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Abstract. Clouds have become an attractive platform for large-scale data processing, especially due
to the concept of elasticity, which characterizes them: resources can be leased on demand and used for
as much time as needed, offering the ability to create virtual infrastructures that change dynamically
over time. Modern applications build on clouds require processing of complex queries that are expressed
in high-level languages and are typically transformed into data processing flows (dataflows). A logical
question that arises is whether elasticity affects dataflow execution and in which way. It seems reasonable
that the execution is faster when more resources are used, however the monetary cost is higher. This gives
rise to the concept eco-elasticity, an additional kind of elasticity that captures the trade-offs between
the execution time and the amount of money we pay for it as influenced by the use of different amounts
of resources. In this thesis, we approach the elasticity of clouds in a unified way that combines both
the traditional notion and eco-elasticity. This unified elasticity concept is essential for the development
of auto-tuned systems in cloud environments. First, we demonstrate that eco-elasticity exists in several
common tasks that appear in practice. Next, we present two cases of auto-tuned algorithms that use
the unified model in order to adapt to the query workload: 1) processing analytical queries in the form
of tree execution plans to maximize profit and 2) automated index management taking into account
compute and storage resources. Finally, we describe Exareme, a system for elastic data processing
on the cloud that we used and extended. Exareme exploits both elasticities of clouds by dynamically
allocating and deallocating compute resources in order to adapt to the query workload.

1 Introduction

Imagine an internet web site that offers a service, in which users can search for restaurants. Most systems
are designed to be able to handle peak-load in order to provide a certain quality of service to the users
at any given time. Distributed systems are usually deployed in fixed infrastructures (clusters), by acquiring
the appropriate amount of resources to handle peak-load with investments made up-front. Clusters have a
relatively small operational cost and a large administration cost. However, this is far from optimal. It is
reasonable to assume that during the day, the service will be used more than during the night, since much
more restaurants are open during the day. As also observed in practice [47], most systems are not used
uniformly over time. Instead, a periodic usage behavior is observed, typically with daily or weekly patterns.
Thus, designing for peak-load implies low utilization of resources, high energy cost, and waste of money.

Clouds promise to overcome these inefficiencies [10, 20]. Using cloud infrastructures, one can acquire
resources automatically and use them for as much time needed, in exchange for a service fee [6]. No up-
front or administration cost is needed. This makes it possible to create virtual infrastructures that change
dynamically over time and are automatically adapted to the workload. This ability to change the resources
used dynamically over time, is called elasticity [20]. Pioneered by Amazon [7], now cloud services are offered by
many providers [3, 37]. Typically, clouds offer three levels of services: infrastructure (IaaS), platform (PaaS),
and software (SaaS) [10]. At the IaaS level, clouds offer compute resources in the form of virtual machines
(VM) [6] whose service fee is based on a per quantum pricing scheme (e.g., constant fee per hour of usage).
IaaS clouds also offer network and storage resources [1]. At PaaS level, clouds offer platforms to develop
applications. Finally, at SaaS level, they offer software services.

For almost a decade, clouds have attracted much attention in the research community and software
industry and fundamental database problems are being revisited [19]. The ability to use computational
resources that are available on demand, challenges the way we implement systems and applications [10]. The
automated adaptation of the allocated virtual infrastructure based on the query workload is crucial for energy
efficiency and cost savings. A logical question that arises is whether elasticity affects the response time of the
system and in which way. It seems reasonable that the response should be faster when more resources are
used, however the monetary cost of using them is higher.

An Additional kind of Elasticity: In addition to the elasticity presented earlier, there is another kind
of elasticity present in clouds, which captures the trade-offs between the response time of the system on a

? Dissertation Advisor: Yannis Ioannidis, Professor.



Time%

Demand%

Demand'

Allocated'Resources'

Money%

Response%Time%

Time/Money'Trade6offs'Elas9c'Infrastructure'

Skyline'of'Solu9ons'

Time%

Demand%

Money%

Response%Time%

Eco$Elas(city,Elas(city,

Service$Level,Agreement,

Loss,

Profit,

L,

P,

Dynamic,

Sta(c,

Increased,Load,

A	
   B	
  

Fig. 1. A) elasticity: dynamic virtual infrastructure (left) and eco-elasticity: time/money trade-offs (right), B) Rela-
tionship of elasticities in IaaS clouds.

query and the amount of money we pay for it [17, 24, 29, 44]. To distinguish it from the traditional notion, in
this dissertation, we refer to it as eco-elasticity, since this term is borrowed from economics [48]. Figure 1(A)
shows both elasticity and eco-elasticity properties of clouds. Elasticity is illustrated in the left part; The
system reserves additional resources to be able to meet the demand, and releases them when the demand
is reduced. Eco-elasticity is illustrated in the right part; The figure shows different strategies of execution,
with each solution being a point in the 2-Dimensional space that corresponds to a different trade-off between
time and monetary cost. The optimal trade-offs are the ones that belong to the skyline [48]. This observation
motivates our work. An elastic IaaS cloud-enabled system may allocate and de-allocate compute resources
dynamically, trying to identify the optimal trade-offs between execution times of a given workload and the
monetary cost of using the resources. To make this possible, we consider a unified model of both elasticities.

