Cube-Lifecycle Management and Applications

Konstantinos Morfonios*

National and Kapodistrian University of Athens, Department of Informatics and
Telecommunications, University Campus, 15784 Athens, Greece
kmorfo@di.uoa.gr

Abstract. A common operation involved with the majority of algo-
rithms relevant to On-Line Analytical Processing is aggregation, which
can be extremely time-consuming if applied over large datasets. To over-
come this drawback, scientists have proposed the precomputation and
materialization of a large volume of aggregated data into a structure
called data cube. Nevertheless, the construction and usage of the data
cube itself has been found very demanding in terms of computational and
storage resources. In the thesis summarized here [1] (hereafter called the
thesis), we study this problem in depth and propose comprehensive suites
of scalable algorithms that perform efficient cube construction, storage,
query answering, incremental updating, indexing, and caching. Our ex-
tensive experimental evaluation indicates that our solutions are viable
even when applied over very large datasets with arbitrary hierarchies.
Some key points in our work include the introduction of a novel storage
scheme for cubes that is based on the use of row-id references, a new
external partitioning algorithm, an efficient construction plan, and the
use of on-demand approaches for processes that are too expensive to per-
form in a given window of time. A unique property of all our algorithms
is their compatibility with the relational model, which makes them easy
to incorporate into existing relational servers. Finally, as an application
in data mining, we study the usage of aggregate queries for solving the
problems of feature selection and classification and propose a disk-based,
lazy, and accurate solution, which exhibits great potentials in a broad
range of applications.

1 Introduction

Modern data analysis “mines” knowledge from data stored in database systems
discovering trends useful for decision making. To achieve such knowledge discov-
ery, analysts pose complex queries that extensively use aggregation in order to
group together “similarly behaving tuples”. The response time of such queries
over extremely large fact tables in modern data warehouses can be prohibitive.
This inspired Gray et al. [2] to propose the implementation of the data cube.
Implementation of the data cube is one of the most important, albeit compu-
tationally expensive, processes in On-Line Analytical Processing (OLAP). Tt

* Dissertation Advisor:Yannis Ioannidis, Professor

involves the computation and storage of the results of aggregate queries group-
ing on all possible dimension-attribute combinations over a fact table in a data
warehouse. Such precomputation and materialization of (parts of) the cube is
critical for improving the response time of OLAP queries and of operators such
as roll-up, drill-down, slice-and-dice, and pivot, which use aggregation exten-
sively [2]. Materializing the entire cube is ideal for fast access to aggregated data
but may pose considerable costs in computation and maintenance time, as well
as in storage space.

In order to overcome this problem and balance the tradeoff between query-
response times and cube-resource requirements, implementation of the complete
data cube has been studied using various data structures to construct and store
the cube. In general, the data-cube implementation algorithms that have been
proposed in the literature can be partitioned into four main categories, depend-
ing on the format they use in order to compute and store a data cube. On
the one hand, Relational-OLAP (ROLAP) [2-5] and Multidimensional-OLAP
(MOLAP) [6] methods use materialized views and multidimensional arrays, re-
spectively, focusing mainly on the efficient sharing of computational costs (like
sorting or hashing) during cube construction. On the other hand, Graph-Based
approaches [7, 8] exploit specialized graphs (that usually take the form of tree-
like data structures) in order to compute and store cubes more efficiently. Finally,
Approximation-Based methods [9, 10] exploit various in-memory representations
(like histograms), borrowed mainly from statistics. In this thesis, we focus on
ROLAP methods and do not further study methods that belong to the other
categories for the following reasons:

— MOLAP methods are poor performers when data is sparse, which is the case
in most real-life applications. Although challenged by some, this has been
observed by many researchers [3,4].

— Graph-Based methods appear to have superior performance for cube con-
struction and storage, but are currently not supported by any widely used
product. Hence, they require nontrivial implementation effort, mainly due
to the use of specialized data structures and algorithms.

— Approximation-Based methods generate and store approximate results, which
are much more difficult to manage at run time compared to precise results
generated by ROLAP methods.

