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Abstract. Processor testing approaches based on the execution of self-test programs have been recently proposed as an 
effective alternative to classic external tester-based testing and pure hardware built-in self-test (BIST) approaches. 
Software-based self-testing is a non-intrusive testing approach that embeds a “software tester” in the form of a self-test 
program in the processor on-chip memory. It has the potential to provide high quality at-speed testing using low-cost 
external ATE without any hardware or performance overheads. In this thesis, we introduce a high-level, software-based 
self-testing methodology for embedded processors and microprocessors. The proposed methodology aims at high 
structural fault coverage with low test development and test application cost. We demonstrate the effectiveness and 
efficiency of the proposed methodology by completely applying it on several processor benchmarks with scaling 
complexity, implementing different implementations of a popular RISC instruction set architecture with several gate-
level implementations. 

1. Introduction 

Consumer demands for high performance and rich functionality have driven semiconductor manufacturing industry to 
the integration of multiple complex components on a single chip. Deep-submicron technologies along with the use of the 
System-on-Chip (SoC) design paradigm have made this possible. System development based on the use of a core-based 
architecture, where cores are interconnected by an industry standard on-chip bus is very common. This design strategy has 
been proved to be effective in terms of development time and productivity since it re-uses existing intellectual property 
(IP) cores. In the multi-million gate SoC era, design and test engineers face signal integrity problems, serious power 
consumption concerns and maybe more than these, serious testability challenges. 

Manufacturing testing of a SoC architecture built around one or more processor cores is a difficult task. Test data 
volume required for external testing of embedded processors is becoming excessively large [10] resulting in long test 
application time, while the cost of test time using high-performance Automatic Test Equipment (ATE) is very high. 
Furthermore, new types of defects appearing in deep-submicron technologies require at-speed testing in order to achieve 
high test quality. However, the increasing gap between ATE frequencies and SoC operating frequencies makes external at-
speed testing almost infeasible. Moreover, ATE accuracy problems can lead to serious yield loss [10]. Thus, high quality 
external testing is becoming increasingly difficult even with today’s multi-million dollars ATE.  

Traditional hardware self-test (or Built-In Self-Test - BIST) moves the testing task from external resources (ATE) to 
internal hardware, synthesized to generate test patterns and evaluate test responses of the circuit under test. Hardware self-
test achieves at-speed testing reducing the overall test costs of the chip [10]. Recent applications of hardware-based 
commercial Logic BIST techniques in large industrial designs [9] and microprocessors [5] reveal that extensive and 
manual design changes have to be performed in order to make the design BIST-ready. These include changes to prevent 
the design from getting to an unknown state that will corrupt the compressed response and extensive test point insertion 
that is necessary to achieve acceptable fault coverage in random pattern resistance circuits. However, these changes 
increase the circuit area and degrade its performance. Therefore, Logic BIST has limited applicability to high-performance 
and power-optimized embedded processors.  

Several approaches can be grouped together under the term, software-based self-testing (SBST) and various SBST 
techniques have been proposed recently as an effective alternative to hardware self-test for embedded processors. SBST 
has a non-intrusive nature since it utilizes existing processor resources and instructions to perform self-testing. Therefore, 
SBST can potentially provide sufficient testing quality without any impact on performance, area or power consumption 
during normal operation. SBST approaches with respect to the single stuck-at faults have been recently proposed and a 
review of some of them was given in [21]. Apart from this, [21] discusses the application of SBST to testing path delay 
fault and interconnect crosstalk defects, as well as fault diagnosis. Experimental results provided in [5] demonstrate the 
superiority of SBST for processors over both Full Scan design and hardware Logic BIST. An outline of the embedded 
SBST concept is shown in Figure 1.  
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Figure 1: Software-based self-testing concept outline 

Self-test routines and data are downloaded into instruction and data memories, respectively, from a low-speed, low-cost 
external mechanism. Subsequently, these self-test routines are executed at the processor actual speed (at-speed testing) and 
test responses are stored back in the on-chip RAM. These test responses may be in a compacted (self-test signatures) or 
uncompacted form and can be unloaded by the low-cost external ATE during manufacturing testing. Since today’s 
microprocessors have a reasonable amount of on-chip cache, execution from on-chip cache is considered a further 
improvement when targeting at low-cost testers, provided that a cache-loader mechanism exists to load the test program 
and unload the test response [25]. As an alternative, self-test routines may be executed from an on-chip ROM dedicated to 
this task when periodic on-line testing is performed for the device. 

