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Abstract. Despite the recent successes in Machine Learning, there re-
main many open challenges. The goal of this thesis is to introduce two
different design paradigms for both batch as well as sequential data. The
thesis initially focuses on the batch scenario, where we consider Deep
Neural Networks. We revisit the current design paradigms of DNNs, aim-
ing to introduce a novel, principled approach for network pruning and
compression based on biologically inspired Local Winner-Takes-All mech-
anism. To this end, we propose an inferential construction for explicitly
inferring the utility of network components in the context of LWTA-
based networks. We employ appropriate arguments from the solid non-
parametric Bayesian framework, namely stick-breaking priors. We derive
efficient training and inference procedures for our model and demonstrate
the capacity of our approach in a supervised classification setting in a
variety of benchmark architectures and datasets. In the second approach,
we consider sequential data, that still remain one of the most challeng-
ing tasks in the Machine Learning community. This work attempts to
offer a principled way of modeling complex sequential data and time-
series in general. To this end, we introduce a variant of rigid HMM ar-
chitectures that constitutes an hierarchical extension; we postulate an
additional latent first-order Markov Chain, allowing the model to alter
the effective temporal dynamics of the conventional observation emit-
ting Markov Chain. In this way, the model can dynamically infer which
past state more strongly affects the current time frame. To increase the
modeling capacity and robustness of the considered approach, we em-
ploy arguments from the Variational Bayesian framework. We demon-
strate the modeling capabilities of the resulting model in the Human
Action Recognition task. We employ benchmark datasets and compare
the model’s performance to similar baseline and state-of-the-art meth-
ods, while examining its ability to model data with missing values.

1 Non-parametric Bayesian Deep Networks with Local
Competition

Deep Neural Networks have been established as state-of-the-art in many applica-
tions and tasks in Machine Learning. However, the currently employed architec-
tures entail million of parameters, many of which are redundant. Not only their
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structure imposes significant computational costs to the considered model, but
additionally contributes to their over-parametrization. This fact renders DNNs
susceptible to overfitting tendencies, undermining the generalization capabilities
of the resulting models. Thus, the Deep Learning community has devoted signif-
icant effort in order to address this particular facet of DNNs and alleviate the
overfitting tendencies of the considered models. Popular examples of such tech-
niques include the weight-decay (ℓ2) regularization and dropout [5]. However,
these approaches are of a limited scope, focusing only on the regularization as-
pect; hence, they effectively train and retain all the weights of the architecture,
without attempting to address any redundancy in the considered representation.

To this end, there are several different approaches that try to address the
overparametrization of DNNs. A popular solution consists in the so-called student-
teacher learning[4], where a teacher network is used to train a smaller student
network. It is apparent that this paradigm suffers from two main drawbacks:
(i) We cannot avoid the computational complexity and overfitting tendencies of
the teacher network and (ii) designing an effective student-teacher approach and
distillation process requires quite the artistry from the side of the practitioners.

As an alternative, researchers have examined the network pruning paradigm
based on appropriate pruning criteria; in most cases, these are imposed on top of
an appropriate regularization technique. In this context, Bayesian Neural Net-
works (BNNs) have been proposed as a full probabilistic paradigm for formulat-
ing DNNs by imposing suitable priors over the network weights. The incorpora-
tion of the Bayesian perspective in DNNs additionally allows for reducing floating
point precision, necessary for representing the network weights. Specifically, the
variance of the inferred weight posterior constitutes a measure of uncertainty in
their estimations; thus the higher the variance, the lower the needed floating-
point precision [7].

On the other hand, even though the currently employed non-linearities, such
as the Rectified Linear Units (ReLUs) constitute a flexible computational tool
for efficiently training DNNs, it is well understood that they do not come with
strong biological plausibility. Indeed, there is an increasing body of evidence that
neurons with similar functional properties are aggregated together and local com-
petition takes place leading to a Local Winner-Takes-All (LWTA) mechanism.
It has been shown that employing this mechanism to neural networks presents
some promising results as automatic gain control, noise suppression and robust-
ness to catastrophic forgetting [17].

