
Efficient Management for Geospatial and
Temporal Data using Ontology-based Data

Access Techniques

Konstantina Bereta?

National and Kapodistrian University of Athens, Greece
Department of Informatics and Telecommunications

konstantina.bereta@di.uoa.gr

Abstract. In this thesis, we propose an Ontology-based Data Access
(OBDA) approach for accessing geospatial data stored in geospatial re-
lational databases, using the OGC standard GeoSPARQL and R2RML
or OBDA mappings. We introduce extensions to an existing SPARQL-to-
SQL translation method to support GeoSPARQL features. We describe
the implementation of our approach in the system Ontop-spatial, an ex-
tension of the OBDA system Ontop for creating virtual geospatial RDF
graphs on top of geospatial relational databases. Ontop-spatial is the first
geospatial OBDA system and it outperforms state-of-the-art geospatial
RDF stores. We also show how to answer queries with temporal oper-
ators in the OBDA framework, by utilizing the framework stRDF and
the query language stSPARQL which we extend with some new features.
Next, we extend the OBDA paradigm going beyond relational database
management systems, and we present our OBDA solutions for creating
virtual RDF graphs on top of various web data sources (e.g., HTML ta-
bles, Web APIs) using ontologies and mappings. Last, we describe how
the work described in this thesis is applied in real-world application sce-
narios.

Keywords: Linked spatiotemporal data · Spatiotemporal databases ·
Semantic Web

1 Dissertation Summary

1.1 Motivation and Scope

The volume of geospatial and temporal data that is produced and consumed
from applications is ever-increasing these years, as more and more applications
use geospatial data that is produced from various scientific fields (e.g., Earth Ob-
servation, environment studies, earth sciences). At the same time, many applica-
tions and services, such as Google maps, heavily rely on the efficient integration
and management of geospatial data from heterogeneous sources.

? Dissertation Advisor: prof. Manolis Koubarakis, Professor



2 Konstantina Bereta

Many research efforts during the past decades have concentrated in the effi-
cient management and retrieval of geospatial data, resulting in the development
of data models, query languages and systems with spatial and temporal support.
In the area of the database community, the relational model has been extended
with primitives that represent geospatial and temporal data, followed by the
extension of SQL with geospatial and temporal support. These efforts led to the
development of a wide variety of geospatially and temporally-enabled Database
Management Systems (e.g., PostGIS, PostGIS-temporal, Spatialite, Oracle Spa-
tial and Graph), while a lot of work in literature addresses the problem of spatial
and temporal query optimisation.

In the process of data integration from different sources, a common data
model should be used. For this purpose, the data model RDF [22] has been
developed. The rationale behind the creation of the data model RDF is that
every entity on the Internet is a resource that can be identified using a unique
identifier (URI). This resource can then be described using triples. Triples are
statements that consist of three parts: The subject, which is the resource that we
want to describe, the predicate, and the object. The predicate denotes a property
of the subject, and it is also a resource that can be described, while the object
expresses the value of the property of the subject.

Ontologies are used to describe the schema of the data encoded in RDF.
They describe the different kinds of entities that might exist in a dataset, i.e.,
the classes, the relations between them, the properties and the relations between
the properties, and they might also include axioms that introduce additional
definitions and constraints to the data. The query language that is used to
query data encoded in RDF format is the SPARQL [17] query language, which
is a declarative query language that shares many common syntactic primitives
with SQL.

The data model RDF and the SPARQL query language do not support primi-
tives or operators for the representation and querying of geospatial and temporal
data. For this reason, many geospatial and temporal extensions of the framework
of RDF and SPARQL started to emerge in the recent years. The highlights of
these efforts are the following: (i) the development of the framework of stRDF
and stSPARQL [20] that extends the data model RDF and the SPARQL query
language with geospatial and temporal support, and (ii) the establishment of
the query language GeoSPARQL [13].

