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Abstract. Internet of Things is one of the most promising paradigms in
the current decade characterized by the use of smart and self-configured
objects, like sensors, actuators, wearables etc., that are connected to a
network and exchange data by sensing, reacting to events, and interact-
ing with the environment. In this new dynamic landscape, it is necessary
to have an adequate architecture that can integrate heterogeneous in-
formation streams and provide services with an acceptable quality to
the users. The realization of an IoT framework needs to take into ac-
count many constraints related to the device (power consumption, net-
work processing, battery lifetime etc.), to the stochastic nature of the
underlying network (delay, bandwidth utilization, latency ) and to the
middleware overlay that is necessary to fuse big volumes of information
streams and deliver a service to the user. This thesis proposes the de-
sign of a resource management framework which can monitor with no
prior knowledge information streams produced by IoT devices, can pre-
dict changes with online mechanisms that can disrupt the performance
of the IoT framework and can take actions to retain acceptable Quality
Of Service while trying to save resources. The online, time optimized
and distributed decision making models are based on Optimal Stopping
Theory and Change Detection Theory applied on Edge, Communication
and Middleware Layers. The findings of such decision making models
are promising and solidly supportive to a vast spectrum of real-time
and latency-sensitive applications with QoS requirements in [oT envi-
ronments.
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1 Dissertation Summary

Internet of Things (IoT) is one of the most promising paradigms nowadays char-
acterized by the use of smart and self-configured objects, like sensors, actuators,
wearables etc, that are connected to a network and exchange data by sensing,
reacting to events, and interacting with the environment. The history of the
IoT can be traced in the area of Ubiquitous computing and Wireless Sensor
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Networks (WSNs). Mark Weiser proposed the idea of a smart environment: ”a
physical world that is richly and invisibly interwoven with sensors, actuators,
displays, and computational elements, embedded seamlessly in the everyday ob-
jects of our lives, and connected through a continuous network”. This idea is
explored in the area of WSNs, where the goal is to build a system of many cheap
computational components, called sensor nodes, wirelessly connected and jointly
working towards a common goal. Sensor nodes have specific and, usually, small
size, weight and cost. Going a step further and with the technological evolution,
new physical devices with enhanced characteristics at both hardware and soft-
ware parts are introduced daily, e.g. smartphones, wearables, unmanned devices
etc, extending WSN paradigm to a "network”, i.e. IoT, where every physical
device is connected to the Internet ready to transfer data without requiring
human-to-human or human-to-computer interaction. Especially robotic devices
take part in IoT as long as they carry sensing equipment and on-board computing
elements. IoT embodies a vision of merging heterogeneous objects while utiliz-
ing the Internet as a backbone of communication to establish interaction among
physical and virtual entities. These seamless interactions among heterogeneous
objects enable ubiquitous and pervasive applications. Most of these applications
pose many challenges due to constrained resources in these miniature and unat-
tended objects.
The technical challenges of the IoT can be identified in several areas:

— Heterogeneity: Connecting trillions of devices in the same network is not
an easy task. The heterogeneity of the involved devices makes it even more
difficult, since many different physical interconnections and system archi-
tectures can be expected. These differences can cause problems to certain
communications.

— Constrained resources: A typical battery-operated IoT device possesses
storage, processing, bandwidth, and energy as its resources. Since these re-
sources are limited and the battery replacement is not feasible in many cases,
therefore, various energy-efficient lightweight algorithms and protocols shall
be being implemented to store, process and transfer the data as per appli-
cation requirements.

— Interoperability and integration: The IoT is built by many distinct ven-
dors, using various technologies. Their seamless integration can only be pos-
sible if IoT systems are built on top of open standards. There may be multiple
standards for the same areas (e.g. different wireless networking standards),
but interoperability between them has to be established.

— Quality of Service: With the advancements in embedded devices, the pro-
cessing power of IoT devices is increasing day by day, but this results in
increased energy consumption. To overcome that, IoT devices can rely on
more powerful devices or servers for processing of data, but this introduces
a delay in data processing and increases network delay and cost.

— Computational and storage complexity: The devices that comprise the
ToT generate massive amounts of data. These data can be continuous or in
bursts, and be in structured or unstructured form. In order to extract the
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most from these data, they have to be transported, stored and analyzed.
These operations put enormous pressure on networking, storage and compu-
tational infrastructure.

