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Abstract. The recent advances in the field of experimental construc-
tion of quantum computers with increased fidelity components shows
that large-scale machines based on the principles of quantum physics are
likely to be realized in the near future. As the size of the future quan-
tum computers will be increased, efficient quantum circuits and design
methods will gradually gain practical interest. The contribution of this
thesis towards the design of efficient quantum circuits is two-fold. The
first is the design of novel efficient quantum arithmetic circuits based on
the Quantum Fourier Transform (QFT), like multiplier-with-constant-
and-accumulator (MAC) and divider by constant, both of linear depth
(or speed) with respect with the bits number of the integer operands.
These circuits are effectively combined so as they can perform modular
multiplication by constant in linear depth and space and consequently
modular exponentiation in quadratic time and linear space. Modular ex-
ponentiation and modular multiplication operations are integral parts of
the important quantum factorization algorithm of Shor and other quan-
tum algorithms of the same family, known as Quantum Phase Estima-
tion algorithms. Important implementation problems like the required
high accuracy of the employed rotation quantum gates and the local
communications between the gates are effectively addressed. The second
contribution of this thesis is a generic hierarchical synthesis methodol-
ogy for arbitrary complex and large quantum and reversible circuits. The
methodology can handle more easily larger circuits relative to the flat
synthesis methods. The proposed method offers advantages over the stan-
dard hierarchical synthesis which uses Bennett’s method of ”compute-
copy-uncompute”.
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1 Introduction

Quantum Information Theory and Quantum Computing are interdisciplinary
research fields that combine different doses of Physics, Informatics and Math-
ematics depending on which aspect someone focuses. Quantum Computing is
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a relatively recent research field, although Quantum Information Theory has
already been developed for the last 40 years, after important results which con-
nect classical Information Theory to Quantum Mechanics (quantum entropies
inequalities [2, 18, 19], Holevo bounds for capacities of quantum channels [15, 16],
Bekenstein bound [5], etc.)

The theoretical connection of Quantum Mechanics to the Theory of Com-
putation achieved in the 80’s [11, 12], while more boost came in the 90’s with
the invention of efficient quantum algorithms [32, 30, 14], which can be executed
on computing machines (quantum computers) exploiting fundamental quantum
properties of nature, like superposition and entanglement. Such efficient algo-
rithms can achieve important reduction of time complexity, so that in many
instances, problems that cannot be solved in polynomial time on a classical
computer with the currently known algorithms, can be solved in polynomial
time on a quantum computer. A famous example, with important applications
in Cryptography, is the factorization of a composite integer into its prime factors
(Shor’s algorithm)[30]. Another important example is the efficient simulation of
quantum physical systems with many degrees of freedom (like a complex chem-
ical molecule), a computation which is not practically achievable in a classical
computer [20].

The physical realization of a quantum computer, while in principle is fea-
sible, requires a complex technological effort to overcome practical problems.
An important problem is that the carriers of quantum information, the qubits,
are very fragile under the influence of their environment and it is very difficult
to maintain them in a constant state for a long enough duration so as they
can perform a useful computation. The physical carriers of information can be
atoms, ions, nuclei and in general any microscopic system on which quantum
mechanical effects can be observed1. The disturbance effect on the qubits under
the environment influence is known as decoherence and can be thought as an en-
vironment noise effect. Decoherence problems increase as the number of qubits
increases. Additionally, the basic processing elements of qubits, the quantum
gates, introduce another factor of disturbance of quantum information, because
usually their operation approximates the ideal theoretical operation with errors
which don’t allow the construction of useful large quantum computers. These
introduced errors can be thought as an additional environment induced noise,
converting the ideal gates to noisy or erroneous ones. Thus, although real quan-
tum computers have been already developed using various technologies (photons,
ion traps, Josephson junctions), they are limited to about 10 qubits [21, 3, 27,
35].

The decoherence problem has been theoretically addressed in the 90’s by
exploiting and extending results from classical Error Correcting Codes Theory,
leading to the invention of Quantum Error Correcting Codes [31, 7, 33]. Such
codes can be applied by combining many noisy quantum physical gates so as
to build an ideal quantum logical gate, that is they allow the construction of

1 Currently, some of the most promising are ion traps [9] and Josepshon junction
superconductors [36]



fault tolerant quantum gates. This can be accomplished under some conditions,
of which the most important is that the noise percentage introduced by each
physical quantum gate is lower than a threshold (Quantum Threshold Theorem)
[1]. In such a case, an ideal quantum logical gate can be constructed by using
redundancy, that is using many physical gates. During the recent years, the effort
to build high reliability quantum gates has been intensified, so as to permit the
construction of quantum computers of adequate size in the near future. Results
of these efforts are very encouraging.