The query language GeoSPARQL is a geospatial extension of the framework
of RDF and SPARQL which introduced geospatial primitives and operators for
the representation and querying of geospatial data. Soon after its development,
GeoSPARQL was standardised by the Open Geospatial Consortium (OGC).
GeoSPARQL extends the data model RDF introducing the following datatypes
for the representation of geometries as literals: The Well-Known-Text (WKT)
datatype, and the Geography Markup Language (GML) datatype. The WKT
and GML serialisations are OGC standard formats for the representation of
geometries as text. The query language GeoSPARQL also defines predicates
that represent topological relations between resources with spatial extent or



Title Suppressed Due to Excessive Length 3

between geometries, while it also defines a set of operators that can be used as
functions that extend SPARQL 1.1. These functions take one or two geometries
as arguments, they calculate geometry metrics (e.g., area) or topological relations
(e.g., overlapping geometries), and they can be included in filter or select clauses
of SPARQL queries.

The data model stRDF and the query language stSPARQL is another ex-
tension of the framework of RDF and SPARQL with spatial support. The data
model stRDF and the query language stSPARQL were developed at the same
time but independently from GeoSPARQL, and shares some common character-
istics.

Soon after the standardisation of the query language GeoSPARQL, the first
GeoSPARQL implementations started to emerge, such as the following systems:
GraphDB1, Oracle Spatial and Graph2, USeekM3, while other triple-stores in-
troduced spatial support using native spatial primitives. The system Strabon4

[21] outperforms all of these systems, according to recent benchmarks [16] but
it is also the most rich in functionalities, as it supports both GeoSPARQL and
stSPARQL.

Although the data model RDF is widely there are cases when the data is
stored in large databases that get frequently updated and users are often dis-
couraged to convert their data into RDF and materialise it as triples every time
their datasets get updated.

The research area of Ontology-based Data Access (OBDA) [25] addresses
this problem by developing techniques for creating virtual RDF triples on top
of geospatial databases, without materialising the data as RDF triples stored
in a triple-store. In this setting, ontologies are used to describe the relational
data conceptually, while mappings encode how relational data get translated
into (virtual) RDF terms. Mappings are encoded in languages such as R2RML
[15], which is a W3C standard. Despite the availability of various OBDA systems
nowadays, the OBDA paradigm did not include geospatial or temporal support.
In this dissertation, we remedy this issue as we describe in the following sections.

1.2 Dissertation contributions

The contributions of this dissertation are summarised as follows:

– We present a novel approach for extending the OBDA paradigm with geospa-
tial support. We implement our techniques in the system Ontop-spatial, the
first OBDA system that includes geospatial support. Our extensive experi-
mental evaluation shows that Ontop-spatial outperforms traditional state-of-
the-art geospatial RDF stores often by two orders of magnitude [4,7]. After

1 https://www.ontotext.com/
2 https://www.oracle.com/technetwork/database/options/spatialandgraph/

overview/index.html
3 https://www.w3.org/2001/sw/wiki/USeekM
4 http://www.strabon.di.uoa.gr/

https://www.ontotext.com/
https://www.oracle.com/technetwork/database/options/spatialandgraph/overview/index.html
https://www.oracle.com/technetwork/database/options/spatialandgraph/overview/index.html
https://www.w3.org/2001/sw/wiki/USeekM
http://www.strabon.di.uoa.gr/


4 Konstantina Bereta

the development of Ontop-spatial, similar functionality was also added in
the system Oracle Spatial and Graph5.

– We extend the framework of stRDF and stSPARQL with additional temporal
operators that facilitate the adoption and implementation of the framework
in the OBDA setting.

– We generalise our approach by extending the OBDA paradigm to allow for
the creation of virtual RDF graphs on top of data that is available on the
Web, for example as HTML tables or accessible through Web APIs [5]. We
implement our techniques as an extension of the system Ontop-spatial and
we conduct an experimental evaluation of our method compared to a state-
of-the-art approach offering similar functionality [23]. The results of the eval-
uation show that our system outperforms the system in comparison.