— Security, Trust and Privacy: The penetration of the IoT in daily lives
emphasizes the need of proper secure solutions. The large number of devices
involved makes the design of a completely secure system difficult, as there
are many points of potential attack. Then, any solutions have to be portable
to a wide set of devices, despite their intrinsic differences.

This thesis proposes the design of a resource management architecture that
addresses the challenges of Heterogeneity, Quality of service, Resource con-
straints and Computational complexity applied on the Edge, Communication
and Middleware layer. The Edge Layer is referred to the device and the compu-
tational complexity of different tasks. One daily energy demanding task in IoT
is multimedia streaming, which causes the energy drainage to network resources
and lifetime. Therefore efficient compressing methods are needed in order to min-
imize the consuming power but without harming the content of the distributed
data. The Communication layer is based on wireless network technologies in
order to enable interactions between various heterogeneous devices and infor-
mation streams. At this layer information streams produced by heterogeneous
sources are gathered in real time while taking into account the rational use of
IoT devices. This mere data need to be combined in order to extract knowledge.
At Middleware layer distributed data streaming solutions are targeted because
they are extensively used to manage the big data flows of generated information
streams by IoT devices. It is necessary these platforms to support reliable and
timely communication despite poor performance of underlying units like lossy
channels and failed components. At this these we design and implement online
decision making models based on Optimal Stopping Theory in order to monitor
the performance of units in different layers and predict disruptive changes. For
example in edge layer during the multimedia compressing task a change can be
defined as a scene change during the transmission of a multimedia sequence or an
unknown object shown suddenly in the frame; a change in communication layer
can be defined as a network blind spot of communication link during a flight
of a drone in an unknown area. Changes trigger actions like the reconfiguration
of the input system at Resource management layer. The main challenge is with
no prior knowledge to monitor, predict changes and proactively act to sustain
the continuous performance of a task efficiently without the energy drain of IoT
devices.

At the first part we include our study of a content driven model applied to in-
frastructures with restricted resources like Wireless Sensor Multimedia Networks
(WSMNSs) in order to support multimedia application in such infrastructures
[3]. Currently WSMNs are attracting significant attention due to the variety of
applications in which can be applied such as traffic congestion, environmental
habitat patient monitoring, etc. Although providing better quality for images
and videos is necessary, it shortens the network lifetime as the energy battery
operated sources are rapidly drained. Going inside the device, we propose a dy-
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namic video encoding model that detects scene changes and tunes the synthesis
of MPEG Group of Pictures (GOP) to meet Quality of Service objectives, i.e.
transmit video sequences in acceptable quality, with a rational use of the IoT
resources. The decision making process is based on Optimal Stopping Theory
decision rule for the conclusion of the GOP in the encoder and the transmission
of intracoded frames. We have used an MPEG-2 simulator. MPEG-2 simulators
is enhanced with additional functions in order to support the creation of GOPs
with dynamic size based on an OST rule.

The second part of the thesis presents a study of performance changes in com-
munication links between IoT devices. The idea behind this research is the effi-
cient monitor and control of unmanned devices operating in critical missions like
natural disasters. We propose a real-time control mechanism to adapt to changes
in network quality by dynamically pausing control telemetry and control mes-
sages based on optimal sequential decision making rules named as TOPCP-DRP
[4] [2]. This is expected to ensure the trouble-free delivery of critical information
subject to the dynamic network status that unmanned devices encounter while
dispatching a certain mission. Our rationale is that should the network be per-
forming properly, then the transmission control can be ‘relaxed’ to exploit the
available resources in the resource-constrained IoT device. Our model introduces
two sequential optimal stopping time decision making mechanisms based on the
Change Detection theory (TOCP) and an application-specific discounted reward
process (DRP).

At the final part we study the performance of a distributed message plat-
form implemented as a midleware in an IoT system. The huge amount of data
generated by sensor-instrumented objects of the real world in an IoT environ-
ment impose a great demand on processing and storage to transform the data
into useful information or services. Some applications can be latency sensitive,
while other applications can require complex processing including historical data
and time series analysis. Therefore, considering the typical resource constraints
of IoT devices, it is difficult to envision a real world IoT ecosystem without
including a cloud platform or at least a distributed data streaming platforms.
Distributed data streaming solutions manage big data flows of relevant data
to/from devices, services and micro-services and are critical centerpiece of IoT
deployments. These platforms are necessary in IoT infrastructures to process
such enormous volumes of data against resource constrained IoT devices. The
key challenges arise when supporting reliable and timely communication over
constrained networks (e.g. due to lossy channels and failed components). To
overcome these challenges, we propose a stochastic optimization framework of
on-line control unit applied in the Publish/Subscribe of middleware data ex-
change platform, in our case Apache Kafka, adaptive to changes in performance
of the studied platform [5]. We enhance our messaging distribution platform by
applying prioritization policy of different types of messages when key perfor-
mance indicators change. The optimality of the proposed mechanism is achieved
by applying optimal delivery decision making policy in different priority queues.
Optimal delivery decisions involves whether a consumer/producer in the device
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edge shall pause the pull/push requests in order not to overload a saturated
message bus, to cause synchronization issues or to risk to completely lose the
messages.

