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Abstract. In this PhD thesis we present a methodology for the objective error 
detection for message passing applications composed by the Ensemble compo-
sition architecture. The methodology may be considered as a Parallel and Dis-
tributed Software Engineering process. It involves software development man-
agement, and links design, implementation and testing in an integrated 
development process. We propose the use of specifications of software compo-
nents and a specifications composition technique, which is directly related to 
the applications composition of Ensemble, to produce the specifications of ap-
plications. We follow the concept of lightweight formal methods, which are ap-
plied during program execution as tools that provide assistance for error detec-
tion. We propose an extension to the coloured Petri net model, called template 
CPN, which is capable to model parametric interfaces of Ensemble software 
components. We model communication with Petri nets, covering all point to 
point communication operations for MPI and PVM. We finally propose the use 
of execution monitoring tools in synergy with the use of specifications simula-
tion tools. This synergy provides the ability to derive objective conclusions on 
the behaviour of the application and on the detection of possible errors.  

1 Introduction 

In this thesis we are dealing with the problem of testing and debugging parallel 
message passing applications, which are developed following the software composi-
tion model. We propose a specifications component model, based on coloured Petri 
nets, to represent specifications of software components, able to model their open and 
scalable interfaces. We then propose a common framework to perform application 
and their specifications composition. We incorporate these techniques in a methodol-
ogy, which provides an objective error detection capability. To achieve this, the 
methodology combines tools from the “world ” of programs, with tools from the 
“world ” of formal specifications. From the programs world we have used visualiza-
tion, monitoring and tracing tools, while from the specifications world we have used 
a specifications simulator. 

The methodology may be included in the framework of the software life-cycle 
model of Software Engineering, aiming at extending it in Parallel and Distributed Sys-
tems (Parallel and Distributed Software Engineering). We propose the integration of 
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the methodology in the design and implementation phases, as well as in the testing 
and fine-tuning phase of the waterfall model, without limiting the methodology only 
to management of software development, but instead linking design, implementation 
and testing in an integrated development process.  

We have followed the logic of lightweight formal methods, which are applied dur-
ing program execution as tools that provide assistance for error detection. This logic 
does not invalidate the value of heavyweight formal methods but is supplementary to 
them.  

The research performed during this thesis extends in three different fields of Com-
puter Science: in the field of Message Passing Parallel Programming, in the field of 
Modular Design and Component Software and finally and most widely in the field of 
Formal Methods.  

2 A Parallel and Distributed Software Engineering Approach 

The message passing model is the most popular model of parallel programming. 
Message passing parallel programs create a number of processes, each with its own 
local data, a unique name, which communicate by sending and receiving messages to 
and from other processes. For the implementation of message passing parallel appli-
cations, integrated development environments (Message Passing Environments-
MPEs) are used, which provide a useful abstraction of underlying architectures, thus 
simplifying architecture resource management. The most popular are PVM [7] and 
MPI [13]. 

Design and development of message passing parallel applications is a complicated 
process. Essentially a programmer has to design the combined behaviour of the proc-
esses that constitute an application, take into consideration the restrictions that are 
imposed in process execution by their interaction, implement correctly processes 
communication and synchronization and finally take into consideration additional re-
strictions that are related to the MPE used. The applications are developed following 
two models, the SPMD model (Single Program Multiple Data) and the MPMD model 
(Multiple Program Multiple Data). In the SPMD model, the application spawns a 
number of identical processes, each of which executes the same program on different 
data. In the MPMD model, the application spawns a number of different processes 
that execute different programs on different data. 

The adaptation of sequential programming software engineering processes to paral-
lel programming has specific difficulties regarding error detection [16]. Apart from 
general problems encountered in sequential programs [12], there also exist specific 
problems in detecting errors in parallel programs [6]. The solutions that have been 
proposed concern mainly the adaptation of methods that are used in sequential pro-
grams [1], to be applied to the individual sequential parts of parallel programs. The 
most common approach is to assign each process of a parallel program to a different 
sequential debugger.  

In this thesis, we have coped with the problem of testing and objective error detec-
tion (i.e. as nearly as possible to the error itself rather than its observable conse-
quences) in message passing parallel applications. Our approach lies in combining 



techniques and tools from the “world” of programs, with techniques and tools from 
the “world” of formal specifications. From the world of programs such tools are visu-
alization, monitoring and execution tracing tools. The visualization tools provide a 
visual chart of program execution, presenting in a graphic way process interactions, 
function calls, sending of messages etc. Monitoring tools combine features of debug-
ger programs and visualization tools. Finally, execution tracing tools store in a file in-
formation relative with actions implemented during program execution, giving thus 
the possibility of replay of this execution, that is used in the so called post mortem 
analysis. 