As we show in this thesis, existing ROLAP methods that implement data
cubes focus mainly on construction and storage of flat cubes (i.e., cubes con-
structed over flat datasets). The lifecycle of a data cube, however, does not
involve (off-line) construction and storage only, but also query answering and
incremental maintenance. Moreover, real-world datasets are not always “flat”
but are usually organized in hierarchies, whose nature introduces several com-
plications into all phases of the cube lifecycle, making existing techniques essen-
tially inapplicable in a significant number of real-world applications. To overcome
these problems, in this thesis, we develop comprehensive ROLAP solutions that
address efficiently all functionality in the lifecycle of a cube and can be imple-
mented easily over existing relational servers. They are families of algorithms

developed around novel, purely-ROLAP construction methods that provide fast
computation of a fully-materialized cube in compressed form, are incrementally
updateable, and exhibit fast query-response times that can be improved by low-
cost indexing and caching, even when dealing with very large datasets with
arbitrary hierarchies. The efficiency of our methods is demonstrated through
comprehensive experiments on both synthetic and real-world datasets, whose
results have shown great promise for the performance and scalability potential
of the proposed techniques, with respect to both the size and dimensionality of
the fact table.

The rest of this paper is organized as follows: In Section 2, we provide a
detailed description of the data-cube implementation problem, focusing mainly
on ROLAP techniques, and define some basic terminology that we use through-
out this paper. Then, in Section 3, we summarize the main contributions of the
thesis. Finally, we conclude in Section 4 and describe the directions of our future
work.

A B l_\I
2 51
E] 70
el i
S N N)
4 3 1 0 A M
[3 2 90 J 30
{a)Fact Tahle R 1 '-4111'
T
g 90
(b} B’s Cube

Fig. 1. Fact table R; and its data cube

2 Problem Description

Consider a fact table Ry (Figure 1la) consisting of three dimensions (A, B, C)
and one measure M. Figure 1b illustrates the corresponding cube. Each view
that belongs to the cube (also called cube node hereafter) materializes a specific
group-by query as shown in Figure 1b. Clearly, assuming that the data in the
fact table is flat, i.e., that it is not organized in hierarchies, if D is the number
of dimensions of a fact table, the number of all cube nodes is 2. (The situation
becomes even more challenging in the presence of hierarchies.) The factor 2P

implies that the cube size is exponentially larger with respect to D than the size
of the original data (in the worst case). In typical applications, this is in the order
of gigabytes, so development of efficient data-cube implementation algorithms is
extremely critical.

A common representation of the data cube that captures the computa-
tional dependencies among different group-by queries is the cube lattice [11].
Let “grouping attributes” be the fields of a table that participate in the group-
by part of a query. All group-bys computed for the data-cube construction can
be partially ordered in a lattice structure [11], which is a directed acyclic graph
(DAG), where each node represents a group-by query on the fact table and is
connected via a directed edge with every other node that contains exactly one
fewer grouping attribute. The source of an edge is called its parent node and
the destination of the edge is called its child node. The node whose grouping
attributes consist of all dimensions (highest) is called the root of the lattice. The
node whose grouping-attribute set is empty (lowest) is called the ALL node.
For example, Figure 2 presents the lattice that corresponds to the fact table
Ry (Figure 1a). Nodes in higher lattice levels contain more grouping attributes
and are thus more detailed (hold data of finer granularity) than nodes in lower
levels, which are more specialized (hold data of coarser granularity). Exploiting
the “1-1” mapping between group-by queries and lattice nodes, we call node size
the size of the result of the corresponding query.

GEO

Fig. 2. Example of a cube lattice

In most cases, computation of the data cube is an extremely time-consuming
process due to the size of the original fact table and the exponential number of
cube nodes with respect to the number of dimensions. Hence, it is common in
practice to select a proper subset of the data cube, pre-compute it off-line, and
store it for further use. We call this process “data-cube implementation”. Over
the last years, there has been intense interest in efficient data-cube implementa-
tion and a variety of methods has been proposed for this task.

For ROLAP approaches, data-cube implementation consists of data-cube
computation and data-cube selection. These, however, are not necessarily two
separate procedures applied sequentially. A-priori knowledge of the strategy used
for selection may affect the computation procedure and vice-versa. Hence, sev-
eral methods have been proposed that combine fast computation and efficient
selection in one step; we call them integrated methods.

3 Thesis Contribution

Taking into account that existing ROLAP methods exhibit weaknesses in one
or more issues related to the lifecycle of data cubes, in this thesis, we propose
novel techniques that deal with the problem in a comprehensive fashion, pro-
viding efficient solutions for the entire cube lifecycle, including construction and
storage, indexing, caching, query answering, and incremental maintenance. We
study techniques that are applicable not only on flat data cubes but on datasets
that include hierarchies as well. The results of a rather extensive experimental
evaluation on both real-world and synthetic datasets are very positive, giving
strong indications on the power of our methods and of ROLAP overall.