– We showcase the use of the techniques described above in real-world appli-
cations. Soon after the development of our techniques in the system Ontop-
spatial, the system was used in a variety of real-world use cases from different
domains such as land management [8], urban development, maritime secu-
rity [9], as well as for facilitating the development of APIs for Copernicus
data [3].

2 Results and Discussion

2.1 Geospatial Ontology-based Data Access

In this section, we describe how we extended the OBDA paradigm to support
spatial queries on top of geospatial databases. More specifiically, we present the
techniques of answering GeoSPARQL queries in OBDA by translating to SQL
queries, which is based on the SPARQL-to-SQL algorithm used in Ontop [19,10].
The pseudo code of algorithm is outlined in Figure 1. As in the classical case,
the algorithm takes as inputs a (Geo)SPARQL query, an ontology T , and a
mapping M , and returns a SQL query. The algorithm consists of (1) an offline
step, which is query-independent and preprocess the mapping and ontology and
generates the so-called saturated mapping or T-mapping, and (2) an online step,
which translates the input SPARQL query into an SQL query. We refer the
readers to [10] for more details of the workflow. In the following, we discuss the
GeoSPARQL specific steps, which are underlined in the pseudo code.

Ontology classification At line 2, the algorithm classifies the input ontology T
union with the GeoSPARQL ontology Tgeo, and construct an explicit hierarchy
of classes and properties. By assuming the built-in ontology Tgeo, the algorithm
is able to support the Clauses 6 – 8 of the GeoSPARQL standard.

GeoSPARQL query-rewrite At line 5, the algorithm expands the input GeoSPARQL
query q using the rules Rgeo. We note that the resulting query is of polynomial
size of the input query.

5 https://www.oracle.com/database/technologies/spatialandgraph.html

https://www.oracle.com/database/technologies/spatialandgraph.html


Title Suppressed Due to Excessive Length 5

Algorithm 1 Algorithm of Translating GeoSPARQL into SQL

Input: GeoSPARQL query q, Ontology T , Mapping M
Output: An SQL expression

1: // offline phase
2: Tclassified = classify(T ∪ Tgeo) . ontology classification
3: MT ← saturate(M,Tclassified) . mapping saturation
4: // online phase
5: Q← rewgeo(q) . GeoSPARQL query write
6: S ← list of nodes in Q in a bottom-up topological order
7: sql← empty map from nodes to SQL expressions
8: for node n ∈ S do
9: if n is triple pattern then . translating leaves

10: sql[n]← replace-Tmap-def(n, MT )
11: else . translating non-leaf nodes
12: if n = JOIN(n1,n2) then
13: sql[n]← InnerJoin(sql[n1], sql[n2])
14: else if n = OPTIONAL(n1, n2, e) then
15: sql[n]← LeftJoin(sql[n1], sql[n2], e)
16: else if n = UNION(n1, n2) then
17: sql[n]← Union(sql[n1], sql[n2])
18: else if n = FILTER(n1, e) then
19: sql[n]← Filter(sql[n1], e)
20: else if n = PROJECT(n1, p) then
21: sql[n]← Project(sql[n1], p)
22: end if
23: end if
24: end for
25: return sql[S.last()]

Table 1: GeoSPARQL Simple Feature functions of to SQL Functions

GeoSPARQL function OGC SFS SQL function

geof:sfEquals ST Equals

geof:sfDisjoint ST Disjoint

geof:stIntersects ST Intersects

geof:sfTouches ST Touches

geof:sfCrosses ST Crosses

geof:sfWithin ST Within

geof:sfContains ST Contains

geof:sfOverlaps ST Overlaps



6 Konstantina Bereta

Spatial filter expressions At line 19, the algorithm transforms the SPARQL filters
to its SQL equivalences. Now it also translates GeoSPARQL functions to the
corresponding functions in the spatial extension of SQL. In Table 1, we provide
a list of SPARQL Simple Feature functions defined in GeoSPARQL and their
equivalences in SQL functions defined in OpenGIS SQL standard [18]