In this thesis, we first introduce a high-level SBST methodology suitable for complex embedded processors and 
microprocessors implemented in CMOS VLSI technology. Test development of the proposed methodology is performed at 
high-level and aims at high structural fault coverage with low test development and test application cost. Low test 
development cost is accomplished by keeping engineer manual test development effort as low as possible while 
minimizing computational effort. Low test application cost is accomplished by developing low-cost (small and fast) test 
routines for the most important and critical-to-test components of the processor. Then, the effectiveness of the introduced 
methodology with respect to low-cost and high-level of application is demonstrated by successfully applying it on several 
processor benchmarks with scaling complexity, implementing different implementations of a popular RISC instruction set 
architecture with several gate-level implementations. The outline of the remainder of this thesis is as follows. In Section 2 
an overview of previous related work is given. In Section 3 we present the proposed SBST methodology. In Section 4 we 
provide experimental results for various implementations of different processor model benchmarks. Finally, Section 6 
concludes the thesis summary.  

The research of the thesis summarized here, has been published in [13],[14],[15],[16],[17],[18],[19],[20],[23],[24]. 

2. Previous work 

Traditionally, processor testing resorted in functional testing approaches. Pioneer among those traditional functional 
testing approaches, [29], is considered a landmark paper in processor functional testing. Based on the RTL description of 
the processor the authors introduced a functional fault model and considered the processor as a theoretical graph model, 
the S-graph. Since then, many processor functional testing methodologies were proposed. Those approaches were either 
based on a functional fault model (many were based on the model of [29]), or based on verification principles without 
assuming any functional fault models. Those traditional functional test approaches had a high-level of abstraction but 
required a large amount of manual test writing effort, usually very little fault grading was done on structural processor 
netlists while high fault coverage was not guaranteed. Furthermore, most of them relied on external ATE to feed the input 
test patterns and monitor the response in contrast with the SBST approaches that apply at-speed in a self-test mode.  

The SBST approaches so far in the literature can be classified in two different categories. The first category includes the 
SBST approaches [28],[2],[25], that have a high-level of abstraction and are functional in nature. The second category 
includes the SBST approaches [3],[4],[5],[6] which are structural in nature and require structural fault-driven test 
development.  

In [28], a functional test methodology is proposed that generates a random sequence of instructions that enumerate all 
the combinations of the operations and systematically selected operands. Test development is performed at a high-level of 
abstraction based on Instruction Set Architecture (ISA), which is highly desirable. However, since test development is not 
based on an a-priori fault model, the generated tests - applicable for design validation as well - cannot achieve high fault 
coverage without the use of large code sequences and a serious amount of effort for the user to determine the heuristics for 
the operands. Furthermore the use of large code sequences results in excessive test application time and very long fault 
simulation time required for fault grading. When applied on the GL85 processor model consisting of 6,300 gates and 244 
FFs, a test program consisting of 360,000 instructions was derived and the attained fault coverage was 90.2%, dropped to 
86.7% when the responses were compressed in a signature. 



In [2], a self-test method is proposed which combines the execution of microprocessor instructions with a small amount 
of on-chip hardware that is used to provide a pseudorandom sequence of instructions, thus creating a randomized test 
program along with randomized data operands. Besides the fact that the proposed methodology cannot be considered as a 
“pure” SBST methodology due to the insertion of test hardware, the manual effort required for test program development 
is high while the pseurorandom philosophy results in very long test application time. Application on a RISC processor core 
similar to the DLX machine consisting of 27,860 gates resulted in 94.8% fault coverage with 220,000 cycles after an 
iterative process considering different parameters.  

In [25], an automated functional self-test methodology is proposed based on generation of random instruction sequences 
with pseudorandom data generated by software LFSRs while uses the on-chip cache to be applied. Constraints are 
extracted and built into the generator to ensure generation of valid instruction sequences ensuring that no cache misses 
and/or bus access cycles are produced. The high-level functional nature of the proposed approach makes generation of 
instruction sequences and data that achieve fault coverage goals with reasonable instruction counts very difficult, while the 
huge amount of cycles inherent to the methodology makes fault grading a non-trivial task. Although compares favorably 
with classic functional testing manual test generation effort, user expertise and knowledge of the processor units under test 
is required as well as merging with manual tests in order to achieve high fault coverage. The methodology achieved 70% 
fault coverage when applied on the Intel® Pentium® 4 processor. 

In [3], a partially automated test development approach based on gate-level tuning is proposed. First a library of macros 
is generated manually by experienced assembly programmers from the ISA, consisting of instruction sequences using 
operands as parameters. Then, a greedy search and a genetic algorithm are used to optimize the process of random macro 
selection among the macros set, along with selecting the most suitable macros parameters to build a test program that 
maximizes the attained fault coverage when the test program is applied on the gate-level netlist of the processor. Thus, test 
program development is fine-tuned to a specific gate-level netlist. The approach attained 85,2% fault coverage when 
applied on a 8051 8-bit microcontroller design of 6,000 gates using 624 instructions.  

