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Abstract. Query Personalization is the process of dynamically enhancing a 
query with related user preferences stored in a user profile with the aim of 
providing personalized answers. The underlying idea is that different users may 
find different things relevant to a search due to different preferences. Essential 
ingredients of query personalization are: (a) a model for representing and 
storing preferences in user profiles, and (b) algorithms for the generation of 
personalized answers using stored preferences. 

1. Introduction 

A user accessing an information system with the intention of satisfying an 
information need, may have to reformulate the query issued several times and sift 
through many results until a satisfactory, if any, answer is obtained. This is a very 
common experience especially for Web searchers, due to information abundance and 
users’ heterogeneity in the Web. A critical observation is that “different users may 
find different things relevant when searching” because of different preferences, goals 
etc. Thus, they may expect different answers to the same query. Consider a simple 
case: two users, Al and Julie, access a web-based movies database both searching for 
comedies. Al is a fan of director W. Allen, while Julie is not. Most systems would 
consider only the request issued and return to both users the same, exhaustive list of 
comedies. However, storing user preferences in user profiles gives a system the 
opportunity to return more focused, personalized (and hopefully smaller) answers. 
Fig. 1 illustrates the difference between traditional and personalized search. 

 

Fig. 1. Traditional vs. personalized search 

Based on the above, this dissertation proposes Query Personalization, i.e. a process 
of dynamically enhancing a query with related user preferences stored in a user 
profile with the purpose of providing focused customized answers. Focusing on the 
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user enables a shift from what is called ‘consensus relevancy’ where the computed 
relevancy for the entire population is presumed relevant for each user, toward 
‘personal relevancy’ where relevancy is computed based on each individual’s 
characteristics. Personalized results for Al would include W. Allen’s comedies, while 
personalized results for Julie would not.  

Given a query and a profile, a personalized answer is built by specifying: (a) the 
number K of top preferences from the user profile that should affect it, and (b) the 
number L (L≤K) of those preferences that should at least be satisfied. Parameters K 
and L can be specified directly by the user or derived based on various criteria on the 
query context, such as user location, time, device, etc. Query personalization proceeds 
as follows (Fig. 2): (Preference Selection) Top K preferences are derived from the user 
profile. (Personalized Answer Generation) These are combined with the query, and a 
personalized answer is returned satisfying L of the K preferences. 

 
 

Fig. 2. Query Personalization Architecture 

Contributions. The contributions of this work are the following: 
− Preference model. User preferences are stored as degrees of interest in atomic 

query elements (selection and join conditions), which may be used to transform a 
query. The degree of interest expresses the interest of a person to include the 
associated condition into the qualification of a query. Specific logic is introduced 
for derivation of preferences combining stored atomic ones. This model combines 
expressivity and concision and provides a direct way to personalize queries.   

− Preference Selection. Preference selection from a structured user profile is 
formulated as a graph computation problem. Efficient algorithms that derive the 
top K preferences from a user profile that are related to a query are described. We 
consider preferences that are syntactically related to or conflicting with a query 
taking into account the schema of the underlying database. 

− Generation of Personalized Answer. The top K preferences derived from the user 
profile may be integrated into the initial query so that the resulting one should 
return results satisfying at least L from the top K preferences. Alternative query 
rewriting schemes have been examined. A specialized algorithm that allows for 
progressive generation of personalized results is also proposed.  

− Optimization. Query personalization is formulated as a constrained optimization 
problem, where constraints may concern the personalized query execution time and 
result size. This is the first realistic approach to personalization that takes into 
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account real-time factors and conditions in order to return personalized results. 
Constrained query personalization is formulated as a state space search problem. 
Each personalized query that is a potential solution is a state in a space (a node in a 
graph), characterized by degree of interest, execution cost, and result size. 
Transitions (edges) arrange states in partial orders based on each of the 
aforementioned query parameters. State-space search algorithms are devised that 
take advantage of these partial orders to solve these problems efficiently.  

− Experimental Evaluation. Experiments have demonstrated the efficiency of the 
proposed algorithms, providing insight as to the appropriateness of the preference 
model, and showing the benefits of query personalization.   

2. Related Work  

Content personalization. Several approaches to content personalization have been 
developed by the IR community, most of them falling into two major categories: 
information filtering and recommendation systems.  

Information filtering systems aim at satisfying long-term information needs of 
people. A long-term information need is represented as a query stored in the system 
that is continuously executed over dynamic data with the purpose of returning new or 
updated relevant information to the user. A stored query or set of queries comprise a 
user profile based on which an information filtering system collects and distributes 
relevant information [19, 8].  

Recommendation systems produce predictions, recommendations, opinions that 
help a user to evaluate and select objects [20, 21]. The basic idea is that a user selects 
objects, for instance by marking them, or querying them, and the system identifies 
other similar objects, based on which it produces recommendations or predictions 
regarding what the user would like. 