A Unified Elasticity Model of Clouds: Both elasticities are strongly related to each other. The size
of the allocated virtual infrastructure essentially corresponds to the Investment on resources. A particular
virtual infrastructure size provides a certain Return on Investment (RoI), that is ultimately related to the
fee charged to the users of the service, possibly in the form of service-level agreements (SLAs). A typical
SLA is a function of money charged for the service provided based on the response time of the system on
the issued queries [51, 52]. This fee is related to the trade-offs between time and monetary cost of using the
resources. This relationship is illustrated in Figure 1(B). The right part of the figure shows a typical SLA
that specifies the fee that the service charges given the response time (or quality of service provided); faster
response times correspond to higher fees. The profit generated is computed as the difference between the fee
charged to the users and the cost of the allocated resources. Consider two resource allocation alternatives as
shown in the left part of Figure 1(B): static and dynamic. Each alternative corresponds to a strategy that
maximizes profit as shown in the right part of the same figure. Under normal load, both static and dynamic
should select the P point of operation in the skyline of time/money alternatives, since that maximizes profit.
However, if the same amount of resources is used when the load is increased, they are shared among many
more users, and the response time of the system is decreased. The static allocation strategy will force the
system to operate at point L, which implies a loss since the cost of executing queries is higher than the fee
charged to the users. Using dynamic allocation, the system is able to allocate additional resources when the
load is increased, allowing it to operate again at point P . This example illustrates that both elasticities are
very important and should be taken into account in a cloud environment in a unified approach [19, 29].

2 Dissertation Summary

Our vision is to build self-organizing elastic data processing systems that automate capacity planning, ex-
ploiting both elasticities of IaaS clouds in a unified approach: dynamically changing the size of the allocated
virtual infrastructure and taking into account the monetary cost of using the resources. In this section, we
discuss our work that is inspired by both elasticities of clouds, and approaches some of these new challenges
from the elasticity point of view of IaaS clouds.

Dataflow Scheduling on the Cloud: Initially, we consider the elastic scheduling of dataflows on an
IaaS cloud environment [24, 29]. Queries expressed in high-level languages are optimized and are typically
transformed into dataflow graphs in the form of directed acyclic graphs (DAG) with operators as nodes and
data dependencies as edges. In a distributed environment, the optimizer must decide, among others, where
each node of the graph will be executed. Scheduling the processing nodes of a dataflow graph onto a set of
available machines is a well-known NP-complete problem, even in its simplest form [21, 39]. Traditionally, the
only criterion to optimize is the completion time or makespan of the dataflow, and many heuristic scheduling
algorithms have been proposed for that problem [31]. In this work, we show that eco-elasticity is present
in many types of computations that typically appear in practice. We propose a simple, yet effective search
algorithm for the dataflow scheduling problem on the cloud, to efficiently explore the 2D search space of time
and money to find skyline schedules. The algorithm does not assume a fixed size of infrastructure, making
it ideal for automated capacity planning for IaaS clouds. Our approach is able to successfully find trade-offs



between execution time and monetary cost, and thus, exploit the eco-elasticity property of clouds. Since our
approach is generic and deals with a fundamental problem at the heart of all distributed data processing
systems, our algorithms could potentially be used to incorporate elasticity into many different systems.

Analytical Query Workloads: Next, we consider the elastic execution of analytical query work-
loads [26]. Many of these queries perform joins and heavy aggregations and often include UDFs. The most
efficient way to process them is using tree execution plans of a specific form [35]. In this work, we develop an
engine with a suite of specialized techniques that take advantage of the form of such plans and process them
very efficiently in an IaaS cloud environment. The engine offers its services for a fee according to service-level
agreements (SLAs) associated with the incoming queries. We lay out the allocated VMs in a “tree” shape
so that query execution plans are mapped naturally to the processing resources. Furthermore, we introduce
an online algorithm that exploits the elasticity of clouds to dynamically adapt to the query workload by
allocating and deallocating VMs so that the processing engine maximizes its profit after removing the costs it
incurs in using the cloud resources. We present an extensive experimental evaluation that demonstrates that
our approach is very efficient (exhibiting fast response times), elastic (successfully modifying the cloud re-
sources it uses as it adapts to query workload changes), and profitable (approximating very well the maximum
differential between SLA-based income and cloud-based expenses).

Automated Management of Indexes: Furthermore, we investigate the automated management of
indexes, that is a typical way to accelerate dataflow execution [28]. The automated management of indexes,
views, and in general data structures, has always been an interesting and challenging research topic for the
database community. The traditional problem is constrained by the total storage needed or the time required
to build them. We investigate this problem taking into account the monetary cost to maintain indexes, which
is equally important in a cloud environment. In this work, we identify the opportunity to use idle compute
resources that are charged by cloud providers to eliminate the monetary cost of building indexes. This
phenomenon emerges because of the nature of dataflows and the prepaid leasing policy of compute resources.
We propose an online auto-tuning algorithm to assess the importance of indexes taking into account the
trade-offs between the dataflow speed-up they offer and the monetary cost needed to store them, maintaining
only beneficial indexes. Furthermore, our algorithm eliminates the cost to build indexes by efficiently using
idle compute resources without delaying dataflow execution using appropriate scheduling techniques. Our
experimental analysis reveals that we are able to increase the utilization of resources and significantly reduce
both execution time and monetary cost needed to execute dataflows.

The Exareme Elastic Processing System: Finally, we discuss Exareme [30, 46], a system for the
elastic large-scale data processing on the cloud that defines the context in which the three problems discussed
in the previous sections are investigated. The system offers a declarative language based on SQL with user-
defined functions (UDFs) extended with parallelism primitives to declare potential data parallelism. Building
the appropriate runtime environment is essential to fully exploit the elasticity of clouds. We design and
implement the elastic functionality of the Exareme system, incorporating the techniques proposed in this
dissertation. We present the relevant component design and the dataflow language we developed. The language
offers several parallelism primitives to declare potential data parallelism and let the system make the actual
decisions at runtime. We also present the results of several experiments that demonstrate the effectiveness
and promise of our approach. To the best of our knowledge, Exareme is the first effort to build a system
that exploits both elasticities of clouds.