In [4], an automated test development approach is proposed based on evolutionary theory techniques (MicroGP), that 
maximizes the attained fault coverage when the evolved test program is applied on the gate-level netlist of the processor. It 
utilizes a directed acyclic graph for representing the syntactical flow of an assembly program and an instruction library for 
describing the assembly syntax of the processor ISA. Manual effort is required for the enumeration of all available 
instructions and their possible operands. Experiments on a 8051 8-bit microcontroller design of 12,000 gates, resulted in 
90% fault coverage. 

In [5], a SBST methodology is proposed which is structural in nature, targeting specific components and fine-tuning the 
test development to the low, gate-level details of the processor core. First, long pseudorandom pattern sequences are 
developed for each processor component taking into consideration manually extracted constraints imposed by its 
instruction set. Then, test sequences are encapsulated into self-test signatures that characterize each component. The 
component self-test signatures are afterwards expanded on-chip by a software LFSR into pseudorandom test patterns 
stored in embedded memory and are finally applied to the component by software test programs. The pseudorandom 
approach in [5] does not consider the regular structure of critical processor components and hence leads to large self-test 
code, large memory requirements and excessive test application time even when applied to a small processor model. 
Application to an accumulator based CPU core, Parwan, consisting of 888 gates and 53 FFs, resulted in 91.4% fault 
coverage in 137,649 cycles using a test program of 1129 bytes. Nevertheless, the gate level based test strategy with manual 
constraint extraction, as it is presented in [5], is a generalized approach targeting every processor component. However, in 
the case of large “real” processors, manual constraint extraction for the targeted components is rather impractical. 
Furthermore, the step that follows constraint extraction, constraint-based test generation for the processor modules using 
sequential ATPG is a very time consuming task, if at all achievable since usually only combinational components 
constrained test generation can be easily handled by commercial ATPG tools. 

In [6], the authors propose a methodology that extends and improves their previous work by automating the complex 
constraint extraction phase, while emphasizing in ATPG-based test development instead of a pseudorandom one. 
Statistical regression analysis is applied on the RTL simulation results using manually coded instruction templates, to 
derive a model of the surrounding logic of the module under test (MUT). The learned model is converted into Virtual 
Constrained Circuit (VCC) followed by ATPG on the VCC-MUT in an iterative way. Although automation is achieved in 
several steps with manual effort is still required for the selection and construction of a set of representative test program 
templates among a quite large space of possible templates. Furthermore, this structural SBST methodology based on gate-
level ATPG applies only to combinational processor components without exploiting any possible regular structure of 
critical-to-test combinational components. Moreover, it results in large test program sizes (thus high test cost) due to the 
fact that the test programs cannot be in a compact form since they are automatically generated using test programs 
templates and also because of the large amount of ATPG test patterns required to be downloaded from the slow external 
ATE to the on-chip memory. Application of the methodology to the combinational logic in the execution stage of a 



commercial processor from Tensilica (Xtensa™) with 24,962 faults resulted in 288 ATPG test patterns and 90.1% fault 
coverage after constrained ATPG. When the tests are applied using processor instructions in a test program of 20,373 
bytes, the fault coverage for the targeted component is increased (due to collateral coverage) to 95.2% in 27,248 cycles. 

The requirement of a gate-level netlist cannot be considered as a negative attribute in general, since it helps to improve 
test quality (higher fault coverage). However, test generation tuned on gate-level can be very computationally costly if 
applied in an iterative way with successive fault simulations (especially at the total processor level) in the test generation 
loop. Thus, SBST methodologies based on gate-level details can achieve high fault coverage, but require significant test 
development cost, due to the tremendous increase of the circuit size and complexity of modern processors. Therefore, it is 
highly desirable that a SBST methodology is based on a high Register Transfer (RT) level description of the processor and 
its instruction set architecture, thus providing a low-cost and technology independent test development strategy.  

In [14],[15] a high-level structural SBST methodology was proposed, showing for the first time in the literature that 
small deterministic test sets, applied by compact test routines provide significant improvement when applied to the same 
simple accumulator-based processor design, Parwan, which was used in [5]. Compared to [5], the methodology described 
in [14],[15] requires 20% smaller test program using 923 bytes, 75% smaller test data and almost 90% smaller test 
application time using 16,667 cycles. Both methodologies achieve single stuck-at fault coverage slightly higher than 91% 
for the simple accumulator-based Parwan processor. 