This paper draws from these results and attempts to offer a principled way
of designing a deep neural architecture that can intelligently infer the needed
network complexity while compressing its parameters. To this end, we employ
arguments from the mathematically solid nonparametric Bayesian framework in
the context of LWTA-based networks. We derive efficient training and inference
procedures for out approach by relying on the Stochastic Gradient Variational
Bayes (SGVB) method. We evaluate our paradigm using well-known benchmark
datasets and architectures.



1.1 Summary
In this work, we introduce a new design paradigm for designing DNNs, where
the output of each hidden layer is computed via local competition between lin-
ear units. Moreover, we employ appropriate arguments from the nonparametric
Bayesian framework in order to devise a mathematically solid approach that will
allow for adapting the complexity of the architecture in a data-driven way via a
component omission mechanism [14].

Hidden Layers in traditional neural networks contain nonlinear units; each
unit is presented with a linear combination of the inputs obtained via the in-
ner product of the input with a weights matrix and produce the corresponding
output vectors as input to the next layer. In our approach, this mechanism is
replaced by the introduction of LWTA blocks, each comprising a set of com-
peting units. In this case, in order to denote that the input is now presented
to each block and each unit therein, the weights are now organized in a three
dimensional matrix, W ∈ RJ×K×U , where J is the input dimensionality, K are
the number of blocks and U the number of competing units in each block.

Within each block, each linear unit computes its activation; then, the block
selects one winner unit on the basis of a competitive random sampling proce-
dure and sets the rest to zero. This leads us to a sparse layer output that is then
passed to the next layer. Before turning to the competitive random sampling
procedure, we must first introduce our novel component omission mechanism.

To allow for inferring the utility of network components, we adopt concepts
from the non-parametric Bayesian framework. Specifically, we choose to focus
on the utility of the layer connections. To this end, we introduce a binary ma-
trix Z ∈ {0, 1}J×K , where each entry therein denotes if a particular feature j
of the input is presented to a specific k LWTA block. If the entry is equal to
zero, the corresponding set of weights for this specific feature, LWTA block, and
units therein are effectively canceled out from the model. Subsequently, we im-
pose an Indian Buffet Process prior over the binary matrix. IBP constitutes a
probability distribution over infinite binary matrices. By using it as a prior, it
allows for inferring how many components are needed for modeling a given set
of observations, in a way that ensures sparsity in the obtained representations.

For each example n, block k and unit u therein, the expression for the output
yn ∈ RK·U , yields:

[yn]ku = [ξn]ku

J∑
j=1

(wjku · zjk) · [xn]j ∈ R

Turning to the winner sampling procedure within each LWTA block, we postu-
late appropriate latent variables that are driven from the layer input, and exploit
the connection utility information encoded into the inferred binary matrices. The
latent vectors are drawn from a Categorical distribution with a data-driven com-
putation of the involved probabilities:

q([ξn]k) = Categorical

[ξn]k

∣∣∣softmax

 J∑
j=1

[wjku]
U
u=1 · zjk · [xn]j





We impose appropriate priors over all model parameters and seek to infer their
corresponding posteriors. This concludes the formulation of a layer of the pro-
posed Stick-Breaking LWTA (SB-LWTA) model. A graphical representation of
the envisioned rationale is depicted in Fig. 1a.
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(b) Convolutional Variant

In order to accommodate convolutional operations, we consider a variant of
the previous approach. These are of importance when dealing with data of 2D
structure, e.g. images. In order to perform a convolution operation over an input
tensor, in this case, we define a set of kernels, comprising competing feature
maps. Hence, contrary to the grouping of linear units in LWTA blocks, local
competition is now perform among feature maps. That is, each kernel is treated
as an LWTA block, and each layer comprised multiple kernels of competing
feature maps (Fig. 1b).

To train the proposed model, we resort to maximization of the resulting
Evidence Lower Bound (ELBO) expression. To this end, we adopt SGVB com-
bined with (i) the standard reparameterization trick for the postulated Gaussian
weights, (ii) the Gumbel-Softmax relaxation trick [6] for the introduced winning
and utility latent indicator variables; and (iii) the Kumaraswamy reparameteri-
zation trick. In the inference context, we can exploit the two distinct approaches
of our paradigm: (i) Component Omission Mechanism: We can exploit the intro-
duced utility indicator variables to devise a method for assessing the utility of a
network com ponent; this way, we can infer which components are redundant and
can thus be omitted from computations, and (ii) Bit-Compression: By imposing
full Gaussian posteriors over the network weights, we obtain a natural way of
reducing the necessary floating point precision required to represent the data.
Specifically, we can utilize the posterior variances of the weights to measure
their inherent uncertainty. Using this information, we can identify which bits
are significant, while removing those that fluctuate under posterior uncertainty.