2.1 Related Work

There are several areas of data management where related work has been conducted. We briefly outline here
key results from the fields of data warehouses, NoSQL-systems, and elasticity.

Data Warehouses: Data Warehouses store very large volumes of data and are typically used for report
generation and historical analyses to discover trends. Several systems have been implemented that are open–
source (e.g., Hive [42]), proprietary (e.g., Tenzing [13]), or commercial (e.g.,Vertica [32]). The most popular
open–source warehouses are based on MapReduce [16, 42] and typically offer high level languages (e.g., SQL)
to express queries. The latter are ultimately transformed to one or more MapReduce jobs [33]. The MapReduce
abstraction however is not efficient for heavy aggregate queries that we target in this work. In MapReduce,
multi-level aggregations can only be expressed using multiple jobs, rendering the approach less efficient than
that of a tree abstraction. Moreover, the optimization goal of these systems is to both minimize the number
of jobs they produce as well as to maximize parallelization in order to minimize their total execution time.
The monetary cost of the resources is by and large ignored. The same holds for Dremel [35] and Scuba [5]
which has been recently proposed as specialized systems targeting query–tree executions, and, furthermore,
to the best of our knowledge, are not elastic.

NoSQL–Systems: Several systems have been proposed to manage data in formats different than rela-
tional tables. Examples include MongoDB [14], Sawzall [38], PigLatin [36], and FlumeJava [12]. All of the



above are built either on top of MapReduce and so, they inherit all pertinent weaknesses mentioned earlier,
or built from scratch by following approaches that are not suitable for the queries we target here [14]. Fur-
thermore, no such system offers a clean and simple way to define new UDFs and their properties so that they
may be used during optimization.

Elasticity: Several works focus on cloud elasticity [43, 45], and dynamically allocating resources to in-
crease performance. A recent work [40] focuses on how to minimize the number of VMs used to save on cost,
but this is not a plausible strategy in our setting where queries are associated with SLAs and the goal is
to maximize profit. Some works examine cloud elasticity in the context of in-memory distributed transac-
tions [15]. In our setting, the data are updated using bulk loading every day or week. Elasticity for array
databases is examined recently [18]. This work, similarly to our methodology, makes predictions about the
future based on past queries. However, the proposed algorithm is only applicable to array-based scientific data
(that only grow in size and rarely deleted) and considers only increasing the size of the virtual infrastructure.
We focus on a more generic problem.

3 Results and Discussion

In this section, we present in details our approach for the elastic processing of analytical query workloads.
These workloads are present in many modern applications that face the need to process voluminous data
using ad-hoc queries [27, 38, 41]. They also call for the use of complex user-defined functions (UDF s) that do
not come from a pre-defined set of operators with well known semantics for which SQL proper is often not
sufficient or efficient to use. Further, these queries must demonstrate very fast and near-interactive response
times [2, 5, 35]. It has been shown that, in appropriate computational environments, specific tree execution
plans, can answer queries of the above kind on trillions of objects in seconds [5, 35]. Figure 2(A) shows a
generic image of such a tree execution plan: the leaves of the tree represent the data that are partitioned
appropriately based on the application. The remaining nodes represent operators (e.g., group bys) and the
connections between them correspond to operator dependencies. The operators at the first level (L0) typically
perform joins and filtering. The internal operators (levels L1 to Ln−2) perform partial aggregations. Finally,
the root operator (level Ln−1) performs global aggregations and produces the final result.
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Fig. 2. A) Generic form of tree execution plans and B) Engine for Elastic Analytical Query Processing

Several systems have been proposed for large-scale data processing [2, 35, 42]; they are typically built on
top of IaaS clouds [10, 20] which have emerged as an attractive platform for analytical query processing. The
defining characteristic that favors IaaS clouds over other competing environments is elasticity, i.e., the ability
to lease compute and storage resources on–demand and use them only for as long as needed. This makes
possible to create an elastic virtual infrastructure that may change over time. IaaS clouds offer compute
resources in the form of virtual machines (VMs). The cost of leasing a VM is determined based on a per
time-quantum pricing scheme, where one pays for the entire quantum independently of the extent of the use
of the VM resources. An elastic cloud-enabled engine may allocate or de-allocate VMs dynamically, trying
to identify the optimal trade-off between the need to minimize execution times for a given workload and the
requirement to minimize the monetary cost of using the cloud resources [19, 29].

In this work, we develop an elastic processing engine operating atop an IaaS infrastructure that is capable
of executing efficiently and cost-effectively a large class of analytical queries demonstrating a tree execution
plan of a specific form. We have implemented the functionality within Exareme [25, 46], our system for
dataflow execution on the cloud. Figure 2(B) depicts the salient characteristics of our engine: arbitrarily
complex queries, possibly having UDF s with arbitrary user–code, are continually submitted to the engine.
Each query is associated with an SLA that designates the price that a query instigator must pay for answering



the query depending on its response time (faster response times are associated with higher prices). The data
is originally stored on the cloud and is partitioned to increase flexibility and performance.

In this context, our proposed engine and its requisite mechanisms make the following contributions:
• We introduce an online algorithm that exploits the elasticity of IaaS clouds to adapt the size of the

virtual infrastructure to the query workload at hand by dynamically allocating or de-allocating VMs. This is
done so that our engine maximizes its profit while taking into account the monetary cost of expended cloud
resources as well as the SLAs of the submitted queries.
• We propose to lay out the VMs allocated in a “tree” shape, so that query execution plans are mapped

naturally to IaaS processing elements. The VMs at the leaf-level fetch data from the cloud storage and
cache it to their local disk for processing, thereby decoupling compute and storage resources. For partition
assignments we use an extension of consistent hashing and devise a simple, yet quite accurate, analytical
formula to approximate the cost of partition reassignment; we use this formula when our online algorithm
searches for an optimal choice when considering changes in the deployment of resources.
• We have implemented our approach within Exareme and have performed an extensive experimental

evaluation which indicate very promising results. Our method compares favorably to Cloudera Impala [2]
on sheer performance offering near-interactive response times, it adapts quickly to workload changes, and it
increases the processing engine profit significantly compared to static infrastructures.