Despite the new perspective [14],[15] of deterministic test development at high-level for SBST of embedded 
processors, scaling from simple accumulator-based processor architectures to more realistic ones in terms of complexity 
like contemporary complex processors implementing commercially successful ISAs (i.e. RISC ISAs), brings out several 
test challenges that remain to be solved. These challenges arise when high-level test development is applied to these 
complex processor architectures that contain large functional components (i.e. fast parallel multipliers, barrel shifters, etc), 
large register banks and pipeline mechanisms, while trying to keep the test-cost as low as possible.  

In [19],[20], the SBST methodology proposed, addressed these test challenges successfully by defining different test 
priorities for processor components and classifying them according to the defined priorities, proving that high-level test 
development based on ISA and RTL description of a complex processor ISA can lead to low test cost without sacrificing 
high fault coverage, independently of complex processor implementation and post-synthesis (gate-level) result.  

The SBST methodology proposed in this thesis, shares desirable characteristics with functional-based SBST 
methodologies like test development at high-level using the ISA, but goes one step deeper using RTL information and a 
divide-and-conquer approach targeting individual components with respect to the stuck-at fault model, thus providing very 
high fault coverage. The proposed SBST methodology is also fundamentally different when compared with other SBST 
methodologies targeting structural faults [3],[4],[5],[6] since it is based only on the high RTL description of the processor 
and its ISA and thus it provides a technology independent test development strategy with gate-level netlist required only 
for fault grading purposes. On the contrary, in other structural-based SBST methodologies, gate-level netlist is not just a 
simple step of the test generation process (in the traditional way of ATPG or pseudorandom TPG) but it is also a key part 
of iterative test generation loops, which leads to increased computational cost. Focus at low test application cost (test 
program size and test program cycles) is another fundamental difference between this work and previous works in SBST 
targeting structural faults [3],[4],[5],[6]. Assigning different test priority to the processor components and then developing 
low-cost (small and fast) test routines for the most critical-to-test components of the processor results in smaller on-chip 
memory requirements, shorter test program download and application time while fault simulation time required for fault 
grading is minimized, thus providing an efficient low-cost alternative structural approach.     

3. The Proposed High-Level Component-based SBST Methodology 

The key characteristics of the proposed high RT-level, component-based, SBST methodology are the following: 

• A divide-and-conquer approach is applied using component-based test development. 
• Test development is based only on the Instruction Set Architecture (ISA) and the RT-level description of the 
processor without the need of low gate-level fine-tuning. 

Although the main target always remains the high structural fault coverage (stuck-at fault model), test cost should be 
considered as a very important aspect. The proposed methodology has two main objectives both aiming to low test cost: 
(a) the generation of as small and as fast as possible code routines with (b) as small as possible engineering effort and test 
development time. The first objective leads to smaller download times at the low frequency of the external tester as well as 
to smaller test execution times of the routines, therefore reducing the total processor test time. The second objective 
reduces test development cost and time-to-market leading to significant improvements in product cost-effectiveness and 
market success.  



The high RT-level test development of the proposed approach is well suited to the high RT-level flow of the design 
cycle. Since design, simulation, and synthesis are usually carried out at the high RT-level, test development can also be 
carried out at the same level providing high convenience and flexibility. In this case, processor cores can be easily 
integrated into a SoC environment, configured and re-targeted in a variety of silicon technologies without any specific 
need for fine-tuning the test development to specific synthesis optimization parameters using a specific technology library. 
Experimental results show that the gate-level independent proposed test strategy is very efficient and achieves more or less 
the same high fault coverage results for different gate-level implementations of the RTL processor core. 

The proposed SBST methodology is shown in Figure 2.  

  

Figure 2: Proposed SBST Methodology  

The proposed SBST methodology consists of three phases. These phases are summarized as follows: 



Phase A 
In Phase A (Information Extraction) the processor is partitioned to a set (M) of Modules Under Test (MUTs) using the 

processor RTL. Furthermore, the following information is extracted using the ISA and the RTL: 
• the sets of component operations OC 
• the sets of Basic Test Instructions I that excite these component operations IC,O  
• the sets of Peripheral Test Instructions (or instruction sequences) for controlling or observing processor registers  

Phase B 
In Phase B (Component Classification and Test Priority), the processor components (C) are categorized in classes with 

the same properties and ranking is performed among the components C ∈M  to determine the test priority. 
We classify the processor components in the following three classes: 

• Functional components, which are directly related to the execution of instructions (data processing / data storage) 
implementing the micro-operations and visible to the assembly language programmer. These are either:  
o Computational components, which perform specific arithmetic/logic operations on data. Components classified 

in this sub-category include: Arithmetic Logic Units (ALUs), shifters, barrel shifters, multipliers, dividers, etc. 
o Interconnect components between processor components, which serve the data flow in a processor datapath. 