1.2 Results and Discussion

We perform experiments for both introduced variants, using different benchmark
architectures and datasets. We assess the predictive performance metric of our



approach as well as the resulting component omission and compression capabili-
ties, compared to state-of-the-art methods. We additionally explore the potency
of the LWTA mechanism compared to the commonly employed nonlinearities.

We first consider the well-known LeNet-300-100 feedforward architecture.
The corresponding comparative results are depicted in Table 1. As we observe,
our method yields competitive classification accuracy, on par with the best per-
forming alternative, while at the same retaining the least number of weights, with
orders of magnitude less bit precision required to represent them. It is notewor-
thy that, even though the models were initialized in the same fashion, with the
same number of weights and active connections, we completely outperform the
competition with a greatly reduced computational footprint. Additionally, in
Table 1 we introduce an additional variant of our model; we replace the LWTA
blocks with ReLU units, while retaining the IBP-based mechanism; the approach
is dubbed SB-ReLU. Using the aforementioned variant, we yield clearly inferior
performance compared to SB-LWTA. The empirical evidence vouch for the po-
tency of the LWTA mechanism compared to conventional nonlinearities, at least
in the way that was introduced in the considered approach.

Table 1: Pruned LeNet 300-100 Architectures.
Architecture Method Error (%) # Weights Bit precision

LeNet
300-100

Original 1.6 235K/30K/1K 23/23/23
StructuredBP [10] 1.7 23, 664/6, 120/450 23/23/23

Sparse-VD [9] 1.92 58, 368/8, 208/720 8/11/14
BC-GHS [7] 1.8 26, 746/1, 204/140 13/11/10

SB-ReLU 1.75 13.698/6.510/730 3/4/11
SB-LWTA (2 units) 1.7 12, 522/6, 114/534 2/3/11
SB-LWTA (4 units) 1.75 23, 328/9, 348/618 2/3/12

We now turn to the convolutional LeNet-5-Caffe architecture. As was the
case with the previous architecture, we train the network from scratch. The
corresponding comparative performance is provided in Table 2. Analogously to
the dense feedforward experiments, in this case, our method requires the least
amount of feature maps while offering better classification accuracy accompa-
nied by higher compression rates with respect to the best considered alternative.
Moving on to a more complex dataset, CIFAR-10, and to the ConvNet convolu-
tional architecture, we implement BC-GNJ and BC-GHS models, as described in
the original paper [7]. The resulting architectures for all methods are presented
in Table 2. Similar to the LeNet-5-Caffe performance, our method still retains
the least number of feature maps, while providing competitive bit precision re-
quirements, nevertheless yielding the best classification accuracy.

Our experiments have provided strong empirical evidence that the careful
combination of the aforementioned approaches, allows for architectures that can
greatly reduce their computational footprint, while at the same time retaining
state-of-the-art predictive performance.



Table 2: Learned Convolutional Architectures.
Architecture Method Error (%) # Feature Maps (Conv. Layers) Bit precision (All Layers)

LeNet-5-Caffe

Original 0.9 25/50 23/23/23/23
StructuredBP [10] 0.86 3/18 23/23/23/23

VIBNet [3] 1.0 7/25 23/23/23/23
Sparse-VD [9] 1.0 14/19 13/10/8/12
BC-GHS [7] 1.0 5/10 10/10/14/13

SB-ReLU 0.9 10/16 8/3/3/11
SB-LWTA-2 0.9 6/6 6/3/3/13
SB-LWTA-4 0.8 8/12 11/4/1/11

ConvNet

Original 17.0 64/64 23 in all layers
BC-GNJ[7] 18.6 54/49 13/8/4/5/12

BC-GHS[7] 17.9 42/52 12/8/5/6/10

SB-LWTA-2 17.5 40/42 11/7/5/4/10

2 Variational Conditional Dependence Hidden Markov
Models for Skeleton-based Action Recognition

There exist two major approaches for modeling sequential data: Recurrent Neu-
ral Networks (RNNs) and Hidden Markov Models (HMMs). HMMs constitute
one of the most fundamental approaches, with a large history in the community.
However, they have nowadays been replaced by their “deep” variants, RNNs and
LSTMs, with successful application in a variety of domains. RNNs improve over
the simplistic assumptions of HMMs; nevertheless, both methods exhibit several
disadvantages.

