional en-
coders constructed from a (2, 1, 5) recursive systematic mother encoder. All en-
coders are of rates (n′ − 1)/n′, for 2 ≤ n′ ≤ 6. In [14], the authors provide the
best recursive systematic punctured convolutional encoders for parallel concate-
nation, constructed from (2, 1) mother encoders. Variable rate encoders are also
provided. Almost all the encoders constructed in this thesis achieve the same
value of distance d2, as the encoders in [14].

We have simulated the performance of turbo codes that use the flexible
mother encoder presented in this thesis and its associative family, as constituent
encoders, for the AWGN channel using BPSK modulation and the Max-Log-
MAP decoding algorithm. In Fig. 2 we have used a random interleaver of length
1000 for all the members of the family. Furthermore, for a particular encoder
and a particular SNR value we have assumed a fixed number of iterations LfSNR,

which is less than or equal to 10. Particularly, LfSNR is equal to the minimum
number of iterations needed to achieve the minimum possible error probability,
if the former is less than 10, and equal to 10 otherwise. Note that, apart from
the computational complexity of the decoding algorithm that uses a particular
trellis module, the overall computation complexity of turbo decoding depends
on the number of iterations as well. Thus, in Table 1 we provide the values of
LfSNR associated with the BER plots in Fig. 2. Particularly, the first row of
Table 1 indicates the curve points. A specific curve point for a specific encoder
corresponds to a particular value of SNR (Fig. 2). As depicted in Fig. 2, the
waterfall region for the (n′, k′,m′) constituent codes (of all rates) for m′ < m
appears at smaller values of SNR than the waterfall region in case where the
respective (n′, k′,m) codes of the family (including the mother code) are used.
This comes with a significant reduction in computational complexity. In other
words, in particular SNR regions, a reduction in complexity can result in an
increase of performance. As an example, the (2, 1, 5) mother code achieves error
probability 2 · 10−4 for SNR equal to 1.5dB (Fig. 2a). The (2, 1, 3) code, for the
same SNR value, achieves error probability 2 · 10−6 and reduces the computa-
tional complexity by 75%. Similar behavior can be observed for all code rates.
As a matter of fact, there is no need to use the (most complex) (n′, k′,m) code
of each rate for error probabilities greater than 10−6.

The proposed constructions can lead to turbo coding schemes that manage
more efficiently the system resources. Assume that the SNR is equal to 1.75dB,
and that the turbo code uses the (2, 1, 4) (9 iterations) convolutional encoder
from the family, achieving error probability 3 · 10−7 (Fig. 2a). Furthermore, as-
sume that the SNR increases by 1.75dB. In this case, there is no need for using a



0 1 2 3 4 5 6
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

E
b
/N

0
 (dB)

B
E

R

 

 
(2,1,5)

(2,1,4)

(2,1,3)

(2,1,2)

(4,3,5)

(4,3,4)

(4,3,3)

(6,5,5)

(6,5,4)

(6,5,3)

(6,5,2)

(a)

1 2 3 4 5 6
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

E
b
/N

0
 (dB)

B
E

R

 

 
(3,2,5)

(3,2,4)

(3,2,3)

(3,2,2)

(5,4,5)

(5,4,4)

(5,4,3)

(5,4,2)

(b)

Fig. 2. Simulations of turbo codes that use as constituent encoders the constructed
family of flexible convolutional encoders.



powerful constituent encoder. During the next transmission we can increase the
rate, or decrease the complexity. For instance, we can use the (5, 4, 4) constituent
encoder (Fig. 2b) (7 iterations), increasing significantly the rate and keeping the
same value of m′. Furthermore, the (2, 1, 2) encoder (Fig. 2a) (3 iterations) can
be used, i.e. keeping the rate constant and decreasing substantially the com-
plexity. At this point, one may wonder whether the reduction in computational
complexity can be achieved by simply reducing the number of iterations. The
computational complexity that corresponds to 3 iterations of the (2, 1, 2) decoder
is slightly less than the complexity of one iteration of the (2, 1, 4) decoder which
was initially used. The (2, 1, 4) code achieves error probability 6 · 10−5 at SNR
equal to 3.5dB, if only one iteration is performed.