3.1 Problem Formulation

We present in details key aspects of the problem we address and the relevant notation and definitions.
IaaS Cloud: A container or VM is the unit of cloud compute resources and includes CPU(s), memory,

disk(s), and network resources. All containers furnished for general use have the same size, i.e., the same
capacity in every type of resource they provide, e.g., equal memory size. By and large, this is typical of most
clouds where only a limited number of VMs has substantially enhanced resources to help them run core
services (e.g., namenodes for Hadoop [9]). The price M c

Q for using a container is a fixed amount in $ per time
quantum TQ. The set of containers allocated to a cloud application, such as our query processing engine,
constitutes the virtual infrastructure of the application. The cloud also offers data storage resources,
which are decoupled from its compute resources for flexibility. VMs transfer data from these storage resources
and cache it to their local virtual disks for processing.

Data Partitioning: Tables are partitioned and replicated so that joins (if any) are local to containers
and only aggregations require data transfer. Hence, partitioning is based on foreign keys used in joins. If the
database has only one table (the usual case in NoSQL–systems), it is partitioned randomly into shards of
equal size. If the database has multiple tables as it happens in data warehouses, the largest tables (one or
more, depending on the available storage) are partitioned and all others are replicated wherever the partitions
are stored. In this regard, in the TPC-H benchmark, it may be most beneficial to partition the two largest
tables lineitem and orders with hash partitioning on l_orderkey, which is a foreign key in table orders,
and replicate the other tables. This is precisely the partitioning scheme we use for TPC-H in our experiments.

Properties of Analytical Queries: Issued SQL queries may include filters, joins, and two types of
group aggregate functions: distributive and algebraic [22]. Distributive functions are directly parallelizable,
as they are commutative, associative, and for a table T with two partitions T1, T2, satisfy the property
f(T ) = f(f(T1)∪f(T2)). Examples of such functions from SQL include min, max, and sum.Algebraic functions
are indirectly parallelizable, as they can be expressed as algebraic combinations of distributive or other
algebraic functions. Examples from SQL include count, avg, stdev, all expressed as increasingly more complex
combinations of count and sum. More importantly, the queries we support may also include UDF s with
arbitrary code that may correspond to distributive or algebraic functions. A UDF -example is the function of
reservoir sampling [49] which randomly selects a subset of a table’s records with equal probability.

Using the above properties, we may readily transform flat queries into tree plans by recursively unwrapping
all algebraic functions until only distributive functions are left. For example, consider two tables R(A,B,...)
and S(B,...), both partitioned on column B, and the following flat query:

select avg(A) as AA from R, S where R.B = S.B
We transform the above SQL-statement into a tree-based one using the following four “conceptual queries”:

leaf, internal-initial, internal-recursive, and root. The particulars of each query are as follows:
Leaf (carrying out filtering and joins): select A from R, S where R.B = S.B;
Internal-initial (executing the distributive aggregate initialization):

select sum(A) as SA, count(*) as CA from leaf;
Internal-recursive (producing partial distributive aggregation(s)):

select sum(SA) as SA, sum(CA) as CA from internal-initial;
Root (compiling sought algebraic aggregation(s)):

select sum(SA) / sum(CA) as AA from internal-recursive;
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Fig. 3. Profit maximization based on revenue and operational cost.

The above conceptual queries have to be placed on the query execution tree. The leaf queries are placed
at level 0 of the execution tree in order to be executed in parallel on each partition. Since internal-initial
also functions on each partition independently, this type of query can be part of level 0. Between level
1 of the tree and its root, we place internal-recursive queries. Given the commutativity and associativity
of distributive functions, there may be an arbitrary number of levels of internal-recursive queries, without
affecting correctness. The actual number of the internal level of the resulting query–tree depends on the size
of the original tables and the affordable degree of parallelization. Finally, note that, for a query without
algebraic functions, the root query is identical to the internal-recursive query.

Service Level Agreement: An SLA is a function having query execution time as input and money as
output, namely, SLA : R+ → R, both in appropriate units, often in seconds and dollars respectively. SLAs
can be step-wise or more sophisticated [51]. Inspired by other works, we use a generic form of SLAs defined
as follows: SLA(u, q, t) = α · e−t/γ , where α and γ are respectively regulators of the maximum amount of
money a user pays and the monetary cost reduction rate with time. A small γ indicates a critical query that
should be rapidly executed as its value drops drastically. Alternatively, a large γ indicates a best-effort query.

Profit Maximization Problem: The queries are issued to the engine in a streaming fashion. Each
query is associated with its own SLA. The price of the query charged is computed using both its SLA and
its execution time. The revenue generated by the engine during a particular time period p is computed as
the summation of the prices all queries launched during the period in question. The operational cost in
p using c containers is computed as: O = c · p/M c

Q. The profit P during the same period is computed as
P = R − O. Our optimization objective is to maximize the provider’s profit during the operation of the
engine, i.e., maximize the difference between operational cost and revenue.