A search process could take into account not only the query issued but also the 
characteristics of the user submitting this query. These could be stored in a user 
profile. This observation gave rise to the idea of personalized search. Early efforts 
have originated from the field of Information Retrieval [22] and have mainly 
conceived personalized search as a problem of re-ranking the results of a query based 
on a user profile [18, 23].  

The survey of related work has revealed two important facts [15]. First, the vast 
majority of existing content personalization approaches concern unstructured data. 
Second, there are only a few proposals regarding personalized searching, most of 
them defining the problem as one of result re-ranking according to a user profile 
rather than as a query modification one. These facts underline the value of this 
dissertation that studies the problem of personalization of queries over databases 
based on user preferences stored in a profile. 

Preference Modelling. Preference is a fundamental notion in areas of applied 
mathematics, philosophy, and computer science that deal with decisions and choice. 
In Mathematical Decision Theory, preferences (or utilities) model economic 
behaviour [7]. In Philosophy, they are used to reason about values, desires, and duties 
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[9]. In AI, they capture agents’ goals [6]. In Databases, they are used for the 
formulation of ‘soft’ query criteria. We distinguish two categories: 
− Qualitative approaches aim at a relative formulation of preferences, such as a user 

prefers comedies over westerns [2, 17, 5, 12]. This formulation is natural for a 
human and results in partial orders of results. However, absolute specification of 
preference significance is not possible. 

− Quantitative approaches aim at an absolute formulation of preferences, such as a 
user likes comedies very much and westerns to a lesser degree [1, 10, 3, 4, 11]. 
This allows for total ordering of results and the straightforward selection of those 
matching user preferences. 
The approaches above have focused on the expression of preferences at the query 

level and on algorithms aiming at the efficient execution of these queries.  Our 
approach aims at the representation and storage of user preferences in profiles. It 
allows for the expression of several preference types and provides a direct way to 
personalize queries.  

3. User Preference Model 

Our approach is applicable to any graph model representing information at the level 
of entities and relationships. Preferences may be expressed for values of attributes, 
and for relationships between entities. Preferences for relationships indicate to what 
degree, if any, entities related are influenced by each other (i.e. by preferences on 
each other). Here, we briefly overview the main characteristics of the proposed user 
preference model. Details on the full-fledged model can be found in [13]. 

Atomic Preferences. Given our focus on personalization of queries, our preference 
model assigns degrees of interest to query constructs, which may then be used to 
transform, i.e. personalize a query. Preferences for values of attributes are stored as 
atomic selections (atomic selection preferences) and preferences for relationships 
between entities are stored as atomic join conditions (atomic join preferences). The 
latter indicate to what degree related entities are mutually influenced by preferences 
and they are directed, in the sense that they indicate how preferences on the right-
hand-side join relation influences the left-hand-side join relation. 

Example. Consider the following relations, which are a subset of a database 
schema about movies: 

MOVIE(mid, title, year, duration, did)  

DIRECTOR(did, name), GENRE(mid, genre) 

Fig. 3(a) shows an example user profile. Degree of interest equal to 0 indicates 
lack of any interest in the condition, while degree equal to 1 indicates extreme (‘must-
have’) interest.  

A user’s preferences over a database’s contents are expressed on top of the 
personalization graph. This is a directed graph G(V, E) that is an extension of the 
database schema graph. Nodes in V are (a) relation nodes, one for each relation in the 
schema, (b) attribute nodes, one for each attribute of each relation in the schema, and 
(c) value nodes, one for each value that is of any interest to this user. Edges in E are 
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(a) selection edges, from an attribute node to a value node representing a potential 
selection condition, and (b) join edges, from an attribute node to another attribute 
node representing a potential join condition between these attributes. Fig. 3(b) shows 
the personalization graph corresponding to the user profile of Fig. 3(a). 

p1: doi(GENRE.genre=‘musical’) = 0.5 
p2: doi(MOVIE.mid=GENRE.mid) = 0.9 
p3: doi(MOVIE.did=DIRECTOR.did) = 1.0 
p4: doi(DIRECTOR.name=‘W. Allen’) = 0.8  

 
(a)profile (b)personalization graph 

Fig. 3. User preferences  

Implicit Preferences. By composing atomic user preferences on conditions 
(edges) that are adjacent in the personalization graph, one obtains implicit 
preferences, i.e. preferences on complex query elements that are conjunctions of 
atomic ones (directed acyclic paths in G).  In particular, if p is an implicit preference 
containing m atomic preferences pi, then p = p1 ∧ … ∧ pm. For example, p3 and p4 are 
composed into the following implicit preference for movies directed by W. Allen: 

MOVIE.did = DIRECTOR.did and DIRECTOR.name = ‘W. Allen’ 