On the one hand, even though the commonly considered first-order Markov
Chain in a HMM allows for simplicity and low computational complexity, it in-
troduces a significant modeling restriction to the model. More complex temporal
dynamics are ignored, rendering the models practically unusable in real world
scenarios. Moreover, even though the existing higher order variants alleviate this
restriction, the significantly increased computational complexity, prevents their
employment to complex tasks. More flexible temporal dynamics can be modeled
through Hidden Semi Markov Models [21], but as is the case with HMMs, po-
tential non-homogeneous temporal dynamics are ignored. On the other, RNNs
exhibit three main drawbacks, namely: (i) They need more data to train, (ii)
Exploding or Vanishing Gradients, and (iii) Training RNNs is known to be very
slow, e.g., [8].

In this work, we focus on presenting a principled design paradigm for HMM
methods, aiming to sidestep the simplistic or over-complicated HMM assump-
tions by striking a balance between flexibility and complexity. To this end, we
propose a different formulation of HMMs, whereby the dependence on past
frames is dynamically inferred from the data. Specifically, we introduce a hi-
erarchical extension by postulating an additional latent variable layer; therein,
the (time-varying) temporal dependence patterns are treated as latent variables
over which inference is performed. We leverage solid arguments from the Varia-
tional Bayes framework and derive a tractable inference algorithm based on the
forward-backward algorithm. We dub our approach Variational Conditional De-
pendence Hidden Markov Models (VB-CD-HMM). As we experimentally show



using benchmark datasets, our approach yields competitive recognition accuracy
and can effectively handle data with missing values.

2.1 Summary

We revisit the design paradigms for modeling sequential data and introduce
an hierarchical extension to HMMs that is able to capture complex temporal
dependency patterns present in the data. The proposed approach comprises the
postulation of an additional latent variable layer; temporal dependencies are now
treated as latent variables over which inference is performed [15]. In this way, the
dependence of the current frame to previous frames is inferred in a data- driven
fashion. Moreover, we employ arguments from the Variational Bayes framework
and introduce tractable training and inference algorithms by deriving a variant
of the well- known forward- backward algorithm.
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Fig. 2: The hierarchical VB-CD-HMM obtained after imposing appropriate con-
jugate prior distributions for all model parameters.

Let {yt}Tt=1 ∈ RD be the input time-series with T frames and D features. In
the following formulation, we follow the definitions of conventional HMMs. In
HMMs, each observation is associated with a discrete hidden state, and in this
work, we assume that the observation distributions are modeled via finite mix-
ture models. Specifically, let us assume an N -state observation-emitting latent
chain denoted as X = {xt}, xt ∈ [1, . . . , N ], where xt indicates the state from
which, the tth was emitted. For the observation model, we employ finite mixture
models with M -components each, with L = {lt}Tt=1, lt ∈ [1, . . . ,M ] denoting
the mixture component indicators; lt indicates which of the M components, gen-
erated the observation at time t.

The hierarchical model comprises the postulation of an additional layer,
called the dependence-generator layer. The latent data of the model are now
augmented by the temporal dependence indicators Z = {zt}Tt=1, zt ∈ [1, . . . ,K].



The temporal dependence indicators express the temporal dependencies between
the current state at time t and the previous frames t−1, . . . , t−K in the second
layer, the observation emitting chain; K is a pre-defined constant regarding the
number of steps-back that the model can turn to. Thus, according to the value
indicated by zt at time t, we consider different pairwise states (xt, xt−zt). It is
apparent that, in this way, compared to a conventional first order HMM where
we always consider pairwise states (xt, xt−1), the flexibility of the considered
variant is greatly enhanced.