2 Results and Discussion

2.1 Optimal Stopping Theory applied on Time-optimized
Grouping-of-Pictures

The performance metrics of the proposed encoder [3] with dynamic grouping of
pictures of GOPs adapted to stream behavior are i) the produced error of the
encoding process - SATD and ii) the size of generated video stream in bits. The
dynamic grouping of pictures method is compared with a classic fixed-length
version of an MPEG-2 encoder which creates a GOP with one I frame and then
adds a constant number of P frames e.g. IPPPPPPPPPP. In our case the length
of P frames is equal to 10. The pool of videos is downloaded from [1]. Every
video was examined in a sequential stream of 100 frames and can be charac-
terized as slow, medum and fast motion video. We use the abbreviation DGPE
describing the dynamic grouping of pictures encoder for the gamma distribution
and NDGPE describing the normal distribution.

[ Video [DGPEGops|[NDGPEGops| DGPEsizc| CEsize [INDGPEsi-.||

bridge 8 7 832477 | 876182 841583
waterfall 2 3 1499705 (1642998 1500144
hall 9 15 1019986 [1032109| 1098023
container 15 11 2158422 (2017824| 2084643
foreman 6 9 2705621 |2819314| 2847462
football 27 13 6608428 6510336 6288473

Table 1: Size of bitstreams transmitted in network

The classic encoder (CE) created 10 fixed length GOPs. The number of
GOPS created by DGPE and NDGPE are depicted in table 1. In the same
table we compare the total size transmitted for each video (inbits) from the
CE and DGPE encoders. We can notice that in slow motion videos the GOP
size is extended in order to avoid unnecessary transmissions of I frames. For
example in the waterfall video the number of GOPs is reduced to 2 and 3 per 60
frames in DGPE and DGPE respectively. In contrast in fast motion video the
GOPs created are increased while the size of the generated bitstream stays below
the generated bitstream of CE in average. It can be noticed that the volume
transmitted in most of the cases from dynamic encoder is smaller than classic
encoder. This is expected as fixed encoders are not content-driven and lead to
waste of bits and resources. By comparing the dynamic encoders, we may notice
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that DGPE is more "sensitive” in fast-motion videos by capturing more scene
changes than DGPE while DGPE shows tolerance to the medium motion videos.
In addition, through Figures 1, 2, 3 and 4 we provide a comparison overview of

——CE
——DGPE
——NDGPE|

SATD
8

Fig. 1: SATD between classic approach and OST- football video

SATD measured between CE and DGPE. In Figure 1 it is observed that the
error values coming from CE are higher than the dynamic encoders DGPE and
NDGPE. The median value of SATD corresponds to 107.4 for CE. The median
value of DGPE is 27.56 and 23.52 of NDGPE. The fewer GOPs created by
truncated normal encoder also corresponds to a reduction of 4% in the total
transmitted volume of bits as shown in table 1. In Figure 2, DGPE has the best

Waterfall Video
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Fig.2: SATD between classic approach and OST - waterfall video

video stream performance. The error remains close to the zero values. The first
GOP is based on initial mean values of & and 8 and the next GOPs are based
on the refitting of the design values to the incoming data distribution. NGOE
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needs time to fit u and o values to the slow motion video distribution. The mean
and std values of the output error are the following: DGPE{0.0394,0.2177} and
NDGPE{0.1625,0.2934}.

Bridge Video
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Fig. 3: SATD between classic approach and OST - bridge video

Hall of Objects Video
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Fig.4: SATD between classic approach and OST - hall video

From the results in Figures 3 and 4 the encoder which uses normal distri-
bution to compute t* performs better than the other assessed encoders. We can
notice that NDGPE needs more time to be adaptive to the changes of the in-
coming distribution but then SATD error values generated between the frames
in the GOP created correspond to small values. For example at hall video the
error values after the first 30 frames are quite low when compared with DGPE
and CE methods.