Figure 3 illustrates our optimization goal; it shows a typical revenue curve per time quantum as affected
by the number of containers [45]. The y-axis indicates the rate with which the revenue is generated. The figure
also shows the operational cost of the engine per time quantum, which is linear to the number of containers
allocated as the incurred expense for every VM by the provider is the same. Our goal is to identify a point
M , that is the optimal number of containers that help maximize profit, i.e., the difference between revenue
and operational cost is maximized. Notice that that the revenue function is a “moving target” as it highly
depends on the query workload and so, M does change over time. The engine should be able to dynamically
adapt to workload changes and find the optimal point of operation at any moment.

3.2 Overall Approach

In this section, we present the overall approach we use to maximize profit. Time is separated into windows of
fixed length (e.g., epochs of 300 seconds) and inside each window we do not adjust the virtual infrastructure.
All queries issued within a window, are scheduled assuming a fixed container layout. In the beginning of each
window, we compute the new layout based on the measurements collected from the queries in a number of
previous time windows while taking into account data re-configuration cost. In this section, we discuss the
data partitioning scheme we employ, the elastic container layout, our online elastic layout allocation approach,
and the query scheduler we use.

Container Layout: A container layout is a hierarchical overlay on top of the allocated containers
that defines the allowed communication channels between them. Figure 2(B) shows this generic layout. Each
level has a fixed number of initial containers (shown in red in the figure) and is elastic, i.e., can change in
size by allocating or deleting containers while enforcing optional minimum/maximum thresholds. The table
partitions are located at the lowest level of the layout. Each VM found at internal level Li can communicate
only with the levels above (Li+1) and below (Li−1). Trees with height of 4 or more are rarely needed in
practice and only appear in very large data centers [35]. For this reason, we use 3 levels in our setting,
however this is configurable.
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Fig. 4. A) Partitioning and Placement of Data using consistent hashing and B) Percentage of partitions assigned to
a different container when changing their number (a) and the modeling of data movement (b).

Data Partitioning and Placement: Our method is based on consistent hashing (CH) [23] as its present
good theoretical bounds on the size of data required to move when containers are added or deleted. Table
partitions are placed in a logical circle as shown in the inner-circle of Figure 4(A.a). The outer circle consists
of the deployed containers at L0 with each one assigned one or more partitions. For example, partition 3 is
assigned to container 2. Notice that we place each partition multiple times in the inner circle. The first time
a partition is accessed from the cloud storage is cached for subsequent usage. When a new container is added,
it is placed in the outer circle at a position next to the container having the largest number of partitions; the
latter sheds half of its data partitions to the new arrival. For example, when new container #6 is added, is
placed next to #5; Containers #5 and #6 then split the existing partitions as shown Figure 4(A.b).

To increase parallelism and flexibility we use over-partitioning and replication. We partition the tables
into many more parts than the number of maximum data containers predicted to use. Thus, changing the
number of containers will cause only data transfers between the cloud storage and VMs, yet, it does not call
for extensive re-partitioning on the cloud storage; this last operation is in general very expensive and incurs
high network traffic [34]. Furthermore, we employ replication by adding each partition multiple times to the
inner circle of Figure 4(A) in adjacent positions. Thus, when high parallelism is needed, the same partition
will be assigned to multiple containers. Here, we balance the load between the containers that have assigned
replicas. If more than one replicas happen to be assigned to the same container, we keep only one copy.

Figure 4(B.a) presents the outcome of an experiment using CH with 128 partitions and replication degree
3 whose goal is to demonstrate the robustness of the method. The x and y axes show the initial and final
number of containers (i.e., going from x to y containers). If x<y, then new containers are allocated, otherwise
are deleted. We observe that when the changes are near the diagonal of the 2D–space, CH is robust to
changes as the percentage of partitions requiring for re-assignment remains low (≤10%). This characteristic
makes CH ideal as a partition placement policy for our elastic processing engine. We need to model the above
behavior of CH to use it in our optimization process and thus, take into account data re-organization when
adjusting the size of the deployed virtual infrastructure. Figure 4(B.a) reveals a strong linear correlation
between the number of containers and the percentage of partitions moved. Figure 4(B.b) provides the sought
model that predicts the data needed to be transferred when the number of VMs changes. Let x and y be
the previous and new number of containers. The size of data that have to move is modeled as: sized(x, y) =
(1−min(x/y, y/x))·data size, with data size is the total volume of the tables taking into account partitioning
and replication. Factor min(x/y, y/x) is used to remove the symmetry of the 2D–space on the diagonal.

Elastic Layout Allocation: Our suggested algorithm for Elastic Layout Allocation helps dynamically
change the container layout based on the query workload received to maximize profit. The proposed online
algorithm works as follows: it uses the queries issued on a historical window WH , their CPU load, and the
data the queries transferred through the network. Using these statistics, the algorithm makes predictions for
a window of size WP in the future [8, 18]. We model the profit as a multivariable function, representing each
level of the container layout with a variable that indicates the number of containers allocated (li). The goal is
to find the optimal number of containers in each level that maximize profit in the prediction window. In our
experiments, we use a historical window of 2 epochs (i.e., 600 seconds) to make predictions for the upcoming
window of 300 seconds. Notice that a large WH will cause the engine to adapt slowly to the workload and
low WH may cause it to change rapidly: both extremes are not ideal. We experimentally ascertained that
these window sizes behave well and leave for future work the automated learning of these numbers.

The queries are separated into a finite number of classes each having its own SLA which is the usual case

in practice [45]. We denote as −→α and −→γ the vectors carrying the respective values for all SLAs. Let
−→
QH be

the vector with the number of queries per SLA that have been executed during the historical window WH .