From the world of specifications we have used specification simulation tools, or 
simulators. The simulators are tools which, starting from an initial state of the specifi-
cations, follow one from all possible courses of program execution, moving from a 
state to one of its successor states, until the simulation is completed (i.e. there is no 
successor state available) providing thus conclusions on this specific course of pro-
gram execution. 

The direction that we followed was to include our methodology in the framework 
of the software life-cycle model of Software Engineering, in order to extend its appli-
cation to Parallel and Distributed Systems (Parallel and Distributed Software Engi-
neering). The various software life-cycle models determine the sequence of different 
activities and their relations in the software development process. There are three ma-
jor life-cycle models, the linear phases or waterfall model, the spiral model, and the 
circular model [15]. 

The waterfall model represents the most widespread approach. Even though there 
exist a number of different variants, it always consists of similar phases, which are 
implemented in a similar “chronological” order. Our methodology may be included, 
on one hand in the Design and Implementation phases, on the other hand (and mainly) 
in the Testing and fine-tuning phase of the waterfall model. However, it is not limited 
only to management of the software development process, but instead design, imple-
mentation and testing are also connected and interacting in an integrated development 
process. 

Our approach, follows the logic of lightweight formal methods, which are applied 
during program execution as tools that provide assistance for error detection [60], 
contrary to the logic of heavyweight formal methods, which are used to prove the cor-
rectness of programs before execution, such as model checking and theorem proving. 
Actually, we have tried to place our methodology in the framework of software engi-
neering for parallel and distributed systems and not in the framework of the theoreti-
cal models of behaviour for these systems. Our approach does not invalidate the value 
of heavyweight formal methods, on the contrary it is proposed as supplementary to 
them. 

Modular Design is a technique in which independent software units, that execute 
specific operations, are combined in such a way that the desired application is pro-
duced. In modern terminology the independent software units are called software 
components or simply components. The process of combining software components is 
called composition. Software composition is based either in object-oriented tech-
niques, or in message passing with establishment of communication channels between 
components.  



The basic advantage of modular design is that programs are not implemented in a 
monolithic unit, but in separate components, which have well defined operations and 
interfaces, increasing thus reliability and decreasing costs of program implementation, 
simplifying implementation itself, facilitating modification of programs so that they 
cover altered requirements and supporting the reusability of components in new pro-
grams. 

The Ensemble application development methodology, which has been developed in 
the University of Athens, may be included in the framework of messages passing 
software composition. An application in Ensemble is an ensemble that consists of 
modular software components, executable programs and composition directives, 
which determine the application processes, their topology and their mapping in the ar-
chitecture. The directives are interpreted and a composition program implements the 
application composition. Ensemble provides the option for MPMD programming and 
apart from various MPEs it has been extended to GRID environments.  

Even though Ensemble provides a productive framework for implementation and 
maintenance of message passing applications, by supporting their correct design, it 
cannot guarantee the absence of design and implementation errors. Moreover, compo-
sition is prone to new types of errors, such as use of wrong components and undefined 
or incompatible binding of communication channels. 

The most suitable solution to this problem is the use of formal methods, since they 
may, in case of heavyweight methods, provide formal verification of correct program 
behaviour before their implementation, or, in case of lightweight formal methods, im-
prove special testing and monitoring techniques used in performance monitoring and 
in distributed debugging. 

For distributed systems various formal methods have been used, such as finite state 
machines, Petri nets, process algebras etc. The distributed system is modelled as a 
whole and then the model is executed in a simulation or analysis tool. The simulation 
may locate possible abnormalities in model execution, e.g. deadlocks and faulty syn-
chronisations, which lead to non-deterministic behaviour of the system. The behav-
iour of a composed message passing application cannot, in general, be determined 
from the behaviour of its components. It is, however, possible to compose the formal 
specifications of components, to provide the formal specifications of the application, 
which can then be tested and verified.  