 1

 10

 100

 1000

 10000

 100000

 1e+06

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21

MicroSelectionsExperiment-cold

Ontop-spatial
Strabon

System-X

 1

 10

 100

 1000

 10000

 100000

 1e+06

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21

MicroSelectionsExperiment-warm

Ontop-spatial
Strabon

System-X

Fig. 1: Spatial Selections experiment (cold and warm cache)

 1

 10

 100

 1000

 10000

 100000

 1e+06

00 01 02 03 04 05 06 07

MicroJoinsExperiment-cold

Ontop-spatial
Strabon

System-X

 1

 10

 100

 1000

 10000

 100000

 1e+06

00 01 02 03 04 05 06 07

MicroJoinsExperiment-warm

Ontop-spatial
Strabon

System-X

Fig. 2: Spatial Joins experiment (cold and warm cache)

The results of our experimental evaluation can be seen in Figures 1 - 5. Re-
sponse time is measured in nanoseconds and presented in logarithmic scale. A
general observation is that the query response time of Ontop-spatial is better
than the one of Strabon and System-X, especially when big datasets are in-
volved, both for spatial selections and spatial joins. Strabon times out after 40
minutes in spatial join queries 6 and 7. System-X times out after 40 minutes
in spatial join queries 0,1,2,3,6 and 7. In spatial selection queries 2–5, although
Ontop-spatial achieves better response time than Strabon in cold cache, it gets
outperformed in warm cache, as intermediate results (which are not many as the
dataset involved in this query is relatively small), are more likely to be found in
the cache, increasing the hit rate of the cache and decreasing I/O requests. How-
ever, such differences between executions in warm and cold cache are eliminated
in larger datasets. System-X performs worse than Ontop-spatial and Strabon in
both cases.



Title Suppressed Due to Excessive Length 7

Overall, we observe that importing the shapefiles to a database and then
using an OBDA approach is very efficient, as in most cases, the information that
is contained in a shapefile is compact and homogeneous, as we often have one
shapefile per data source. So, the SQL queries that are produced based on such a
schema contain reduced amount of joins and can be executed efficiently. It is also
evident from the experiments that forwarding geospatial query processing to a
spatially-enabled DBMS as back-end can improve performance significantly, as
they incorporate well-established optimization techniques in the area of geospa-
tial query processing that have not yet been incorporated in native geospatial
triple stores up to date.

3 Temporal Ontology-based Data Access

The problem of posing temporal SPARQL queries on top of temporal databases
on-the-fly using the OBDA paradigm is even more challenging. First, there is no
standard temporal extension of the framework of RDF and SPARQL, as in the
case of the OGC standard GeoSPARQL. Second, in order to support valid time in
the data model RDF, none of the proposed approches for translating temporally-
enhanced queries into standard SPARQL queries suits the OBDA paradigm.
Another feature that the OBDA systems lack is the support for SPARQL1.1.
extension functions, which is needed for the support of the temporal extension
functions defined in stSPARQL that are documented in [6].

Due to these challenges, we will not consider valid time for the rest of this
chapter and we will focus in addressing these issues for supporting user-defined
time. We propose an extension of the data model stRDF and the query lan-
guage stSPARQL with additional, but lightweight temporal features that can be
adopted by both RDF stores and OBDA systems.

We define the following temporal components in the query language stSPARQL.
Temporal predicates. We extend stSPARQL by defining a set of temporal pred-
icates that are based on Allen’s interval algebra [1]. These predicates are the fol-
lowing: strdf:peridEquals, strdf:after, before, periodOverlaps, starts,
finishes, periodContains, strdf:meets, during, and isMetBy. The temporal
predicates are equivalent to the temporal extension functions that are defined in
stSPARQL and are described in [6]. These functions can either operate on inter-
vals or time instants, where suits the case. For example, an interval can either
contain another time interval (e.g., a literal of the strdf:period datatype or a
literal of the xsd:dateTime datatype).
Temporal query rewrite component. The temporal query rewrite compo-
nent of stSPARQL defines a set of rules for translating qualitative temporal
queries, i.e., queries with temporal predicates, into quantitative ones, i.e., queries
with temporal operators. This component of stSPARQL is similar to the query
rewrite component of GeoSPARQL [13]. We denote as Rtemporal the set of rewrit-
ing rules Ri that we define for each temporal predicate i. Using these rules, a
query q that contains a temporal predicate i will get transformed into the equiv-
alent query q, by applying rule Ri to q. The query q′ contains the temporal