In this work, we employ arguments for the Bayesian framework in order to
increase the capacity and flexibility of the model. To this end, we resort to
approximate inference techniques and specifically to Variational Inference; we
facilitate efficient training and inference procedures by deriving an appropriate
variant of the forward-backward algorithm. We impose appropriate priors over all
model parameters and seek to infer their corresponding posteriors. The resulting
hierarchical Bayesian approach is presented in Fig. 2.

2.2 Results and Discussion

In order to test the modeling capacity of the VB-CD-HMM model, we compare
our approach on action recognition benchmarks with other baseline, as well as,
state-of-the-art methods. To this end, we begin our experimental approach by
examining the recognition accuracy metric for each individual dataset; we then
investigate the ability of the model to handle data with missing values.

For all the considered datasets, we only use skeletal data for training the mod-
els, and we follow the same training-testing splits as suggested by the authors in
the original papers of each dataset. We initially focus on the recognition accuracy

Table 3: Recognition Accuracy (%) for individual dataset experiments.

Model MSRA UTD G3D Penn Avg.
HMM 67.8 82.8 68.1 82.3 75.3
HMM2 80.2 83.1 82.6 84.4 82.6
HSMM 66.3 82.3 77.5 78.9 76.35
LSTM 74.7 77.0 82.2 90.3 81.1
HCRF 70.7 74.2 79.0 86.3 77.6

HDM-PI 70.3 84.4 79.4 89.8 81.0
HDM-PL 80.6 90.2 87.7 91.6 87.5
HDM-BV 82.1 91.4 87.7 90.8 88.0

VB-CD-HMM 82.5 92.7 90.6 92.0 89.45

of VB-CD-HMM, compared to similar benchmark adaptations of conventional
models such as HMMs, HSMMs, and LSTMs; in this set of experiments, we ad-
ditionally consider the recently proposed Hierarchical Dynamic Model (HDM)
[23], where a Bayesian hierarchical extension to Hidden Semi Markov Models is



proposed. Therein, appropriate hierarchical priors are imposed in such a way as
to enable the model to capture the significant temporal and spatial variations
present in the human action recognition task. In this set of experiments we focus
on the recognition accuracy of the proposed model on individual datasets, as well
as, the average predictive accuracy on all the considered datasets. The compar-
ative results can be found in Table 3. We begin with the MSRA dataset, where
compared to the baseline models such as HMMs, HSMMs, HCRFs and LSTMs,
VB-CD-HMM outperforms them by a large margin. Specifically, over the first
three considered methods, we observe an average improvement in recognition
accuracy of 12.9%. The considered HDM variants consistently improve over the
considered baseline models. However they fall short compared to our VB-CD-
HMM model. The best performing variant is HDM-BV, where the recognition
accuracy reaches 82.1%, inferior to our approach which yields 82.5%. The same
behavior is consistent across all the considered datasets. Averaging the resulting
classification accuracy over all the considered datasets, leads to an overall recog-
nition accuracy of 89.45%, outperforming the baseline HMM by 14.15% and the
more recent and complex HDM model by 1.45%. The obtained empirical evi-
dence vouch for the efficacy of employing a full VB approach to the hierarchical
extension, contrary to just using VB during inference. Moreover, the experimen-
tal results suggest, that the postulated first layer process can sufficiently cope
with the complexity of the temporal patterns of the considered task, without
requiring the introduction of any additional estimation techniques, such as Em-
pirical Bayes[16]. Lastly, our proposed approach consistently and significantly
outperforms a second-order HMM (HMM2) evaluated under the same experi-
mental and modeling setup.

To thoroughly assess the capacity of the approach, we now turn to the com-
parison of the resulting recognition accuracy when compared to state-of-the-art
methods for each individual dataset. The corresponding results are presented
in Table 4. Therein, we observe that our approach yields significant accuracy
improvements over the other considered methods on the UTD dataset; the same
behavior is evident in the Penn dataset. For the remaining datasets, VB-CD-
HMM outperforms LRBM [12], but R3DG [18] performs better. The existent
performance gap can be explained via the sophisticated feature engineering and
ensemble of different complex approaches in the considered method. In contrast,
in our work, we presented a simple but yet powerful hierarchical extension to
the conventional HMM approaches, while at the same time utilizing very simple
features, namely the joints locations and motions.