In more detail, we start with a study of related work and provide a qualitative
examination of ROLAP methods. We go beyond a simple review of existing
algorithms and contribute to the following issues [12]:

— Comprehensive Review: We offer a comprehensive review of existing cub-
ing methods that belong to the ROLAP framework, highlighting interesting
concepts from various publications and studying their advantages and dis-
advantages. To the best of our knowledge, this is the first overview of its
kind.

— Problem Parameterization: We carefully analyze existing ROLAP cubing
methods and identify six orthogonal parameters/dimensions that affect their
performance, namely “Traversal of Cube Lattice”, “Partitioning of Origi-
nal Fact Table”, “In-Memory Processing Algorithm”, “Storage Granularity”,
“Selection Criterion”, and “Lattice Reference”. The resulting 6-dimensional
parameter space essentially models the data-cube implementation problem.

— Method Classification: We place existing techniques at the appropriate
points within this parameter space and identify several clusters that these
form. These clusters have various interesting properties, whose study leads
to the identification of particularly effective values for the space parameters
and indicates the potential for devising new, better-performing algorithms
overall.

Based on the findings of the aforementioned thread of our work, we investi-
gate new methods and propose a suite of algorithms that exhibit efficiency in
all phases of the lifecycle of flat cubes. In particular, we focus on the following
issues [13]:

— Cube Construction: We incorporate redundancy reduction into the dom-
inant ROLAP cube construction methods and devise three new cubing al-
gorithms, which exhibit considerable reduction in the size of the cube to be
stored as well as some minor reduction in its construction time. We study
their behavior under large and multi-dimensional datasets and show that
the best among them, namely TRS-BUC, is the first ROLAP method that
scales well up to at least 25 dimensions.

— Query Answering: Under a comprehensive query model, which is broader
than the models used in the past for the same purpose, we evaluate novel

algorithms for answering queries on top of the cubes produced by the new
methods and demonstrate that the cube resulting from TRS-BUC exhibits
significantly better query execution performance compared to all earlier tech-
niques, including those considered as “champions” with respect to construc-
tion time and storage space.

— Incremental Maintenance: We introduce novel incremental update algo-
rithms and demonstrate that those based on TRS-BUC exhibit again signif-
icantly better performance compared to their counterparts. Moreover, they
produce a cube identical to the one that would be produced by full recon-
struction, i.e., TRS-BUC preserves its compact format unaffected, regardless
of the frequency of updates.

— Indexing and Caching: We propose indexing and caching schemes and
study their effect on both query answering and incremental updating of RO-
LAP cubes. Our experiments show that TRS-BUC is the only known method
that can benefit significantly from such techniques, consuming inexpensive
additional resources.

Moving on to hierarchical datasets, we show that the nature of hierarchies
introduces several complications in all phases of the cube lifecycle that render
existing ROLAP techniques (including those built around TRS-BUC) impracti-
cal. To overcome this drawback, we propose an extension of TRS-BUC, called
CURE [14], and revisit all its surrounding algorithms related to cube usage.
CURE contributes a novel lattice traversal scheme, an optimized data partition-
ing method, and a suite of relational storage schemes for all forms of redundancy.
The last two are useful to “flat” datasets as well, but they are mostly necessary
in the presence of hierarchies. In more detail:

— Lattice Traversal with Dimension Hierarchies: To the best of our
knowledge, CURE is essentially the first comprehensive ROLAP solution
capable of constructing a complete cube not only at the leaf level of each
dimension hierarchy, but also at all higher levels, precomputing group-by
queries at all granularities. To achieve this, CURE uses an efficient way
of traversing an extended lattice that includes dimension hierarchy levels
(first proposed elsewhere [11]), which enables great cost sharing of sorting
operations through pipelining.

— External Partitioning: We propose an efficient algorithm for partitioning
fact tables that store hierarchical data of any size into memory-fitting seg-
ments, while computing a very small subset of the cube using inexpensive
additional resources. Exploiting this early-computed data, CURE acceler-
ates the construction of the final cube significantly, making it feasible even
when the original fact table is extremely large. Existing techniques partition
data according to values in a single dimension and require that segments of
tuples with the same value in this dimension fit in memory. As shown in this
thesis, however, this is not always possible in cases that include hierarchies,
due to small domain sizes at coarse granularities.

— Efficient Storage: Unlike previous ROLAP methods that rely only on
avoiding redundant-tuple storage for cube size reduction, we further study

alternative schemes for storing nonredundant data efficiently as well. To the
best of our knowledge, CURE is the only ROLAP method that condenses
the cube both by rejecting all kinds of redundancy and by further exploiting
appropriate data representations.