The total number of queries is numQH =
∑
i(
−→
QH [i]). We denote as

−→
LH the current number of containers

allocated at each level of the layout. Similarly,
−−−−→
CPUH is the vector with the sum of CPU loads at every

level of the layout within the historical window and
−−−−→
NETH is the total amount of data transferred outwards

every level. Furthermore, we designate conc to be the average number of queries running concurrently at any
point in time. We compute conc by summing the execution times of all queries within the historical window



and divide this number by the length of this window. All the concurrently running queries share the same
resources, and thus, they implicitly affect each other.

Dealing with the prediction window WP , we denote as
−→
LP the VM topology computed. Using the historical

measurements and
−→
LP , we can predict the average running time of the queries in the prediction window as:

tP =
conc

numQH

[−−−−→CPUH [1]
−→
LP [1]

+

|
−→
LP |∑
i=2

(−−−−→CPUH [i]
−→
LP [i]

+

−−−−→
NETH [i]

net speed ·min(
−→
LP [i− 1],

−→
LP [i])

)]
where

−−−−→
CPUH [i]/

−→
LP [i] is the CPU load per container at level i of the layout. The factor 1/numQH above

calculates the average time expended per query and we have to multiply by conc in order model the delay
that each query poses on others running concurrently. At this point, our model assumes that it can achieve
perfect load-balance at every level of the layout. The rationale behind this is that we have many operators
at each level, and each of them is not expensive to execute. Given that, we can solve the relaxed problem
and round the solution to integer values. The total network time of each container at level i is computed as:−−−−→
NETH [i]/(net speed ·min(

−→
LP [i−1],

−→
LP [i]) since the maximum network throughput between two consecutive

level i-1 and i is determined by the minimum number of containers in these two levels.
We separate the prediction window into two parts: the first involving re-organization along with query

execution (denoted as tdP ) and the second involving query execution only. The length of the first period is
estimated by the time needed to perform data re-organization using sized(x, y) defined above as follows:

tdP =
sized(

−→
LH [1],

−→
LP [1])

|
−→
LH [1]−

−→
LP [1]| ·Arc · net speed

where (|
−→
LH [1] −

−→
LP [1]| · Arc) is the number of containers Arc in the circle affected by the change. These

containers will transfer table partitions from the cloud storage with net speed being the network speed.
Thus, the length of the second period exclusively dedicated to query processing is WP − tdP . Notice that the
faster the time to re-organize the data is, the longer the period of time spent to execute queries.

Our modeling could potentially include in the re-organization part the time to create a VM and initialize
it. A simple approach would be to consider this time a constant (e.g., 1 minute). However, in most clouds,
this is relatively small compared to the actual time that the VMs are used and some cloud providers allow
for pre-configured instances1 which can be created in seconds, making the initialization time negligible. Most
importantly however, changing the shape of the virtual infrastructure does not directly imply the allocation
of new VMs. In our implementation, containers scheduled to be deleted, are kept until their entire quantum
has finished. If the virtual infrastructure needs to grow in size, we opportunistically re-use any available
containers from those scheduled to be deleted, and essentially eliminate their initialization cost.

We compute the estimated number of queries per SLA in each of the parts of the prediction window as:−→
QdP =

−→
QH · tdP /WH ,

−→
QP =

−→
QH · (WP − tdP )/WH Using the above, the predicted revenue per SLA class for the

two part of the prediction period is as follows:
−→
RdP =

−→
QdP ·

−→α · e(−(tdP+tP )/−→γ ),
−→
RP =

−→
QP · −→α · e(−tP /

−→γ ) Notice
that we include the time to perform data re-organization tdP in the calculation of the revenue in the first

period (
−→
RdP ) of the prediction window. The total revenue and cost in the prediction window is as follows:

R =
∑
i

(
−→
RdP [i]) +

∑
i

(
−→
RP [i]), O = M c

Q ·
WP

TQ

∑
i

(
−→
LP [i])

The profit generated is computed as R−O. We seek to find
−→
LP that maximizes profit.Since the number

of container layouts is limited assuming a maximum number of containers per level (e.g., 100), we could
potentially compute the revenue enumerating all different layouts. The total number of layouts with height 4
and a maximum of 100 containers/level is 108. In practice, this number is infeasible to compute exhaustively.
Instead, we maximize the profit function using the L-BFGS-B Algorithm [11] which is a general purpose
iterative optimization method that finds local maxima/minima of multivariable functions. Since the L-BFGS-
B finds solutions with real numbers, we round the solutions to the ceiling.

We seed L-BFGS-B with the previous layout (
−→
LH) as the starting point. Extensive experimentation

through enumeration of all solutions and comparison of outcomes to those derived with the help of L-BFGS-
B showed that solutions are very close (yet, they are not identical due mostly to rounding). This was expected
as changes is the topology are mostly gradual because of the data re-organization cost. The seeding the L-

BFGS-B with the previous container layout (
−→
LH) is sufficient to adequately guide the algorithm.

1 Okeanos: okeanos.grnet.gr, eCloudManager: www.fluidops.com



0	
  
20	
  
40	
  
60	
  
80	
  
100	
  
120	
  

lin
eit
em
	
  

or
de
rs	
  

pa
rts
up
p	
  

pa
rt	
  

cu
sto
me
r	
  

su
pp
lie
r	
  

re
gio
n	
  

na
7o
n	
  

Si
ze
	
  (G

B)
	
  

128	
  scale	
  

64	
  scale	
  

Fig. 5. TPC-H table size distribution at 64 GB and 128 GB scales.