The main part of our research, is related to methods and techniques for modelling 
the formal specifications of Ensemble software components, modelling the composi-
tion of these components into a single parallel application, as well as determining a 
way of interaction between the simulation of formal specifications and the analysis of 
execution of the associated programs. We also, dealt with the redesign of the Ensem-
ble software components for PVM, in order to adopt, as much as possible, a common 
form and functionality with the Ensemble software components for MPI [5].  

3 Specifications Composition with the Ensemble Methodology 

We propose a specifications composition technique, which is directly related to the 
applications composition of Ensemble. The applications composition technique of 



Ensemble is extended in order to cover the composition of the associated formal 
specifications, in a common way. Initially we define the specifications of software 
components, which in analogy are the specifications components. Consequently, the 
formal specifications of applications (application specifications) are composed from 
specifications components in analogy to the applications composition from software 
components. The composition directives that control the applications composition 
also control the specifications composition.  

The use of specifications composition as a design methodology of Ensemble appli-
cations, leads to an integrated development process that follows the classic paradigm, 
where application design is followed by the implementation of specifications compo-
nents and their composition, to produce the application specifications. At the same 
time the corresponding software components are being implemented or already im-
plemented software components are reused. The world of specifications and the world 
of programs are actually disconnected. The single common part and essential advan-
tage of Ensemble are the composition directives of applications and specifications, 
which are the same, a fact that gives the possibility to locate certain types of errors. 
The specifications composition is also used in the framework of an objective error de-
tection methodology, in which we propose the use of tools from the world of pro-
grams (e.g. monitoring tools) in synergy with the use of tools from the world of speci-
fications (e.g. specifications simulators). Essentially, in this way, the world of 
programs and the world of specifications are not disconnected anymore, since apart 
from the common composition directives they have now another common part, the in-
teraction of specifications simulation tools with execution monitoring tools.  

The synergy of these tools provides the possibility to derive objective conclusions 
on the behaviour of the application and on the detection of possible errors. On the one 
hand, program execution tracing information can “guide” the specifications simula-
tion. The simulator detects invalid events in the trace file and gives the earliest possi-
ble warning. On the other hand, the simulator can be used to “steer” the program exe-
cution. The specifications simulator produces valid (i.e. feasible) states or other 
attributes of the system and steers program execution to the corresponding events. In 
this case too, we receive the earliest possible warning, i.e. possible errors can be de-
tected in their point of origin and not in some later point of the execution (where their 
side effects can be observed), since the monitoring tool will depict the inability of the 
program execution to reach the corresponding event. 

The formal model we have used is the Petri net model [14], a graphic formalism 
suitable to model systems that entail concurrency and resource sharing. This formal-
ism is a generalisation of automata theory, which allows the expression of events that 
occur simultaneously. A Petri net consists of places (states), transitions (actions) and 
directed arcs. The arcs connect places with transitions and the reverse. There are no 
arcs between places or between transitions. The places can contain any number of to-
kens. The transitions are fired, i.e. tokens are consumed from input places and pro-
duced in output places. A transition is enabled if tokens are present in each of its input 
places. In the basic form of Petri nets, tokens are not distinguished. The most compli-
cated models of Petri nets add colour in tokens, activation time in transitions and hier-
archy in the network. 

The choice of Petri nets was based in the fact that they have been used widely for 
modelling parallel and distributed systems, they are accompanied by abundance of ex-



tensions, practical and theoretical studies on modelling of distributed systems, as well 
as a big number of tools for simulation and analysis of various Petri net variants. An 
additional reason is that due to their graphic form, they become more easily compre-
hensible in comparison to various algebraic representations of other models, while the 
programmers accept them more easily as a tool integrated in a software engineering 
methodology. However, the more important reason is that the particular characteris-
tics of the Ensemble message passing software components can be adequately mod-
elled using Petri nets.  

In particular, we have defined a new class of Petri nets, which is based on the col-
oured Petri nets model [11] and extends it by adding the ability to describe parametri-
cal interfaces [17] and is called template CPN.  

An important part of our proposal deals with modelling of communication with 
Petri nets. In the bibliography, the basic classification of process communication is 
synchronous and asynchronous. Modelling communication with Petri nets follows 
this general classification, even though, in most cases it is adapted to the particular 
requirements of the associated theoretical models. In the case of asynchronous com-
munication, modelling is relatively simple, owed to the inherent characteristics of 
Petri nets, since it is modelled with “fusion of places” (two places), which represent 
communication ports (one input and one output) [30,32], corresponding to a form of 
communication called “point to point communication”, which essentially models a 
communication channel between two processes. For synchronous communication, 
most approaches use a representation that corresponds to fusion of transitions. 