Components classified in this sub-category include: multiplexers controlled by appropriate control signals.   
o Storage components, which serve as data storage elements that feed the data to the inputs of the computational 

components and capture their output. Components classified in this sub-category include: special processor 
registers visible to the assembly language programmer, the Register file, pipeline registers, etc. 

• Control components, which control either the flow of instructions/data inside the processor core or from/to the 
external environment (memory, peripherals). These components include the processor controller, the instruction and 
data memory controllers that implement instruction fetching and similar components.  
• Hidden components, which are the components inserted in the processor architecture usually to increase its 
performance but they are not visible to the assembly language programmer. These components can be either 
Functional or Control as well, and include pipeline logic (pipeline registers, pipeline multiplexers and control) and 
other performance increasing components related to Instruction Level Parallelism, branch prediction techniques, etc. 

 
Component ranking is performed to determine the order in which test routines will be developed for each component. 

High priority components will be considered first while low priority components will be considered afterwards and only if 
the achieved overall fault coverage result is not adequate. In many cases test development for top priority components 
leads to sufficient fault coverage for not targeted components as well due to collateral coverage. This is particularly true in 
processor architectures where the execution of instructions in functional units excites many of the control subsystem 
components as well. The characteristics of a module that determine its priority in our methodology are the relative size and 
the accessibility (controllability and observability) of the component by processor instructions. 

Therefore, according to the proposed methodology, the functional components of the processor have the highest test 
priority for test development since their size dominates the processor area and they are easily accessible. When total 
processor fault coverage is not sufficient, test development should proceed with components with lower test priority. 

Phase C 
In Phase C (Self-test Code Development), self-test routines are developed for each processor component C and the most 

critical components (components C that ranked with higher test priority) are targeted first. The self-test program consists 
of several self-test routines. Processor level fault simulation is performed to evaluate collateral coverage and determine if 
the total fault coverage is acceptable.  

If C is a functional component, we follow a Deterministic Self-Test Code Development approach. The proposed 
methodology applies all possible component operations OC with deterministic operands. Application of component 
operations OC is performed by selecting the Basic test instruction i∈IC,O which requires the shortest instruction sequences 
(Peripheral test instructions) to apply the specific operand to component inputs and propagate the component outputs to 
the processor primary outputs. The key for selecting the most appropriate deterministic operands lies beneath the 
architecture of most critical-to-test processor components. Such components have an inherent regularity, which can lead to 
very efficient test algorithms for any gate-level implementation. This inherent regularity is not exploited either by 
pseudorandom test development or by ATPG-based test development approaches. Many processor components, in 
particular the vast majority of functional components like computational (arithmetic and logic operation modules), 
interconnect (multiplexers) and storage components (registers, register files) have a very regular or semi-regular structure. 
Regular structure appears in several forms like in the form of arrays of identical cells (linear or rectangular), tree-like 
structures of multiplexers, memory element arrays, etc. Such components can be efficiently tested with small and regular 
test sets that are gate-level independent, i.e. provide high fault coverage for any different gate-level implementation. 



We have developed a component Test Library of test algorithms [7],[8],[11],[12],[22] that generate small deterministic 
tests and provide very high fault coverage for most types and architectures of functional processor components. The nature 
of these deterministic tests is fundamentally different from ATPG-generated test patterns since a gate-level ATPG tool is 
not “smart” enough to identify regular structures and generate patterns optimized for compact-code software-based test 
application. Based on these small deterministic tests we have developed test routines that, besides the small number of 
tests, take advantage of test vectors’ regularity and algorithmic nature resulting in efficient compact loops. These loop-
based compact test routines require a very small number of bytes while the small number of tests results in low test routine 
execution time. The Test Library routines that describe a test algorithm in assembly pseudocode, for almost all generic 
functional components, are tailored each time to the processor’s under test instruction set and assembly language. We 
remark that although constructing such a Test Library seems like a time consuming task that requires a  substantial manual 
effort, it is a one-time-cost that cannot be directly associated with manual effort and test development cost for a specific 
processor under test, since it provides reusability. Testing different processors requires only tailoring the generic processor 
component tests to their ISA. Of course, the component Test Library can be enriched anytime with new deterministic tests, 
like tests that deal with new architectures and algorithms implementing for example arithmetic/logic operations. 