From the description above, it shown that the dynamic encoders perform
better than the fixed length encoder. The notion of adoption to video content
is important as I frames are depended on scene changes and thus the encoding
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efficiency suffers from the error drifting on video transmission. The NDGPE
shows better performance but a number of training incoming frames are required
to fit the data distribution. If video streaming is quite short then the gamma-
based encoder DGPE is the better candidate.

2.2 Real-time stochastic control mechanism adaptive to changes in
network quality based on OST making rules.

We report the experimental evaluation of our framework and mechanisms to ex-
amine their performance. The unmanned ground vehicles (UGV) and the ground
control station(GCS) are part of the Road-, Air- and Water based Future In-
ternet Experimentation (RAWFIE) platform, which offers an experimentation
framework for interconnecting numerous testbeds over which remote experimen-
tation can be realized. Our TOCP-DRP [2] optimal mechanisms extended the
functionalities of RAWFIE and can be applied to any mobile IoT device, i.e.
aerial, ground and sea surface vehicles. The used UGV in our experiments of-
fers the convenience to make multiple repetitions of the same experiment in the
campus of the University of Athens, Greece, unaffected from weather conditions
and with real users.

The UGV was used in two real case applications: (1) scanning search for a
specific sensor value or a detection of an event designed by a user (mission 1-M1)
and (2) exhaustive scan of a room (mission 2-M2). In both missions, the user
creates a path and the UGV should follow the way-points in order to reach the
final destination. The tested area was an amphitheater of the Department of
Informatics & Telecommunications of the University of Athens and a corridor
outside. During the execution of the experiments, the area was used from stu-
dents and staff members that are moving around and their mobile devices are
connected to the same WiFi network.

We performed 100 runs of 10 mins duration each, where each run involves
sampling for more than N = 100 observations for every sensor integrated on
UGYV. The comparative assessment is based on four different policies of decision
making: (i) the no-policy model, (i) the heuristic threshold-based model, in
which the transmission of messages is paused when Quality Network Indicator
(QNTI) falls below a threshold, (iii) TOCP model based on [4], which applies
a change detection policy triggering the ‘pause’ mode operation (the passive
mode lasts for Th and then it is activated again) and (iv) the hybrid TOCP-
DRP model applied on both UGV and GCS. The performance metrics are QNI
measured, Packet Error Rate (PER), based on packets sent and packets lost,
and the end-to-end message latency. Figure 5 plots the QNI performance of the
four policies. We can observe that in mission M1, two areas of poor connectivity
exist in time-steps [35-45] and [75-90]. The no-policy, the threshold-based policy
and TOCP policy reach QNI values less than 50%, while our TOCP-DRP policy
has a mean value close to 68%. In addition, for N > 60 the TOCP-DRP is more
intolerant to network changes with mean values around [70-85].

The PER maximum values are for all the policies: {no — policy, threshold —
based policy, TOCP, and TOCP — DRP} are {25,45, 15,10}, respectively, with



Multi-layer IoT Resource Management 9

Nt

100

aw

Fig.5: The QNI for all the compared policies regarding the mission M1: Explo-
ration of a Path.

TOCP-DRP achieving the minimum PER, i.e., we obtain up to 20% less PER
compared with the other policies. The TOCP-DRP has better performance than
the TOCP policy because TOCP overviews network data only in active mode
and TOCP-DRP monitors QNI in both active and passive mode. The deactiva-
tion of passive mode in TOCP happens when the threshold is reached and this
means that the algorithm is triggered in random time-steps independently of
the network status. This is the reason for observing relatively small PER values
every 50 steps when the algorithm recognizes a change detection.

Figure 6 shows the QNI performance of the four comparison policies for
scanning missions. The M2 mission is performed indoors where areas of low
connectivity and objects exist as obstacles to the UGV. The QNI has greater
fluctuation in this mission relative to the M1 mission. Our TOCP-DRP mecha-
nisms from the early beginning of mission M2, where UGV is positioned in one
random corner of an amphitheater, outperforms the other policies. The average
values of QNI for all policies: {no — policy, threshold — based policy, TOCP,
and TOCP — DRP} are {68.4446,70.8197,65.8525,76.3498}, respectively. The
performance of the PER is similar to the M1 mission. The PER is minimized
in our TOCP-DRP policy, where the maximum value is 10% in observations. In
the remaining policies, the PER achieve values between 20% and 30% .