Since generative models, explicitly model the distribution of the data, they
come with the additional benefit of robustness to missing values. This property is
of great significance, especially in the human action recognition task, where the
data may be corrupted due to hardware failure or camera occlusion. Especially,
in our case, where we employ only skeletal data, robustness to missing values is
extremely crucial. Since the considered model constitutes an hierarchical exten-
sion to the generative HMM model, it is itself a generative model. To assess the
capacity of the proposed model, we construct an experimental setting similar



Table 4: Recognition accuracy for all the considered datasets compared to alter-
native state-of-the-art methods.

Dataset Method Acc. %

MSRA
AS[13] 83.5
AL[19] 88.2
VB-CD-HMM 82.5

UTD

Fusion [2] 79.1
DMM [1] 84.1
CNN [20] 85.8
VB-CD-HMM 92.7

G3D
LRBM [12] 90.5
R3DG [18] 91.1
VB-CD-HMM 90.6

Penn
Actemes[22] 86.5
AOG [11] 84.8
VB-CD-HMM 92.0

Table 5: Recognition Accuracy (%) with missing values. Accuracies for R3DG
[18], DLSTM [24] and HDM [23] were taken from the latter.

Dataset UTD MSRA G3D
Missing Portion 10% 30% 50% 10% 30% 50% 10% 30% 50%

M
od

el

R3DG [18] 81.5 74.0 72.0 78.0 72.0 70.0 87.0 86.0 83.0
DLSTM [24] 70.5 66.0 63.0 68.0 63.0 61.0 81.0 76.0 73.0
HDM [23] 91.0 90.5 90.0 80.5 78.0 76.0 90.0 89.0 88.0
VB-CD-HMM 92.55 91.6 90.2 81.7 80.1 79.1 90.2 89.3 88.5

to [23], where for three of the four datasets, we randomly omit a portion of the
observations. Specifically, we utilize the UTD, MSRA and G3D datasets, and we
consider three different configurations where we randomly omit 10%, 30% and
50% of the observations for both the train and test data. The recognition rates
are presented in Table 5. As is clearly shown, our method clearly outperforms
the R3DG [18] and DLSTM [24] methods by a large margin. Turning to the more
relative HDM approach [23], we observe the same pattern. It is noteworthy that,
our VB-CD-HMM model not only exhibits the higher recognition accuracy in
each setting and dataset, but it additionally exhibits the smallest decrease in
accuracy relative to the increase of missing values.

3 Conclusions

In this thesis, we considered two of the most popular paradigms in Machine
Learning, Deep Neural Networks and Hidden Markov Models, aiming to in-
troduce principled design paradigms to tackle the inherent problems of their



conventional formulations.
In the former, our work focused on one of the most significant problems of

deep architectures, namely, their complexity, and specifically their overparam-
eterization. We devised a principled mechanism to explicitly model and infer
component utility in a data-driven way. Through inference, the model can learn
which components are of utility to the model and which can be safely omit-
ted from computations, intelligently adapting its structure to accommodate the
complexity of the data. Moreover, our approach also examined the potency of a
different activation function, assessing the overall performance of the resulting
architectures. Our extensive experimental results vouch for the potency of the
LWTA approach compared to currently employed activations. The introduced
component omission mechanism allows for retaining the least number of weights
with the least bit precision necessary to represent them, while at the time provid-
ing comparative performance, compared to related state-of-the-art approaches.

Turning to the HMM paradigm, we aimed to remove the restriction of the
first-order Markovian assumption of conventional approaches, while avoiding
the introduced complexity of higher-order methods. To this end, in this work,
we introduced an hierarchical extension by postulating an additional latent chain
that effectively determined the temporal dependencies of a conventional latent
Markov Chain. To this end, we treated the temporal dependencies as random
variables over which inference was performed. To facilitate efficient training and
inference procedures, we derived a variant of the well-known backward algorithm
used in conventional HMMs. The considered model was additionally augmented
by employing arguments from the solid Bayesian framework. We evaluated our
approach in one of the most challenging tasks in the Computer Vision commu-
nity, namely, Human Action Recognition. The experimental results vouch for
the efficacy of our approach. The model outperforms all baseline models, pro-
vides competitive recognition accuracy when compared to the state-of-the-art
methods and can effectively model data with missing values.
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