If C is a control component, we adopt a Verification-based Self-Test Code Development approach with test development 
still performed at high-level. Often, verification-based functional tests cannot guarantee acceptable fault coverage while 
the manual effort required to derive simple instruction sequences that verify control subsystem functionality is higher than 
the effort required for processor functional components where reusing our Test Library minimizes costly manual effort. 
Satisfaction of high-level RTL verification metrics supported by industry standard simulation tools like RTL statement, 
branch, condition and expression coverage helps to improve verification manual effort. Besides the overhead in test 
development cost, testing control and hidden subsystems impose a small overhead in the test program size and test 
application time as well. Such overheads characterize functional testing approaches, since it is very difficult for such 
components to be tackled by small and fast deterministic routines. Thus, we adopt such verification-based functional 
testing techniques for the control and hidden subsystems with the test cost/fault coverage trade-off in mind. We should 
remark that in many practical cases, verification-based test routines are developed at the design verification phase, 
therefore can be reused for the testing of control and hidden components with no additional manual effort involved or in 
the worst case substantially alleviating any manual self-test routine development effort. 

4. Experimental results 

The proposed methodology is demonstrated through its complete application to different processor benchmarks with 
scaling complexity. Some of these processor models are distributed under the GPL license agreement while other were 
developed to overcome architectural and functional limitations of the publicly available benchmarks. In order to evaluate 
the fault coverage, we developed a Test Evaluation Framework that was used for every processor benchmark case study. 
Tools from Mentor Graphics suite were used for VHDL synthesis, functional and fault simulation (Leonardo™, 
ModelSim™ and FlexTest™ products, respectively). Mentor Graphics suite and technology libraries were provided 
through Europractice service for academic institutions. For each processor benchmark, we first present logic synthesis 
results using different technology libraries. Then we present basic self-test program statistics like test program size and test 
program application time in clock cycles. Finally, we provide fault simulation results under the stuck-at fault model. The 
scope of this section is to prove the effectiveness of the proposed methodology by experimental results on different 
processor benchmarks with scaling complexity.  

4.1 Case study A: Plasma/MIPS 

Plasma/MIPS is a public available RISC processor model that supports interrupts and all MIPS ITM user mode 
instructions except unaligned load and store operations (which are patented) and exceptions. The synthesizable CPU core 
is implemented in VHDL with a 3-stage pipeline [27]. We have enhanced the CPU model of [27] by adding a parallel 
multiplier to provide closer correspondence with real-world high-performance RISC processor core models. The fast 
multiplier module was generated using a public available module generator [26] and has the following characteristics: 
Booth recoding, Wallace trees for partial product summation and fast carry look-ahead addition at the final stage.  

The Plasma/MIPS processor VHDL model was synthesized in two different technology libraries with different 
synthesis parameters. Synthesis A was optimized for area, targeted a 0.35 um technology library and the design runs at a 
clock frequency of 57 MHz. Synthesis B was also optimized for area, targeted a 0.50 um technology library and the design 
runs at a clock frequency of 42 MHz. Finally, Synthesis C was optimized for delay, targeted a 0.35 um technology library 
and the design runs at a clock frequency of 74 MHz. The resulting gate counts for each component and the processor 
overall, are shown in Table 1. A 2-input NAND gate is the gate count unit.  



Component Name Synthesis A 
0.35 um/ 57MHz 

Synthesis B 
0.50 um/42 MHz 

Synthesis C 
0.35 um/74 MHz 

Register File 9,905 11,558 11,905 
Paral.Mult/ Serial Div. 11,601 11,654 13,358 
ALU 491 558 900 
Shifter 682 636 834 
Memory Controller 1,119 1,120 1,163 
PC Logic 444 449 493 
Control Logic 230 244 361 
Bus Multiplexer 453 431 623 
Pipeline 885 876 961 

Total CPU 26,080 27,824 30,896 

Table 1: Plasma/MIPS components gate counts 

According to the proposed methodology, the components of highest priority for test development are the five functional 
components of the Plasma/MIPS processor: register file, parallel multiplier/serial divider, ALU and shifter. Although very 
high total fault coverage (>94.5%) was achieved by targeting these functional components due to collateral coverage, the 
test program was enhanced by verification-based functional testing routines targeting memory controller and control logic. 

Component  Size (words) Clock Cycles 
Register File 319 582 
Parallel Multiplier 28 3,122 
Serial Divider 41 1,154 
ALU 79 275 
Shifter 210 340 
Memory Controller 76 160 
Control Logic 100 164 

Total CPU 853 5,797 

Table 2: Self-test routines statistics on Plasma/MIPS 

The self-test routine statistics are given in Table 2 in number of words and clock cycles for self-test routine execution. 
Along with total self-test routine statistics, partial statistics are given for each targeted component as well. Fault simulation 
results after the application of the developed test routines to processor netlists led to the fault coverage results given in 
Table 3. The components that have been targeted for test development are marked on their left side in the table.  