We plot the latency of the no-policy and our TOCP-DRP policy in Figure
7a(a) and Figure 7a(b) for the missions M1 and M2, respectively. The TOCP-
DRP policy is considered more efficient than the no-policy for all the observations
in both missions. In particular, in M1 we can measure 24% less end-to-end mes-
sage latency compared to the original no-policy decision making of UGV. More-
over, the TOCP-DRP policy achieves systematically a message latency value
which is close to 9% less of the original message latency. We can conclude that



10 Kyriaki Panagidi

Fig. 6: The QNI for all the compared policies regarding the mission M2: Scanning
of an unknown Area.

the double hybrid optimal stopping model in the two phases of the network,
i.e., active and passive, based on the network assessment monitoring results to
missions with low end-to-end latency and low expected PER.

Fig.7: The latency (ms) measured during the no-policy and the TOCP-DRP
policy in mission M1 (a) and mission M2 (b).

The experimental performance evaluation and comparison assessment showed
the successful delivery of messages in poor network conditions and the moderate
production of messages so as not to burden an already saturated network.

2.3 Time-optimized prioritization of Kafka Message Scheduling for
Unmanned Vehicles in IoT networks

To perform experimental evaluation in [5] two kinds of Apache Kafka clients were
tested in both good and saturated network performance conditions. The first set
(no-policy) of producers and consumers were simple Java clients producing and
consuming constantly messages unaware of the network conditions to measure
the performance of a non-priority Apache Kafka installation. A pair of producers
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and consumers were deployed in the cloud emulating a service that can be in the
same datacenter with the Apache Kafka thus having a small delay by requesting
or transmitting messages to the broker. Another pair of producer/consumer was
placed on an edge device that was vulnerable to network conditions. Both pro-
ducers and consumers were sending and receiving messages equally from all the
topics without distinguishing the ones with high or low priority. In the opposite
scenario (DMP), a pair of enhanced clients aware of the network conditions were
installed on the edge device to measure the performance of priority queues. The
Key Performance indicators (KPIs) performance of the distributed message bus
was measured as the affine combination of the round trip time (RTT) and the
Packet loss.

We have used a unmanned aerial vehicle (UAV) simulator and the role of
control station was handled by a fixed server. UAV simulator and GCS are part
of the Road-, Air- and Water-based Future Internet Experimentation (RAWFIE)
! platform which offers a framework for interconnecting numerous testbeds over
which remote experimentation can be realized. We performed 100 simulation
runs with duration 10 minutes. In each second 2000 messages were produced
and distributed in the message platform for each priority queue.

4 0
0 100 20 0 400 500 600 700 800 900 0 10 20 0 40 500 60 700 800 900
Timestep t Timestep t

(a) b

Fig. 8: Decision making between states in S,, to Ss; and then to S,.

Figures 8a and 8b plot the packet loss measured in all the priority queues
from Normal Performance State (S,,) to saturated state (Ss) and then back to
(S»). In both Low and High priority queues the DMP policy outperforms against
no-policy. Especially in the High priority queue, in which essential information is
exchanged for the user, the packet loss is less than 10% while in the no-policy the
mean value of the packet loss is in range [25%, 30%]. The small improvement for
DMP policy in the Low priority queue can be explained from the brokers’ side.
Brokers in DMP handle less ”bursts” of messages in total that cannot handle
due to bad network performance. The latency issues is more evident in Figures
9a and 9b. Applying the DMP decision making model the average value of delay
in the messages successfully transmitted in Kafka message bus in saturated state
S is between for High Priority Queue [25 — 45] ms and for Low Priority Queue

b www.rawfie.eu
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Fig.9: Delay in two priority queues between states in S,, to Ss and then to S,,.

between [45, 60] ms. This is not the use case for the non policy model where the
delay metrics is twice the delay of DMP. The performance evaluation showed the
successful delivery of messages in poor performance conditions and the moderate
production of messages of High Priority messages so as not to burden an already
saturated queue which leads to loose completely the messages.

3 Conclusions

In this thesis decision making models were investigated which can monitor with
no prior knowledge information streams produced by IoT devices, can predict
changes with online mechanisms that can disrupt the performance of the IoT
framework and can take actions to retain acceptable Quality Of Service while
trying to save resources. The online, time optimized and distributed decision
making models are based on Optimal Stopping Theory and Change Detection
Theory appied applied on the Edge, Communication and Middleware layer of a
multi-layer resource management architecture.
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