Query Tree Scheduler: The execution tree plan is scheduled by performing load balance on every level
of the layout while considering current load at each container. The load is quantified as the number of running
and queued operators. First, we find the rank of each operator that is the height of the node in the execution
tree. The rank of an operator determines the level of the layout at which is scheduled. As there is at least one
container allocated in each level, we can always find at least one valid schedule. Once we determine the levels
in which all operators are placed, we order containers at each level according to their load. The scheduler
maps the operators of the each level of the query tree to the corresponding containers using the increasing
ordering in a round robin fashion. For generic dataflow graphs, the scheduling problem is a much harder [29].
However, in this work we consider only tree–query plans. The specialized scheduling algorithm discussed
here works because of the following two reasons: A) individual operators are not expensive to execute and
they do not generate voluminous data as they use aggregate functions. This has as a consequence that even
sub-optimal assignments of operators will not cause much imbalance, B) operators that are at the same level
of the execution tree, will have approximately the same execution time since the data is balanced.

Our scheduling method is robust to use in practice since it neither assumes a particular operator behavior
nor uses a model to predict execution times. The elastic layout allocation algorithm exclusively uses historical
measurements taken after queries have been executed and so actual running times of their operators are
known. Further, ongoing queries are not affected by changes in the container layout as partitions located at
the respective VMs are not deleted even if they are re-assigned elsewhere. This is possible because of the
de-coupled nature of the used compute and storage resources. Finally, our proposed algorithm is ideal when
used for queries featuring UDF s unknown properties. UDF s are encountered frequently and their modeling
and behavior prediction remains an open problem.

3.3 Experimental Evaluation

Here we present our experimental effort. The objectives are: A) evaluate our engine and show that we can
achieve near-interactive response times for analytical queries, B) show that we can efficiently execute complex
analytical queries with UDF s that have arbitrary user code, and C) examine the effectiveness of the proposed
elastic container layout algorithm and ascertain its ability to adapt to the workload.

Environment: We have implemented the functionality presented within Exareme [46], our system for
dataflow execution on the cloud. We compare our approach with the latest version of Cloudera Impala, the
state-of-the-art in-memory analytics platform [2]. We deployed the systems in the Okeanos cloud and used up
to 64 VMs for processing, each with 1 CPU, 4 GB of memory, and 20 GB of disk. We measured the network
bandwidth to be around 150 Mbps. We set the quantum TQ to 300 seconds and the cost of the quantum M c

Q

to $0.41 (or equivalently ∼$5/hour). The memory of the operators in the execution tree is set to 10% of the
container’s memory, i.e., at most 10 leaf, internal, or root queries can run concurently in each VM. We also
used a latest version of the HDFS 2.6 as a storage service deployed in 8 VMs to store table partitions.

Datasets: We used two datasets namely, TPC-H [4] that typically models data warehouse settings,
and Freebase, an RDF dataset2. The TPC-H benchmark has eight tables: lineitem(128, l orderkey), orders(128,

o orderkey), part, partsupp, supplier, customer, region, nation. In parentheses, we indicate the number of partitions
we have created for each table and the key(s) based on which we performed table partitioning. We partition
tables lineitem and orders on their foreign key using hash partitioning and replicate all other tables. We used
the 32 (∼32GB), 64 (∼64GB), and 128 (∼128 GB) as the TPC-H scale–factors. Figure 5 shows the sizes of
the benchmark tables illustrating the large size difference between the fact table lineitem and the rest.

Freebase contains approximately 2.5 billion tuples in the form of RDF triples: <subject> <predicate>
<object> “.” and its volume stands at 250 GB. If the object is text, it is tagged at its end with the appropriate
language symbol (e.g., @en means text in English).

Queries: we use a subset of the TPC-H queries that cover a wide range of the types of queries we target.
In particular, we choose queries 1, 3, 4, 5, 7, and 9. 1 uses only table lineitem and has 8 aggregate functions.
Queries 3 and 4 have a small number of joins (less than 3) and a small number of aggregate functions while
queries 5, 7, and 9 feature a large number of joins and several aggregate functions. With Freebase, we utilize

2 developers.google.com/freebase/data
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Fig. 6. A) Execution times for Freebase queries, B) TPC-H with 64 GB on Impala and Exareme using 64 VMsand,
C) Elastic configuration vs. static layouts.

two queries with complex UDF s to create a histogram of the languages that appear in the dataset. The
first query uses regular expressions to separate the language of each object and then counts the number of
languages encountered. The query is as follows:

SELECT lang, count(lang) as c

FROM (SELECT REGEXPR(’.*@(.*)’, o) as lang FROM freebase WHERE o like "%@%")

GROUP BY lang ORDER BY c desc;

The second query uses reservoir sampling to sample 1 million rows from the table and computes the histogram
though a UDF that is applied on the sample and detects the language of a given text using a statistical model.
The query is the following:

SELECT lang, count(lang) as c

FROM (SELECT DETECTLANG(sobj) as lang FROM (SELECT SAMPLE(1000000, obj) as sobj FROM freebase))

GROUP BY lang ORDER BY c desc;

SLAs and Query Generator Client: We use two types of SLAs: “normal” with α = 10 & γ = 80 and
“high priority” with α = 20 & γ = 40. We also created a generator that launches queries with a Poisson
distribution. More specifically, the generator computes the arrival time k (in seconds) of the next query as
f(k;λ) = Pr(X = k) = λke−λ/k!, where λ is the expected value of X (in seconds). We can achieve desired
query rates by setting λ appropriately (e.g, for λ = 10 one query is issued every 10 seconds on average).

Algorithms and Measurements: We use our elastic VM layout allocation algorithm to adjust the size
of the virtual infrastructure. As a baseline, we select a static layout that remains fixed over time. We use three
such static allocations: small with (10, 4, 1), medium with (26, 8, 2), and large (42, 12, 3); here, we designate
within parentheses the number of containers per layout level starting from the lower level L0 that contains the
data. We bootstrap our dynamic layout allocation algorithm with the medium static configuration. Finally
while experimenting, we measure the following: average execution time for queries, revenue, cost, and average
number of VMs used at each layout level.