The degree of interest in an implicit preference p is a function f⊗ of the degrees of 
interest in the constituent atomic ones and must be non-increasing as the length of the 
corresponding directed path increases: 

doi(p)=f⊗(d1, … dm) ≤ min({d1, … dm}),  di = doi(pi) (1)  

Combinations of Preferences. Given a set of user preferences, whether atomic or 
implicit, one may form logical combinations of them. Ranking functions are proposed 
for estimating user interest in logical combinations of preferences. One may see three 
different philosophies. 
− Inflationary. The degree of interest in multiple preferences satisfied together 

increases with the number of these preferences expressing a philosophy of ‘the 
more the better’. An example function is the following:  

∏
=

−−=
N

1i
i1 )d1(1r  (2)  

− Dominant. The degree of interest in multiple preferences satisfied together is 
exactly equal to the degree of the most interesting of these preferences, i.e.  
r2 = max({d1, d2, … dN}) (3)  

− Reserved. The degree of interest in multiple preferences satisfied together is 
between the highest and the lowest degrees of interest among the original 
preferences. The underlying principle is that the degree of interest in satisfying 
multiple preferences should primarily depend on the importance of them. The 
following function belongs to this category: 

∏
=

−−=
N

1i

N/1
i3 )d1(1r  (4)  
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The appropriateness of a ranking function is judged only by the philosophy of the 
approach taken towards personalization and, more importantly, by how closely it 
reflects human behaviour. We have experimented with the above functions, and the 
results provide insight as to the appropriateness and intuitiveness of each one of them. 

4. Preference Selection 

The first step of the query personalization process deals with for the extraction of the 
top K preferences related to a query. A basic question to be answered by a system is 
which preferences are considered related to a query. Our approach is to take into 
account the schema of the underlying database in order to identify preferences 
syntactically related to or conflicting with a query. A preference is syntactically 
related to a query, if the corresponding path on the personalization graph is attached 
to a query relation. E.g., an implicit preference related to a query about movies is:  

MOVIE.mid=GENRE.mid and GENRE.genre=‘comedy’ 

Parameter K is specified with the use of some criterion, e.g., it may specify that the 
top 5 preferences should be selected, or that the desired degree of interest should be 
greater than 0.8. Preference selection from a structured user profile is formulated as a 
graph computation problem. Efficient preference selection algorithms perform a best-
first traversal of the personalization graph in order to construct paths in order of 
decreasing importance. These are described in [13] and [16]. 

5. Personalized Answer Generation 

The top K preferences derived from the user profile may be integrated into the initial 
query so that the resulting one should return results satisfying at least L from the top K 
preferences. Among several possible query rewritings one could use to personalize a 
query with a set of preferences [16], we illustrate the most efficient one through an 
example: a user, whose profile is shown in Fig.3, issues a query about movies: 

select title from   MOVIE  

Assume that the following preferences have been selected by the system for 
inclusion in the query: 

MOVIE.did = DIRECTOR.did and DIRECTOR.name = ‘W. Allen’ 
MOVIE.mid = GENRE.did and GENRE.genre = ‘musical’ 

First, a set of sub-queries is constructed, each one separately integrating one of 
these preferences into the original query.  

Q1: select title from   MOVIE M, DIRECTOR D 
 where M.did = D.did and D.name = ‘W. Allen’ 
Q2: select title from   MOVIE M, GENRE G 
 where M.mid=G.mid and G.genre=‘musical’ 

The final query is built as the union of these sub-queries: 
select title  from   Q1 Union All Q2  
group by title  having   count(*)= 2 

Finally, the resulting query is passed on the query optimizer of the underlying 



Query Personalization based on User Preferences       

database system, where it is executed. The results of this query may be ranked based 
on their degree of interest. 

Still, this query rewriting method has shortcomings, the most important being that 
results are returned only after they have all been retrieved, merged, grouped and 
ordered. There is no way to progressively output results. Therefore, we have provided 
an algorithm for progressive generation of personalized results [13]. 

6. Constrained Query Personalization 

In principle, query personalization is an optimization problem: given a query q posed 
by a user u, its goal is to identify the parts of the profile of u that, when combined 
with q, would maximize the interest of u in the results of q.  In practice, this problem 
statement may lead to unrealistic solutions, since maximum interest is achieved by 
incorporating all preferences of u into q, but the resulting “over-personalized” query 
is likely to be very expensive or have an empty answer. Taking into account execution 
time and result size leads to a redefinition of query personalization as a constrained 
optimization problem, where constraints are expressed as an upper bound on 
execution time of the final query and/or a lower or upper bound on its result size. 
Under this more general point of view, one realizes that query personalization does 
not necessarily imply optimization of user interest, but could also be, for example, 
optimization of execution time under constraints on user interest. 