Table 1. number of iterations of the codes in fig. 2

code 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(2,1,5) 3 8 10 10 10

(2,1,4) 5 7 10 10 9 9

(2,1,3) 4 7 10 10 10 9 7 6 5 3

(2,1,2) 3 6 10 10 10 8 8 7 5 5 5 3 3 3 3 3

(3,2,5) 7 10 10 10 9

(3,2,4) 2 5 10 10 10 10

(3,2,3) 5 6 10 10 10 8 8 7 4 3 3

(3,2,2) 5 7 10 10 8 8 7 7 6 4 4 4 3 3 3 3

(4,3,5) 5 10 10 10 10 10

(4,3,4) 5 6 10 10 10 10 8

(4,3,3) 4 8 10 10 10 10 7 6 5

(5,4,5) 3 6 10 10 10 10

(5,4,4) 4 9 10 10 10 10 7 6

(5,4,3) 3 7 10 10 9 8 8 7 6 5 5 4 4

(5,4,2) 3 5 7 8 8 8 7 6 6 6 5 3 3 3 2 2

(6,5,5) 7 10 10 10 10 7

(6,5,4) 5 10 10 10 10 7 6 6 6

(6,5,3) 5 9 10 10 9 8 7 6 6 5 5

(6,5,2) 4 6 10 10 8 7 7 6 5 5 3 3 3 2 2 2

5 Conclusion

In this thesis, a family of low complexity convolutional codes was proposed, which
was constructed by modifying appropriately the trellis diagram of punctured con-
volutional codes. Many new convolutional codes of various code rates and values
of complexity were provided. Furthermore, a method was presented for designing
new flexible convolutional codes that can vary both their rate and the compu-
tational complexity of the decoding procedure, leading to coding schemes that
manage more efficiently the system resources, compared to classical variable rate



convolutional codes. This method was extended in order to construct recursive
flexible convolutional encoders. Their use as constituent convolutional encoders
in turbo codes can lead to pretty flexible parallel concatenated coding schemes.

References

1. R. J. McEliece and W. Lin, “The trellis complexity of convolutional codes,” IEEE
Trans. Inf. Theory, vol. IT-42, pp. 1855–1864, Nov. 1996.

2. J. B. Cain, J. C. Clark, Jr, and J. M. Geist, “Punctured convolutional codes of
rate (n − 1)/n and simplified maximum likelihood decoding,” IEEE Trans. Inf.
Theory, vol. IT-25, pp. 97–100, Jan. 1979.

3. P. J. Lee, “Constructions of rate (n − 1)/n punctured convolutional codes with
minimal required SNR criterion,” IEEE Trans. Commun., vol. COM-36, pp. 1171–
1173, Oct. 1988.

4. I. E. Bocharova and B. D. Kudryashov, “Rational rate punctured convolutional
codes for soft-decision Viterbi decoding,” IEEE Trans. Inf. Theory, vol. IT-43, pp.
1305–1313, July 1997.

5. G. Begin, D. Haccoun, and C. Paquin, “Further results on high-rate punctured
convolutional codes for Viterbi and sequential decoding,” IEEE Trans. Commun.,
vol. COM-38, pp. 1922–1928, Nov. 1990.

6. C. R. Stevenson, G. Chouinard, Z. Lei, W. Hu, S. Shellhamer, and W. Caldwell,
“IEEE 802.22: The first cognitive radio wireless regional area network standard,”
IEEE Commun. Mag., vol. 47, pp. 130–138, Jan. 2009.

7. C. H. Wang and C. C. Chao, “Path-compatible pruned convolutional (PCPC)
codes,” IEEE Trans. Commun., vol. COM-50, pp. 213–224, Feb. 2002.

8. B. F. Uchoa-Filho, R. D. Souza, C. Pimentel, and M. Jar, “Convolutional codes
under a minimal trellis complexity measure,” IEEE Trans. Commun., vol. COM-
57, pp. 1–5, Jan. 2009.

9. R. J. McEliece, “On the BCJR trellis for linear block codes,” IEEE Trans. Inf.
Theory, vol. IT-42, pp. 1072–1092, July 1996.

10. A. Katsiotis, P. Rizomiliotis, and N. Kalouptsidis, “New constructions of high
performance low complexity convolutional codes,” IEEE Trans. Commun., vol. 58,
pp. 1950–1961, July 2010.

11. M. Mooser, “Some periodic convolutional codes better than any fixed code,” IEEE
Trans. Inf. Theory, vol. IT-29, pp. 750–751, Sept. 1983.

12. A. Katsiotis, P. Rizomiliotis, and N. Kalouptsidis, “Flexible convolutional codes:
variable rate and complexity,” IEEE Trans. Commun., March 2012.

13. E. Rosnes and Ø. Ytrehus, “On maximum length convolutional codes under a trellis
complexity constraint,” Journal of Complexity, vol. 20, pp. 372-408, March-June
2004.

14. F. Daneshgaran, M. Laddomada, and M. Mondin, “High-rate recursive convolu-
tional codes for concatenated channel codes,” IEEE Trans. Commun., vol. COM-
52, pp. 1846–1850, Nov. 2004.