Near-Interactive Analytics: In our first set of experiments, we validate the efficiency of the system by
executing a single type of query at a time and measuring corresponding turnaround time. We run each query
4 times and report the average of the last 3 measurements, a technique also followed by others [50]. In this
way, the observed execution times reflects the behavior of the system in live operation. We use the TPC-H
benchmark with 64 VMs on Okeanos and a 3-level execution tree. Figure 6(B) compares performance of our
implementation, termed Exa-Tree, with that of Impala while using 64 GB of data on 64 VMs. We observe
that Exa-Tree is comparable, and in some cases more efficient, for the types of queries we focus on in this
work. This is due to our data partitioning and placement scheme that reduces network traffic during query
execution (due to replication) and the tree execution plans. As Impala runs entirely in memory, we were not
able to run query 9 because we reached memory limits.

Complex Analytics: In the second set of experiments, we assess the efficiency of our engine on complex
analytics expressed in UDF s, again by executing a single query at a time and measuring respective execution
times. As previously, we run each query 4 times and report the average of the last 3 times. We use the
Freebase dataset and the two queries mentioned earlier in the section using 64 VMs. Figure 6(A) depicts
the attained execution times for the two queries (All and Sample). In the first query (All), operators at the
leaves of the execution tree take most of the time as computing 2.4 billion regular expressions is expensive.
The second query (Sample) being highly selective completes in 339 seconds. It is worth mentioning that both
queries produce similar distributions. We also pre-processed the <object>-column by extracting the language
tag and created an additional column on the table hosting the Freebase. Here, the histogram on the entire
dataset is computed in merely 107 seconds without indexes and in 27 seconds using indexes. This performance
highlights the near–real-time capabilities of our engine in large datasets.

Elasticity under Dynamic Workloads: In this set of experiments, we examine both the effect that
the elasticity has on query execution time and the profit generated. For these experiments we used TPC-H
with scale factor 32. The clients connected to the system issue the queries 1 and 3 of the benchmark.

Compare with Static Infrastructures: Figure 6(C) depicts the profit gained when the static VM
configurations are used to handle the workload as well as the profit generated by our approach. We run the
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Fig. 7. Elastic containers allocated per tree level and revenue and cost for workload with different phases.

system for 3 hours using a client that issues Q1 in three phases, each of 1 hour duration. In the first and third
phase, the Poisson parameter λ is set to 60 and in the second phase to 30 (the rate is doubled). We readily
ascertain that smaller-sized infrastructures produce less revenue as expected. Similarly, the expended costs
increase as more VMs and time quanta are used. The elastic layout allocator however produces a better-
fitted layout that adapts to the workload changes and yields the highest profit compared to all static choices.
Lastly, the elastic approach does generate less revenue (profit = revenue - cost) than the large infrastructure.
However, this is in sequence with our design as we optimize for profit and not for revenue.

Adaptivity with Dynamic Workload: In our final set of experiments, we evaluate the adaptability
of our elastic algorithm in presence of workloads whose features change over time. In particular, we employ
a workload consisting of three stages, of 1 hour each, where query workload characteristics are perturbed
between the stages. As a default workload we issue Q1 with a Poisson parameter λ = 60 and using the
“normal” SLA . We change this default query workload in the second stage using the following three options:

Varying Query Rates: we vary the rate with which queries are issued by setting the Poisson parameter
to λ = 30 in the second stage and essentially, doubling the rate. The left part of Figure 7 shows the VMs
allocated per layout level as well as revenue. Our approach does rapidly adapt to varying workload and starts
adjusting the number of VMs exactly at the phase boundaries. We also observe the number of containers
allocated is increased along with the query rate as more revenue is generated.

Varying SLAs: we vary the SLA type to “high priority” during stage 2, while phases 1 and 3 have queries
with the “normal” SLA. The middle part of Figure 7 shows our execution results: for queries with a higher
price, our algorithm designates more VMs to be able to generate the same revenue since the SLA requires
faster execution times for the same price.

Varying Query: we vary the type of the queries issued. In stages 1 and 3, we use Q1 and in stage 2 we use
Q3. The right part of Figure 7 shows the results. Because Q3 is much more expensive the revenue is low.
However, our elastic algorithm detects that and drops the number of VMs used to minimize the loss.

4 Conclusions

Our vision is to build auto-tuned data processing systems on IaaS clouds that automatically adjust the
amount of resources they use by exploiting the elasticity property. In this dissertation, we have investigated
dataflow processing techniques that exploit both elasticities of IaaS clouds: the traditional elasticity that is
related to the ability to create virtual infrastructures that change dynamically over time, and eco-elasticity
that is related to the trade-offs between execution time and monetary cost of using compute and storage
resources. We proposed a set of specialized techniques for the elastic execution of analytical queries in the
form of tree execution plans. These types of queries constitute a large subset of analytical SQL queries that
involve heavy aggregations. We propose to layout the VMs in a “tree” shape in order to naturally map the
execution plans of the queries to the virtual infrastructure. Our elastic allocation algorithm dynamically
change the layout of the VMs based on the query workload in order to maximize the profit generated. A
major challenge that affect elasticity is the data partitioning and placement. We used a technique based on
consistent hashing since is robust to changes in the infrastructure and can be accurately modeled. We found
in practice that is essential for the elasticity of the system. Our work shows that both cloud elasticities are
essential and should be taken into account in IaaS clouds in a unified approach. We strongly believe that
both elasticities will play an important role in the design of modern data processing systems in the cloud.
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