8 Konstantina Bereta

extension function of stSPARQL that corresponds to the temporal operator i.
In the following section we provide an example of how this new query rewrit-
ing component of stSPARQL participates in the overall evaluation of temporal
stSPARQL queries. This component of stSPARQL is important, as it allows any
OBDA system that implements it to answer temporal SPARQL queries trans-
parently, without modifying their syntax.

Rewriting rules. We now explain how queries that contain temporal predi-
cates (qualitative) get translated into queries that contain functions. We define
a rule for each temporal predicate that we define, that corresponds to a temporal
function in stSPARQL.

We now describe briedly the workflow of answering stSPARQL queries in
an OBDA system like Ontop [24]. Once a temporal stSPARQL query q that
contains the temporal predicate i arrives, it gets processed as follows:

– First, gets parsed as standard SPARQL query

– Second, the query gets translated into datalog, and so as the mappings.
To achieve this, we have defined a set of temporal datalog predicates that
correspond to the temporal predicates and temporal operators defined in
stSPARQL.

– In the next step, the datalog representation of the query q gets translated
into the datalog representation of query q′, by applying rule Ri to q. The
datalog representation of the query q’ now contains the stSPARQL temporal
operator that corresponds to the predicate i.

– Then, the datalog program that is created in the previous step, that con-
tains the transformed query q′ and the mappings (as described in [24], gets
translated into SQL. To achieve this, we have map each datalog temporal
predicate to the corresponding temporal SQL operator.

3.1 Querying the Web Using Ontologies and Mappings

We now describe our framework for querying data sources available on the Web
using SPARQL. Our main goal is to design a framework for posing SPARQL
queries on various data sources on-the-fly, while staying compatible with well-
established Web standards. For this reason, we chose not to extend the SPARQL
query language or a mapping language so that querying Web data on-the-fly is
transparent to the users: they can write SPARQL queries caring only about what
they want to retrieve, rather than where the desired data is stored or how, i.e.,
in what format. We encapsulate this knowledge by extending the query language
SQL with user-defined operators.

The core concept of our approach is to model a data source as a vir-
tual relational table. For this reason, we define a virtual table operator
for each kind of data source. Each virtual table operator has the syntax:
VT ::= vtable(args[][, f ]), where the vector args denotes the arguments that
are given as input to the virtual table operator, while f is optional, denoting the
cache update rate.



Title Suppressed Due to Excessive Length 9

The cache feature is useful in cases where: (i) not all data sources get updated
with the same frequency, (ii) some data sources might not be accessible at the
next query time (e.g., due to API limitations), or (iii) a minimal query execution
time is required, due to a large number of queries, i.e., the frequency of queries is
much higher than the update frequency of data sources. To support these cases,
f indicates the length of the time window (in milliseconds), during which the
retrieved data are temporarily stored. If the virtual table operator with the same
input parameters (args) is invoked twice (or more) before this time window ends,
the cached data will be used, improving query time. If the query is repeated after
the end of the time window, the fresh data is fetched from the data source and
gets stored in the system. If f has a negative value, nothing is stored and the
virtual table operator fetches fresh data every time it is invoked. To support
this functionality, we store meta-data that contain information about when and
where data resulting from a virtual table signature was stored last time.

The result of a virtual table operator is a virtual table with the following
schema: VT[tupleID, cols], where tupleID is the unique identifier of a tuple
and cols are the requested attributes.