This thesis contributes two-fold:

1. Design of novel efficient quantum circuits (arrays of interconnected quantum
logical gates) for integer arithmetic operations and their combination to a
higher hierarchy level to achieve more complex arithmetic operations, like
modular exponentiation which is an integral part of Shor’s algorithm and
important algorithms of the same class [24] . The novelty of the proposed
circuits lays in the usage of Quantum Fourier Transform (QFT) on the in-
tegers states prior to their processing, resulting in improved efficiency in
terms of speed. Problems related to the usage of QFT in arithmetic circuits,
such as the requirement for high precision quantum gates and the lack of
communications locality between the qubits, are also effectively addressed.

2. A generic hierarchical quantum and reversible circuits synthesis methodol-
ogy [25, 26]. The majority of existing automatic synthesis methods are flat;
they operate on the lowest level of gates and while in many cases they lead
to optimal or suboptimal results, they have the disadvantage of not being
suitable for large circuits as they have exponential requirements in memory
usage and run time. The straightforward incorporation of hierarchical syn-
thesis methods into tools of flat methods uses the methodology of Bennett.
In contrast, the proposed hierarchical method offers advantages in terms of
derived circuit speed and memory, relative to the few hierarchical ones of
the literature.

2 Design of Novel Efficient Quantum Circuits

In the context of this thesis, the used gates are assumed to be reliable (logical
level) which have been derived from elementary physical quantum gates incor-
porating any method of error correction. Thus, the thesis concerns the logical
level of quantum gates and not the lower level of physical gates. Therefore, the
proposed methods of this doctoral thesis can be applied to any technology of
physical realization and fault tolerant implementation of logic gates.

We adopt the computation speed, which is known as circuit depth, as the
main criterion of efficiency of the proposed methods in this thesis, and it is
the number of required steps to complete the computation. This is an important
efficiency criterion when construction of large size, in terms of memory, quantum
computers become feasible in the future.

The proposed quantum subsystems concern basic arithmetic operations on
integers, like multiplication of a constant with an integer and accumulation



(ΦMAC) and division by constant (GMΦDIV) (quotient and remainder calcu-
lation) which are used in important quantum algorithms. The implementations
is accomplished by using alternative representation of integers in the Fourier
domain (that is we use the Quantum Fourier Transform) instead of the usual
representation in the computational basis. Quantum circuits using QFT exist in
the literature, but they are limited to various kind of adders only [13], while the
straightforward implementation of a MAC with Fourier representation using such
adders [4] has quadratic circuit depth relative to the integer size. In contrast, the
proposed ΦMAC offers linear depth, a considerably important property for large
(and thus practically useful) quantum numbers. Regarding the division circuits,
just a few quantum dividers exist in the literature and they are chiefly limited to
special purposes (e.g. for Galois fields GF (2m), that is dividers of polynomials
with coefficients 0 and 1). A known general quantum divider based on QFT [17]
has a cubic depth, while if the divisor is constant its depth can be reduced to be
quadratic. The proposed constant divider in this thesis offers a linear depth.

The above two circuits, effectively combined, can be used to construct other
more complex circuits useful in various important quantum algorithms. In this
thesis we show how it is possible to construct a constant multiplier modulo N

(ΦMULMOD), which is a fundamental element for the operation of modular
exponentiation. Modular exponentiation is the most time consuming operation
in one of the most important quantum algorithms, the factorization algorithm
of Shor, and also in other algorithms of the same family. The proposed design
achieves a circuit depth of O(n2), while the majority of the circuits in the lit-
erature ranges between O(n2 log n) and O(n3), and consequently the proposed
design offers important speed advantage for large numbers. Some of the circuits
in the literature offering quadratic or less depth have the disadvantage of in-
creasing excessively the required space (number of qubits) in order or they have
the disadvantage of performing approximate calculation.

In the estimation of the circuit efficiency (being in time or space) we must
take into account the physical implementation constraints. Such a constraint is
the capability of global interactions between the qubits or the limitation of this
interaction to neighborhood qubits only, e.g. in a linear one-dimensional array
implementation of qubits, where each one can interact only with its two neigh-
bors (1D-LNN, 1D-Linear Nearest Neighborhood). The proposed architecture
for Shor’s algorithm, while at first sight seems to require global communications
between the qubits, it can be adapted in physical machines requiring local inter-
actions with constant overhead in depth, as we show. That is, we don’t have any
increase in the quadratic order of depth. In contrast, most of the low O(n2 logn)
depth architectures when applied in a machine that requires local communica-
tions increase the depth (e.g. to O(n2

√
n) in 2D-LNN or to O(n3) in 1D-LNN)

[8].