In our work we propose another alternative, the “unification of places” (or fusion 
of all places that represent communication ports) into a “total” place, which is called 
“environment”, since it represents all communication channels that are established by 
the application [3,17,18]. In this case, the distinction of channels is made by the mes-
sages themselves through information that is included in them (in the tokens), tech-
nique that approaches the tuple space of Linda and other coordination languages [8].  

Special focus has been given in modelling the parametric interface of Ensemble 
message passing software components. In this case, the interface places and the arcs 
that connect them to communication transitions correspond to a communication type, 
which has a range for its number of ports. The actual number of ports is determined at 
the time of producing the process specifications from the specifications components. 
An approach for modelling the range of communication ports is the replication of in-
terface places as well as of the arcs that connect them to the static net structure. In this 
case, composition is based on “fusion of pairs of places ” and models point-to-point 
channels individually. This approach leads to an “explosion” of interface places. The 
second approach, which is based on our proposal to model communication by “unifi-
cation of places”, is modelling the range of number of communication ports of a 
communication type by maintaining a single interface place and reproducing inscrip-
tions of the corresponding arc. In this case, when handling collective communication 
operations (reduction or multicast-broadcast) the arc inscription is one and includes 
all individual inscriptions that correspond to each port that participates in this com-
munication, while when handling point to point communication operations, the in-
scription is parametric and the structure is nested in a for-while loop, where the in-
scription takes the appropriate form for each communication port. 



Based on modelling of communication by “unification of places”, we have mod-
elled all point-to-point communication operations for MPI and PVM. We have devel-
oped specific Petri net modules, which, depending on the desired communication op-
eration, can replace the generic transitions that correspond to communication 
operations, as well as the corresponding interface place.  

In the sequel, we sought specific forms of representation of coloured Petri nets, 
since our aim was to use a representation that is supported by an existing tool. How-
ever, we preferred not to use directly a specific representation (e.g the graphic form of 
the design/CPN tool), but to define a parametric description language for Petri nets, 
based on our theoretical model of template CPN. In this way the choice of the simula-
tion tool is not restrictive, and independence of any specific tool is achieved. The 
most difficult problem we have faced in modelling of components is the inherent 
static nature of Petri nets, which contradicts to our requirement for dynamic configu-
ration of parametric interface of specifications components, i.e. places that correspond 
to communication ports. 

For this reason, the description language for Petri nets maintains the static part of 
specifications components (i.e. the one that represents the internal operations and cal-
culations of the component) and separates the dynamic part, so that it can be modified 
depending on the application. In practice this modification concerns only reproduction 
of inscriptions of arcs that connect communication ports and communication transi-
tions. The template CPNs description files start with a header, which contains those 
elements whose values are assigned depending on the application and which control 
the replication of ports.  

The next step was to formulate an algorithm that implements the composition of 
formal specifications of Ensemble message passing software components and pro-
duces the formal specifications of a single parallel application. Initially, all template 
CPN files that participate in an application are retrieved from a repository. Each tem-
plate CPN has a unique name; process specifications are produced by instantiating ac-
cordingly the template CPN (i.e. setting actual values to interface parameters and in-
dexing the template name by the instantiation index) and are called composable 
CPNs. Then composable CPNs are connected through unification of interface places, 
and the final Petri net of the application is produced, which is called composed CPN 
or application CPN. All information required for the production of composable CPNs 
from template CPNs as well as for their composition, is received from the same com-
position directives that also guide the composition of the associated programs and, ac-
tually, the process is precisely the same with the process of composition of software 
components. Thus, templates CPNs correspond to the software components, compos-
able CPNs to the processes that are spawned from the software components and the 
application CPN to the composed application. 

4 Using the Methodology 

The methodology has two aspects; on the one hand it may be applied in application 
development within the classic framework and on the other hand it may be applied in 
the objective error detection. The methodology has the following phases:  



(i) Design and Specifications Components Testing Phase 
In this phase the programmer designs the application and develops the specifica-
tions components. The specifications can model any level of program detail. The 
feasible detail level is limited mainly by data representation of actual Petri net 
tools. The parallel behavior needs to be modeled in any detail level. 