— Query Answering: We develop a straightforward algorithm for answering
arbitrary queries using data materialized in an (unindexed) CURE cube
and show that its practicability is limited in real-world applications that
typically involve selective queries over large datasets. To overcome this, we
investigate the effect of indexing on CURE cubes and propose an efficient
extension of the original algorithm that is based on low-cost indexes. We
show that indexing the entire cube, which is potentially very expensive in
hierarchical cubes, is not necessary; indexing only the original fact table is
enough, primarily because of the particular storage format of CURE cubes.

— Query Optimization: We examine customized query optimization policies
to identify when using an index is beneficial and to indicate which index
combination to use for a given query, based on cost estimations.

— Incremental Maintenance: We study different approaches for the incre-
mental maintenance of CURE cubes and conclude that common eager tactics
that refresh a cube periodically during a dedicated window of time are pro-
hibitively expensive, due to the storage format of CURE and the nature of
hierarchies. Alternatively, we propose a novel lazy method that only per-
forms some lightweight operations during the update window and updates
data on-line, when necessary, during query processing. Interestingly, the ad-
ditional query cost is marginal making the lazy approach the method of
choice. To the best of our knowledge, this is the first time a lazy method has
been applied to a cube-related method. Finally, we propose a hybrid com-
bination of the eager and the lazy method, which is very promising under
certain conditions.

Having found efficient algorithms for materializing and using a large num-
ber of aggregate views, we study an application of aggregation on data-mining
techniques, including classification and feature selection. In this thread of our
work, we propose LOCUS, a lazy classifier implemented exclusively with aggre-
gate queries expressed in standard SQL. To the best of our knowledge, LOCUS
is the first disk-based lazy classifier with all the following properties [15]:

— Classification Accuracy: It exhibits good classification accuracy, which
improves as training sets become larger. This can be justified theoretically
based on its convergence to the optimal Bayes classifier, which minimizes the
classification error probability. The same is also verified experimentally in
comparison to Decision Trees, a very popular and accurate existing classifier.

— Disk-Based Implementation: It is database-friendly and, to the best of
our knowledge, the only lazy method that uses a small and constant number
of highly selective range queries in order to classify unknown objects. Such
queries actually need to access a very small part of the underlying database
and have been well studied in the database literature. They can be expressed

in standard SQL and existing query optimizers guarantee their fast response
times with the use of traditional indexes, e.g., BT-Trees.

— Feature Selection: Its classification accuracy can be efficiently used as a
promising criterion for feature selection as well, in the sense that features
are selected based on the accuracy that the classifier achieves when applied
on them.

— Parallelization: It can be efficiently parallelized with essentially unlimited
scalability.

4 Conclusions and Future Work

In this thesis, we presented a comprehensive study of efficient (mostly ROLAP)
algorithms related to data cubes. We started with a thorough review of existing
algorithms for efficient data-cube implementation in a ROLAP environment and
identified six orthogonal parameters: “Traversal of Cube Lattice”, “Partitioning
of Original Fact Table”, “In-Memory Processing Algorithm”, “Storage Granu-
larity”, “Selection Criterion”, and “Lattice Reference”. We placed the existing
algorithms at the appropriate points within the problem space based on their
properties. We observed that the algorithms form clusters, whose study led to
the identification of particularly effective values for the space parameters.

Based on the findings of the first phase of our research, we incorporated
redundancy reduction into the best existing pure ROLAP methods for cube
implementation and proposed TRS-BUC and a suite of novel algorithms built
around it that deal with all aspects of cube usage, including efficient construction,
storage, query answering, incremental updating, indexing, and caching. To the
best of our knowledge, this has been essentially the first such comprehensive
approach to the problem in the ROLAP context, treating all the above aspects
in an independent fashion.

Furthermore, we studied ROLAP cubing in the presence of hierarchies and
presented CURE, a novel ROLAP cubing method that addresses all challenges
imposed by the nature of hierarchies and constructs complete data cubes over
very large datasets with arbitrary hierarchies. CURE introduced an efficient ex-
ecution plan suitable for hierarchical cube construction and revisited external-
partitioning and size-reduction methods, which are complicated due to the exis-
tence of hierarchies. The effectiveness of CURE has been demonstrated through
experiments on both real-world and synthetic datasets (including the APB-1
benchmark in its highest density), which have given very promising results with
respect to the potential of CURE overall. Moreover, we developed efficient algo-
rithms for query processing and incremental updating over CURE cubes in the
presence of hierarchies, including some lazy policies that were never applied on
cubes before. Interestingly, our solutions are ROLAP compatible, matching the
design goals of CURE.