We now describe the implementation of the methodology described above.
The system architecture consists of the following components:

• As back-end, it uses the MadIS6 [12] system, an extensible relational
database system built on top of the SQLite7 database, with extensions imple-
mented in Python via the SQLite wrapper APSW8. The SQLite database can
be extended with user-defined operators that can be used as row, aggregate, or
virtual table operators. The APSW SQLite wrapper provides an interface for im-
plementing these operators in an extensible way through Python. Using MadIS,
we define our own operators to create virtual tables and populate them with data
that we retrieve from the Web. To query them, we use MadQL, the MadIS im-
plementation of the extended-SQL language we described above, which contains
the virtual table operators. We implemented a MadIS virtual table operator for
each of the data sources we support (i.e., Twitter, Foursquare, webtables).

• Third party applications are external micro-services that could be invoked
by a virtual table operator in MadIS. For example, in the Twitter use case,
the twitterapi virtual table operator communicates with a Sentiment Analysis
classifier to identify the sentiment of each tweet. In this way, we suggest an
architecture for performing data analysis tasks that eliminates compatibility
issues between the virtual table operator and any data analysis software: the
server can be written in any language or platform, but the client can still use it
as a service.

• The system Ontop9 [11], a state-of-the-art, open-source OBDA system that
supports both R2RML and the OBDA mapping language. Most specifically, we
extended its geospatial extension named Ontop-spatial [4,8,7] in order to have

6 http://madgik.github.io/madis
7 http://www.sqlite.org
8 https://github.com/rogerbinns/apsw
9 https://github.com/ontop/ontop

http://madgik.github.io/madis
http://www.sqlite.org
https://github.com/rogerbinns/apsw
https://github.com/ontop/ontop


10 Konstantina Bereta

geospatial support. To this end, we extended the MadIS JDBC connector so that
it complies with Ontop, while Ontop was extended to use MadIS as a back-end.
The latter modification is the most significant one, enabling Ontop to operate
in a “database-agnostic” manner that supports non-materialized databases and
relies on MadIS as back-end. The reason is that Ontop, like all other OBDA
systems, originally connects only with populated and materialized databases,
using their data for optimization, before a query is actually fired. Instead, our
framework retrieves data only after a query is fired, creating a virtual table
on-the-fly. As a result, no prior knowledge of the data can be used.

We conducted a thorough experimental study to measure the functionality
and performance of our approach in comparison with the state-of-the-art related
work [23]. The results showed that our approach achieves better performance and
is more rich in funtionality than the state-of-the-art.

A more detailed documentation of this work can be found in [5].

4 Conclusions

In the context of this PhD thesis we describe techniques for efficient integra-
tion and querying of geospatial and temporal data. We focus in ontology-based
data access techniques for creating virtual semantic graphs on top of relational
geospatial and temporal databases, avoiding the conversion and materialisation
of original data into RDF, using ontologies and mappings. We introduce the
first geospatial OBDA system and we demonstrate its efficiency, comparing its
performance with state-of-the-art RDF stores. Then, we introduce new tempo-
ral features to the temporal dimension of the data model stRDF and the query
language stSPARQL, in order to facilitate the support of temporal SPARQL
queries in OBDA systems.

The next step was to go beyond relational databases as data sources by
extending the OBDA paradigm with the capability to create virtual RDF graphs
on top of data that can be accessed via Web APIs, HTML tables, etc. We propose
an architecture of a system that implements these techniques and we showcase its
functionality using real-world scenarios. We conduct an experimental evaluation
of the system and we compare our approach with a related approach offering
similar functionality. The outcome of the evaluation proves that our system is
more rich in functionality and also more efficient. Last but not least, we present
real-world applications in which the approaches described in this thesis were
used.

One possible direction for future work could to support distributed
GeoSPARQL processing . A solution into this direction would be to use a dis-
tributed system with geospatial support as back-end, such as SpatialHadoop10,
Hive, GeoSpark11, etc.