(ii) Composition Directives Testing Phase 
In this phase the composition directives of Ensemble are developed and tested. 
The programmer may determine tests that are to be executed by the composed ap-
plication and its specifications, based on information from application design. 
Testing is based on the fact that directives are common for specifications and pro-
grams.  

(iii) Software Components Implementation and Application Composition Phase 
Based on specifications the corresponding software components are developed. 
The complexity of the process is less than implementing monolithic code or speci-
fications, since it is not required to incorporate in the code topology creation and 
management as well as interactions between processes or their specifications. 

(iv) Individual Software Components Testing Phase 
In this phase, “stub” processes and specifications test the interactions of compo-
nents incrementally. A number of “minimized” applications are designed, which 
comprise the software component and the “stub” component and which test the 
possible configurations of the components interface. These applications as well as 
their specifications are then composed, the applications are executed and a trace 
file is produced for each. This file is used, for interaction with the specifications 
simulation tool. The communication operations that have been traced in the file as 
completed, are associated with corresponding transitions in the specifications, giv-
ing the possibility to test the compatibility of specifications and programs. 

(v) Application Testing Phase 
In this phase, after a complete application has been composed as well as its speci-
fications, the procedure that was described in the previous phase is followed, but 
now interaction of program execution and specifications simulation concerns a 
complete application. 

Under the aspect of application development, where components specifications and 
software components are developed separately, using features of the Ensemble meth-
odology, certain types of errors are detected. The first type of errors that can be de-
tected is the category related to the compatibility of specifications and programs.  

The program that “reads” the files that contain the syntactic description of the cor-
responding specifications, detects an important number of errors. Some of them are 
simple syntactic errors, e.g. not declared identifier, while others are related to infor-
mation of communication ports and channels binding between the components that 
are present in the composition directives: 
• Channels binding. In this case we check whether all communication ports that are 

declared in the composition directives are used by the application, as well as 
whether they are declared also in the corresponding template CPN. Actually this 
test is the syntactic analysis (parsing) of the template CPN combined with the test 
of the corresponding composition directives.  

• Channel type. This test is performed before composition, so that when the compo-
sition directives determine the channel binding between two incompatible ports 



(e.g. that support different data types) the composition program detects it and ter-
minates with an appropriate error message. 

This aspect includes the (i) Design and Specifications Components Testing Phase, (ii) 
Composition Directives Testing Phase and (iii) Software Components Implementation 
and Application Composition Phase of the methodology. In these phases mainly static 
testing is performed based on syntactic and semantic information contained in the 
specifications components and in the composition directives. 

The aspect of objective error detection includes the (iv) Individual Software Com-
ponents Testing Phase and (v) Application Testing Phase of the methodology.  

In order to achieve the desired objective error detection, the designer uses the exe-
cution monitoring and visualization tools in synergy with the simulation tool (which 
performs the simulation of the application CPN). Actually, in this way, the “world” of 
programs and the “world” of specifications are now connected through the interaction 
of specifications simulation tools with implementation monitoring tools. The synergy 
of these tools provides the ability to draw objective conclusions on the behavior of the 
application and on the detection of possible errors. 

This test can locate:  
• Errors in communication operations and other execution environment errors. This 

category includes normal termination of applications. This means that all send op-
erations are associated one-by-one to receive operations. If such errors occur, in 
the case of synchronous communication a deadlock occurs, while in the case of 
asynchronous communication left over messages remain in the environment, a 
case which in PVM may not be detected since the application may terminate; in 
the specifications however left over messages correspond to tokens in the envi-
ronment place that are not consumed by some receive operation. 

• Correctness of other component elements, which are not related to communication 
operations. This type of errors may also be detected. The methodology supports 
the detection of errors in the sequential parts of the components, using the associa-
tions proposed by Heiner [9]. 

In Ensemble applications we may classify errors in the following categories: (i) Exe-
cution Environment Errors, (ii) Composition Errors, (iii) Software Components Im-
plementation Errors and (iv) Design Inadequacy Errors. Error detection begins with 
execution environment errors and incrementally limits the search of errors to compo-
sition errors, component implementation errors and design errors. 

5 Conclusions 

Summarising, the most important contribution of this thesis in the field of testing 
and error detection for message passing parallel applications, consists in the definition 
of a systematic process that assists substantially in the earliest possible objective de-
tection of probable errors, e.g. the detection of the place of the actual error appearance 
and not the detection of the place where the errors side-effects are becoming observ-
able. 
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