The family of constrained optimization problems that arise in the spirit discussed 
above is referred to as Constrained Query Personalization (CQP) [14]. Depending on 
the parameter being optimized and the constraints placed on the others, different 
answers will be delivered even to the same user issuing the same query. Each time the 
correct CQP problem is determined by several real-time factors comprising the search 
context, such as the device used, the network connection, or even some transient user 
requirements of the moment. 

6.1 State Space Search 

Constrained query personalization is formulated as a state space search problem. Let 
C be a set of preferences related to a given query Q. Each state in a CQP problem 
corresponds to a query built by integrating a subset of preferences into the initial 
query, i.e. Qx := Q ∧ Cx, where Cx ⊆ C. Query parameters comprise the features of the 
corresponding state. Transitions are based on syntactic modifications to a state with 
known implications (increase/decrease) on state parameters and they arrange states in 
partial orders based on each of the aforementioned query parameters. We define two 
categories of transitions, cost-based and degree-based. Each category creates a 
different state space (same nodes, different edges). State-space search algorithms are 
devised that take advantage of these partial orders to solve these problems efficiently. 

CQP problems have similar formulation, query parameter properties and partial 
orders derivable from syntactic transformations of personalized queries. These 
correspondences enable us to treat them in a very similar way. Therefore, in order to 
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sketch our approach, we focus on one CQP problem, i.e. maximize degree of interest 
with an upper cost bound (e.g. cost < 190). We define two cost-based transitions: 
− The Horizontal neighbour of a state is derived by inserting the preference from C 

that immediately follows the lowest cost preference of the current state, and it has 
higher cost and higher degree of interest than the current state.  

− Vertical neighbours of a state are derived by replacing a preference in the state by 
its successor from C provided that the latter is not already in the state. Vertical 
neighbours are ordered in decreasing cost.  
Fig. 4 shows the state space for C = {c1, c2, c3, c4, c5}. Vertical transitions 

are depicted in dashed lines, Horizontal ones in solid lines. Numbers show the cost of 
the query produced by adding the corresponding preferences into the initial query. 

 

Fig. 4. Cost State space 

 

Fig. 5. Basic idea of state space search 

The basic idea in state space search is finding a set of nodes that are not reachable 
from each other and satisfy the cost constraint, while their parents do not. These 
nodes are called boundaries. Boundaries on every group form a virtual borderline that 
partitions the cost state space into two sets of nodes as Fig. 5 shows: those satisfying 
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the cost constraint (cost < 190), and those not. Then, the solution to the CQP problem 
considered is a node of maximum degree of interest belonging to the first set.   

We have devised algorithms that are based on cost-based or degree-based 
transitions and may be used for solving any kind of CQP problem due to the fact that 
all CQP problems are quite similar to each other, both in terms of their formulation 
but also in terms of characteristic properties of the query parameters that are involved 
in them. These algorithms are provided in [14]. 

7. Conclusions  

This dissertation proposes personalization of database queries, a process of 
dynamically enhancing a query with preferences stored in a user profile with the 
purpose of generating a customized, focused, and hopefully smaller answer for a 
specific user. We have presented a preference model that combines expressivity and 
concision. User preferences are stored as degrees of interest in atomic query elements 
(individual selection and join conditions), which may be used to transform a query. 
We proposed a personalization framework according to which personalized results 
should satisfy at least L out of the top K preferences from the user profile that are 
related to the given query. We formulated preference selection from a structured user 
profile as a graph computation problem and we provided efficient preference selection 
algorithms. We studied several alternative methods to rewrite the initial query into a 
personalized one that integrates the preferences selected from a user profile and 
returns results satisfying L from the top K preferences selected. We proposed an 
efficient algorithm for progressive retrieval of personalized results. Furthermore, we 
have formulated query personalization as a constrained optimization problem, where 
constraints may concern the personalized query execution time and result size. 
Constrained query personalization is formulated as a state space search problem. We 
devised state-space search algorithms that take advantage of these partial orders to 
solve these problems efficiently. Finally, this dissertation includes experimental 
results demonstrating the efficiency of our algorithms, providing insight as to the 
appropriateness of the proposed preference model, and showing the benefits of query 
personalization. 

Several research issues are still left open and are the subject of our ongoing and 
future work. We plan to study how our preference model may express preference 
dependencies. Another challenging research direction is towards user models that 
combine multiple user aspects, e.g. preferences, abilities, demographic data etc. 
Models of increased expressive power such as those outlined above require advanced 
query personalization mechanisms and logic. For example, combining and reconciling 
information stored in diverse profiles, and profile hierarchies are challenging topics 
that need to be addressed. Finally, we are very interested in methods for the automatic 
construction of user profiles based on the preference model described in this work. 
Existing methods have mainly focused on construction of simple keyword profiles. 
The complexity of database queries, however, compared to keyword-based searches 
render most of the existing techniques useless. Fresh ideas are required to come up 
with effective approaches in this environment. 
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