Another extension of the work described in this dissertation could be the
further development of the raster support, extending the approaches that we

10 http://spatialhadoop.cs.umn.edu/
11 https://datasystemslab.github.io/GeoSpark/

http://spatialhadoop.cs.umn.edu/
https://datasystemslab.github.io/GeoSpark/


Title Suppressed Due to Excessive Length 11

proposed in this dissertation with more functionalities for raster data manage-
ment, both in terms of representation and querying. For example, GeoSPARQL
could be extended with capabilities based on the ones offered in systems de-
scribed in [14,26,2].

References

1. James F. Allen. Maintaining knowledge about temporal intervals. CACM, 26(11),
1983.

2. Peter Baumann, Andreas Dehmel, Paula Furtado, Roland Ritsch, and Norbert
Widmann. The multidimensional database system rasdaman. In SIGMOD 1998,
Proceedings ACM SIGMOD International Conference on Management of Data,
June 2-4, 1998, Seattle, Washington, USA., pages 575–577, 1998.

3. Konstantina Bereta, Hervé Caumont, Ulrike Daniels, Erwin Goor, Manolis
Koubarakis, Despina-Athanasia Pantazi, George Stamoulis, Sam Ubels, Valentijn
Venus, and Firman Wahyudi. The copernicus app lab project: Easy access to coper-
nicus data. In Advances in Database Technology - 22nd International Conference
on Extending Database Technology, EDBT 2019, Lisbon, Portugal, March 26-29,
2019, pages 501–511, 2019.

4. Konstantina Bereta and Manolis Koubarakis. Ontop of Geospatial Databases. In
Proceedings of the 15th International Semantic Web Conference, 2016.

5. Konstantina Bereta, George Papadakis, and Manolis Koubarakis. Sparqling-up the
web on-the-fly using ontologies and mappings. In Proceedings of the 31st Interna-
tional Workshop on Description Logics co-located with 16th International Confer-
ence on Principles of Knowledge Representation and Reasoning (KR 2018), Tempe,
Arizona, US, October 27th - to - 29th, 2018, 2018.

6. Konstantina Bereta, Panayiotis Smeros, and Manolis Koubarakis. Representation
and Querying of Valid Time of Triples in Linked Geospatial Data. In Extended
Semantic Web Conference 2013, volume 7882, pages 259–274. Springer Berlin Hei-
delberg, 2013.

7. Konstantina Bereta, Guohui Xiao, and Manolis Koubarakis. Ontop-spatial: Ontop
of geospatial databases. J. Web Semant., 58, 2019.

8. Konstantina Bereta, Guohui Xiao, Manolis Koubarakis, Martina Hodrius, Con-
rad Bielski, and Gunter Zeug. Ontop-spatial: Geospatial data integration using
GeoSPARQL-to-SQL translation. In Proceedings of the ISWC 2016 Posters &
Demonstrations Track. Co-located with the 15th International Semantic Web Con-
ference (ISWC 2016), volume 1690 of CEUR Electronic Workshop Proceedings,
2016.

9. Stefan Bruggemann, Konstantina Bereta, Guohui Xiao, and Manolis Koubarakis.
Ontology-Based Data Access for Maritime Security, pages 741–757. Springer In-
ternational Publishing, 2016.

10. Diego Calvanese, Benjamin Cogrel, Sarah Komla-Ebri, Roman Kontchakov, Da-
vide Lanti, Martin Rezk, Mariano Rodriguez-Muro, and Guohui Xiao. Ontop:
Answering SPARQL queries over relational databases. Semantic Web Journal,
8(3):471–487, 2017.

11. Diego Calvanese, Benjamin Cogrel, Sarah Komla-Ebri, Roman Kontchakov, Da-
vide Lanti, Martin Rezk, Mariano Rodriguez-Muro, and Guohui Xiao. Ontop:
Answering SPARQL queries over relational databases. Semantic Web, 8(3):471–
487, 2017.