 Fault coverage (%) 
Component Name Synthesis A Synthesis B Synthesis C 

√ Register File 97.8 97.8 97.8 

√ Multiplier/Divider   96.3 96.1 95.2 

√ Arithmetic-Logic Unit 96.8 97.5 95.8 

√ Shifter 98.4 99.9 95.3 

√ Memory Control 87.9 88.5 90.3 
  Program Counter Logic 89.3 88.3 85.3 
√ Control Logic 54.9 54.9 55.9 
  Bus Multiplexer 71.8 72.0 71.3 
  Pipeline 98.4 96.9 96.0 
  Total CPU 95.3 95.3 94.5 

Table 3: Fault coverage results on Plasma/MIPS  

As it is shown in Table 3, we obtained very similar fault coverage results when the processor was synthesized in 
different technology libraries with different optimization scripts, optimizing either for area or performance. This set of 
experiments was performed to show that test development for the targeted components which is performed at high RT-
level results in high structural fault coverage that does not depend in the gate-level synthesis implementation. The 
application of the proposed SBST methodology to a 30,000 logic gates RISC processor benchmark can be summarized as 
follows: 

Using a self-test program of less than 1K words that is executed in less than 6,000 clock cycles which leads to very low 
test application cost, we can achieve high quality at-speed testing with fault coverage >95%. The self-test program is 
gate-level independent, which means independent of the logic synthesis parameters and technology library used.  



4.2 Case study B: ASIP Meister/MIPS 

We developed a MIPS R3000 compatible processor with a 5-stage pipeline using the Application Specific Instruction 
set Processor (ASIP) design environment ASIP Meister [1] for evaluating the proposed methodology in a different 
processor implementation of the same MIPS I ™ ISA. A 52 instruction subset of the MIPS R3000 instruction set was 
developed while coprocessor and interrupt instructions were not implemented. It should be noted, that in the current 
educational release version of the ASIP Meister design environment [1], data hazard detection and register bypassing 
control logic are not implemented for IP security reasons. The automatically generated RTL VHDL model has been 
synthesized, optimized for area, targeting a 0.35 um technology library and the design runs at a clock frequency of 44 
MHz with a total gate count of 37,400 gates. The resulting gate counts for each component and the processor overall, are 
shown in Table 5.  

A test program was constructed targeting the functional components and was further enhanced by instruction sequences 
targeting the processor controller following a verification-based functional testing approach. Test program statistics are 
illustrated in the following Table 4. It should be noted that although this processor benchmark implements almost the same 
MIPS I ™ ISA as the previous one with more complex control and pipeline, the fact that the VHDL RTL design generated 
by the ASIP design environment does not support data hazard detection and register bypassing, a requirement for careful 
assembly instruction scheduling is imposed along with insertion of nop instructions wherever it is necessary. This resulted 
to increased test program size and test execution time when compared to the previous case study A. 

Component  Size (words) Clock Cycles 
Register File 720 859 
Parallel Multiplier 68 5855 
Serial Divider 65 1396 
ALU 192 1188 
Shifter 378 437 
Hi-Lo Registers 30 35 
Control Logic 275 291 

Total CPU 1,728 10,061 

Table 4: Self-test routine statistics on ASIP Meister/MIPS R3000 compatible processor  

In Table 5, one should notice the very high fault coverage percentage for the targeted processor functional units. For 
example, the computational functional units (ALU, Multiplier, Shifter) were targeted by simply tailoring our Test Library 
algorithms that apply precomputed gate-level independent deterministic tests, to the MIPS assembly language and fault 
coverage of 98.4%, 99.0% and 99.8% respectively was achieved. Similarly, the storage functional units (Register file, HI-
LO registers) were targeted by our precomputed gate-level independent deterministic tests and fault coverage of 99.8% 
and 100% respectively was achieved. The total processor fault coverage is 92.6% which is less that the previous case study 
benchmark due to the more complex pipeline (5-stage pipeline) and pipeline control, which are not targeted in this case 
study. If there were no pipeline control logic implementation limitations in the ASIP Meister suite due to IP protection, 
much higher fault coverage could be attained by targeting the pipeline logic.  