Finally, we applied ideas borrowed from data cubing on data mining and pro-
posed LOCUS, an accurate and efficient disk-based lazy classifier that is data-
scalable and can be implemented using aggregate queries expressed in standard

SQL. We showed that in most cases LOCUS exhibits high classification accu-
racy, which improves as training sets become larger, based on its convergence to
the optimal Bayes. Furthermore, we used its classification accuracy as an effi-
cient and reliable criterion for feature selection and proposed parallelizing both
the classification and feature-selection processes, essentially achieving unlimited
scalability. Overall, the results are very promising with respect to the potential
of LOCUS as the basis for feature selection and classification, especially over
large or inherently complex datasets.

In the future, we plan to compare CURE directly with Dwarf [8] and QC-Tree
[7], prominent cubing methods that use specialized graph-like data structures.
We expect this comparison to reveal the fundamental strengths and weaknesses
of the two underlying techniques. Furthermore, we are interested in applying a
CURE-like algorithm for the construction of skyline cubes.

Finally, with respect to data mining, we plan to further explore our feature
selection method in the direction of identifying multiple reliable nodes, to im-
plement a parallel version of LOCUS, and to study its applicability in regression
problems (possibly replacing the count aggregate function with average).

Although cubing is already more than 10 years old, it remains an exciting
problem with several fundamental aspects as well as applications still remaining
in the dark and waiting to be investigated.

References

1. Morfonios, K.: Cube-lifecycle management and applications. (Ph. D. Thesis. 2007)

2. Gray, J., Bosworth, A., Layman, A., Pirahesh, H.: Data cube: A relational ag-
gregation operator generalizing group-by, cross-tab, and sub-total. In: Proc. of
International Conference on Data Engineering (ICDE). (1996) 152-159

3. Beyer, K.S., Ramakrishnan, R.: Bottom-up computation of sparse and iceberg
cubes. In: Proc. of ACM Special Interest Group on Management of Data (SIG-
MOD). (1999) 359-370

4. Ross, K.A., Srivastava, D.: Fast computation of sparse datacubes. In: Proc. of
Very Large Data Bases (VLDB). (1997) 116-125

5. Wang, W., Lu, H., Feng, J., Yu, J.X.: Condensed cube: An efficient approach to
reducing data cube size. In: Proc. of International Conference on Data Engineering
(ICDE). (2002) 155-165

6. Zhao, Y., Deshpande, P., Naughton, J.F.: An array-based algorithm for simulta-
neous multidimensional aggregates. In: Proc. of ACM Special Interest Group on
Management of Data (SIGMOD). (1997) 159-170

7. Lakshmanan, L.V.S. Pei, J., Zhao, Y.: Qc-trees: An efficient summary structure
for semantic olap. In: Proc. of ACM Special Interest Group on Management of
Data (SIGMOD). (2003) 64-75

8. Sismanis, Y., Deligiannakis, A., Roussopoulos, N., Kotidis, Y.: Dwarf: shrinking
the petacube. In: Proc. of ACM Special Interest Group on Management of Data
(SIGMOD). (2002) 464-475

9. Gunopulos, D., Kollios, G., Tsotras, V.J., Domeniconi, C.: Approximating multi-
dimensional aggregate range queries over real attributes. In: Proc. of ACM Special
Interest Group on Management of Data (SIGMOD). (2000) 463-474

10.

11.

12.

13.

14.

15.

Vitter, J.S., Wang, M.: Approximate computation of multidimensional aggregates
of sparse data using wavelets. In: Proc. of ACM Special Interest Group on Man-
agement of Data (SIGMOD). (1999) 193-204

Harinarayan, V., Rajaraman, A., Ullman, J.D.: Implementing data cubes effi-
ciently. In: Proc. of ACM Special Interest Group on Management of Data (SIG-
MOD). (1996) 205216

Morfonios, K., Konakas, S., Ioannidis, Y., Kotsis, N.: Rolap implementations of
the data cube. (submitted)

Morfonios, K., loannidis, Y.E.: Supporting the data cube lifecycle: The power of
rolap. (to appear). In: VLDBJ. (2006)

Morfonios, K., Ioannidis, Y.E.: Cure for cubes: Cubing using a rolap engine. In:
Proc. of Very Large Data Bases (VLDB). (2006) 379-390

Morfonios, K., Ioannidis, Y.E.: Locus: Lazy optimal classification of unlimited
scalability. In: HDMS. (2006) 80-89