12 Konstantina Bereta

12. Yannis Chronis, Yannis Foufoulas, Vaggelis Nikolopoulos, and et al. A Relational
Approach to Complex Dataflows. In EDBT/ICDT Workshops, 2016.

13. Open Geospatial Consortium. OGC GeoSPARQL - A geographic query language
for RDF data. OGC Candidate Implementation Standard, 2012.

14. Philippe Cudré-Mauroux, Hideaki Kimura, Kian-Tat Lim, Jennie Rogers, Roman
Simakov, Emad Soroush, Pavel Velikhov, Daniel L. Wang, Magdalena Balazinska,
Jacek Becla, David J. DeWitt, Bobbi Heath, David Maier, Samuel Madden, Jig-
nesh M. Patel, Michael Stonebraker, and Stanley B. Zdonik. A demonstration of
scidb: A science-oriented DBMS. PVLDB, 2(2):1534–1537, 2009.

15. Souripriya Das, Seema Sundara, and Richard Cyganiak. R2rml: Rdb to rdf map-
ping language, 2012. W3C Rec.

16. George Garbis, Kostis Kyzirakos, and Manolis Koubarakis. Geographica: A Bench-
mark for Geospatial RDF stores (long version). volume 8219 of Lecture Notes in
Computer Science, pages 343–359. Springer, 2013.

17. Steven Harris and Andy Seaborne. SPARQL 1.1 Query Language. W3C recom-
mendation, March 2013.

18. John R. Herring. OpenGIS implementation specification for geographic informa-
tion - simple feature access - part 2: SQL option. OpenGIS Implementation Stan-
dard 06-104r4, Open Geospatial Consortium Inc., 2010.

19. Roman Kontchakov, Martin Rezk, Mariano Rodriguez-Muro, Guohui Xiao, and
Michael Zakharyaschev. Answering SPARQL queries over databases under OWL
2 QL entailment regime. In Proc. of International Semantic Web Conference
(ISWC 2014), Lecture Notes in Computer Science. Springer, 2014. (Accepted).

20. Manolis Koubarakis and Kostis Kyzirakos. Modeling and Querying Metadata in
the Semantic Sensor Web: The Model stRDF and the Query Language stSPARQL.
In Lora Aroyo and et al., editors, ESWC, volume 6088 of LNCS, pages 425–439.
Springer, 2010.

21. Kostis Kyzirakos, Manos Karpathiotakis, and Manolis Koubarakis. Strabon: A
Semantic Geospatial DBMS. In Philippe Cudré-Mauroux and et al., editors, ISWC,
volume 7649 of LNCS, pages 295–311. Springer, 2012.

22. Frank Manola and Eric Mille. RDF primer. W3C Recommendation, World
Wide Web Consortium, February 2004. Available at http://www.w3.org/TR/

rdf-primer-20040210/.
23. Matthieu Mosser, Fernando Pieressa, Juan L. Reutter, Adrián Soto, and Domagoj

Vrgoc. Querying apis with SPARQL: language and worst-case optimal algorithms.
In ESWC, pages 639–654, 2018.

24. Mariano Rodŕıguez-Muro and Martin Rezk. Efficient SPARQL-to-SQL with
R2RML mappings. Web Semantics: Science, Services and Agents on the World
Wide Web, 33(1), 2015.

25. Guohui Xiao, Diego Calvanese, Roman Kontchakov, Domenico Lembo, Antonella
Poggi, Riccardo Rosati, and Michael Zakharyaschev. Ontology-based data access:
A survey. In IJCAI-ECAI-18 – July 13-19 2018, Stockholm, Sweden, 2018.

26. Ying Zhang, Martin L. Kersten, and Stefan Manegold. Sciql: array data processing
inside an RDBMS. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, SIGMOD 2013, New York, NY, USA, June 22-27, 2013,
pages 1049–1052, 2013.

http://www.w3.org/TR/rdf-primer-20040210/
http://www.w3.org/TR/rdf-primer-20040210/

	Efficient Management for Geospatial and Temporal Data using Ontology-based Data Access Techniques