Component Gates FC (%) 
√ Register File 11,414 99.8 

√ Parallel Multiplier/Serial Divider 12,564 95.2 
√ ALU 658 98.4 

√ Shifter 633 99.8 

√ Hi-Lo Registers 536 100.0 

√ Controller 2,352 79.2 
  Data Memory Controller 1,086 58.2 
  Program Counter Logic 644 58.5 
  Instruction register 275 97.4 
  Pipeline registers 5,693 91.0 

  Total CPU 37,402 92.6 

Table 5: Gate count and fault coverage statistics on ASIP Meister/MIPS R3000 compatible processor  



4.3 Case study C: Athena/MIPS 

Athena is an in-house developed processor developed to fulfill the requirements of a fully functional pipelined 
processor benchmark. Athena’s complexity is the higher in the complexity scale among the processor benchmarks used for 
the experimental results. Athena is a 32-bit embedded RISC processor core that implements a 5-stage pipeline with hazard 
detection and forwarding mechanisms. It implements the full MIPS-I ISA with the sole exception of the unaligned load 
and store operations that are patented. The RTL processor model was synthesized targeting a 0.18um technology library. 
Synthesis was optimized for area and the netlist gate-count was 26,122 gates with 1,515 FFs. The design runs at a clock 
frequency of 82 MHz. The resulting gate counts for each component and the processor overall, are shown in Table 7. 

A self-test program was composed targeting the computational functional components (parallel multiplier, ALU, 
shifter), the interconnecting functional components (pipeline forwarding multiplexers) and the storage fuctional 
components (Register file, HI,LO registers and pipeline registers). All functional components were targeted by simply 
tailoring our Test Library algorithms that apply precomputed gate-level independent deterministic tests, to the MIPS 
assembly language. The self-test program was enhanced by self-test routines targeting control components including 
pipelined control, the pipeline stage controllers and the hazard detection unit. Control components were targeted using a 
coverage driven, verification-based self-test code development approach aiming at maximizing functional coverage 
metrics by taking advantage of existing software platforms. Athena Processor Verification Suite (APVS) which was 
developed at the design phase of Athena, automatically generated verification-based functional test code. Through re-
usability, any manual self-test routine development effort was substantially alleviated. Test program statistics are 
illustrated in the following Table 4. 

Self-test program statistics  
Size (words) 3,014 
Execution time (cycles) 11,637 

Table 6: Self-test program statistics on Athena/MIPS processor 

Again, the effectiveness of our SBST methodology for the most critical-to-test processor functional components using 
high-level Deterministic Self-Test code development is clearly shown in the fault simulation statistics given in Table 7. 
For example, complete or almost complete coverage was achieved for the computational functional components (ALU, 
Multiplier, Shifter), the storage functional components (Register file, HI-LO registers) and the interconnect functional 
components (pipeline forwarding multiplexers). Verification-based self-test code development for the least critical-to-test 
control components can be performed at high-level using functional metrics can but cannot guarantee very high fault 
coverage.  

The application of the proposed SBST methodology to Athena, a fully 5-stage pipelined RISC processor benchmark can 
be summarized as follows: 

Using a self-test program of about 3K words that is executed in less than 12,000 clock cycles, we can achieve high 
quality at-speed testing with fault coverage >96%.  

Component Gates FC (%) 
Register File 9,669 100.0 
Parallel Multiplier 8,746 98.7 
Arithmetic-Logic Unit 579 99.7 
Shifter 861 100.0 
HI-LO Registers 484 100.0 
Pipelined Control 196 84.0 
Pipeline registers 2,968 94.8 
Pipeline stage controllers 239 94.7 
Hazard Detection Unit 26 92.9 
Forwarding Unit 61 87.8 
Forwarding Multiplexers 483 100.0 

  Total CPU 26,122 96.3 

Table 7: Gate count and fault coverage statistics on Athena/MIPS processor 



5. Conclusions 

In this thesis, we presented a high-level component-based software-based self-test methodology and demonstrated its 
application on three complex embedded processor architectures that implement a very popular RISC instruction set 
including different gate-level implementations of these processors.  

The proposed SBST methodology does not require either manual or automatic constraint extraction for the processor 
components or any sequential ATPG at the gate level. It can be applied when just an RT-level description and the 
Instruction Set Architecture of the processor are available. Post synthesis gate-level netlist is required only for fault 
grading and it does not consist a part of any test generation iterative loop. The methodology aims to construct small and 
fast self-test routines for the most important and test critical components of the processor in order to achieve a low test 
application cost. Low test development cost is accomplished by keeping engineer manual test writing effort as low as 
possible with test routine library reuse while at the same time minimizing computational effort. Low-speed, low-cost 
external testers are excellent utilized by the proposed methodology, since the test program downloading from the tester 
memory to the on-chip memory, performed at the low frequency of the tester, is completed in very short time intervals. 

We have demonstrated that high test quality (more than 95%, 92.6% and 96.3% respectively) fault coverage is achieved 
for the three benchmark processors implementing a popular RISC ISA with scaling complexity and different gate-level 
implementations while keeping total test application cost as low as possible. 
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