The Fourier domain processing of the proposed circuits requires the usage
of controlled rotation quantum gates with specific angles. A known drawback
of such gates is that they do not belong to the category of gates that may
constructed fault tolerantly, unless they are decomposed in a sequence of fault



tolerant capable gates (e.g. H and T gates). But, such a decomposition implies
considerable overhead in the depth of the whole modular exponentiation circuit
up to an order, that is toO(n3) fromO(n2). Yet, it is possible, as we show, to have
a much lesser overhead of O(n2 logn) by permitting approximate computation
which allow the Shor’s algorithm to operate with minor degradation concerning
the probability of success. Therefore, the proposed architecture is one of the
most competitive in terms of depth, especially if it is applied to 1D-LNN or
2D-LNN physical machines, which are the most probable to be implemented in
the future.

3 Hierarchical Synthesis of Quantum and Reversible

Circuits

Design of quantum circuits adopts ideas from classical logical design. Small cir-
cuits or circuits with repetitive structure can be designed either ad hoc or with
formal synthesis methods based on specifications (e.g. truth tables). In the case
of quantum circuits there exist similar synthesis methods based on specifications
which in the general case are unitary matrices [10, 29]. In special cases where a
quantum circuit is described by a matrix with elements exclusively 0 and 1, then
reversible circuits2 synthesis methods can be exploited [28]. Such quantum cir-
cuits cases are met when the circuit computes an arithmetic or logical function
in the computational basis (e.g. integer addition).

In such cases, these methodologies are suitable for small circuits only, be-
cause the required computation power and memory required for their application
increases exponentially with the circuit size. The obvious solution is the hierar-
chical bottom-up design which is applied in classical circuits. In the hierarchical
method, if the desired operation can be described as a splicing of simpler oper-
ations, the design starts from the lowest level of simpler operations towards the
higher level of the more complex operations. The application of the hierarchi-
cal method to quantum circuits is possible but requires special handling of the
intermediate computation results that are not useful at the end. The particu-
larity is caused due to the fact that these intermediate results cannot be simply
discarded at the end because, in general, they are quantum entangled with the
desired results. They must be reset to their initial state by inverse computation.
Bennett’s method is a well known method that keeps the desired results through
copying and resets the intermediate results through uncomputation [6]. Its main
characteristic and drawback is that it doubles the computation steps (forward
computation and the reverse computation) and it also requires more memory
space, equal to the space needed by the desired results due to the copying.

The proposed hierarchical synthesis method transforms the initial specifica-
tions of the quantum circuit which are given as arrays and arrays of list repre-
senting the classical sequence of operation into a directed acyclic graph called

2 In a reversible circuit, for every possible output, the respective input can be derived,
that is no information erasure happens [34].



forward Quantum Dependence Graph (QDG). The nodes of the forward QDG
correspond to the components of a quantum library and they suppose to imple-
ment the elementary arithmetic operations. These components could be known
constructions from the literature (adders etc), synthesized by other low level syn-
thesis method, or populated by the proposed method applied to a lower level.
The arcs connecting the QDG nodes correspond to qubits or quantum registers
and they are discriminated in arcs which are affected by their successor node and
the ones that control their successor node. The final qubits state of the derived
forward QDG describes the desired result along garbage results produced during
the computation.

The method adopted to reset the garbage states is to apply uncomputation
locally on each node that really needs such an inversion of computation, instead
to apply it globally as Bennett’s method suggests. Namely, nodes of the forward
QDG that are effectively involved in garbage production are marked (these are
the nodes which have paths with affected arcs towards final garbage states).
These marked nodes of forward QDG are traversed backwards and an inverse of
each node is appended to the QDG. The inverse nodes are part of the library as
it contains quantum circuits whose inverses are assured to exist.

However, data dependencies between the nodes may not always allow such
an inversion, in which case we have a deadlock. Two special procedures are
applied to detect and resolve such deadlocks (type I and II deadlocks) before
the uncomputation stage. Both procedures have the cost to introduce additional
ancilla qubits but they never exceed the additional ancilla qubits that would be
needed if Bennett’s method would be applied.

The proposed synthesis method requires polynomial execution time and mem-
ory space in relation to the number of the functions of the specifications and in
any case it produces circuits of equal or better performance in terms of depth
and space in compared to the basic Bennett’s method.

4 Conclusions

Quantum arithmetic circuits based on the QFT representation of integers, in-
stead of the usual computational basis representation, is an alternative imple-
mentation that may offer various advantages if used properly. This is due to the
fact that two of the main core blocks are the constant adder, which has a con-
stant depth of 1 when the computation is carried out in a datapath that contains
an already QFT transformed integer, and the controlled constant adder which
has a linear depth of n. By keeping a sequence of computations in such a datap-
ath without reverting back to the computational basis it is possible to maintain
a linear depth which otherwise would be impossible. This can be achieved by
exploiting properties of the controlled rotation gates such as commutativity, de-
composition and suitable rearrangement so as to pipeline their execution. The
initial direct QFT and the final inverse QFT does not alter the linear depth as
both transforms can be performed in linear depth. Thus, a computation level



of hierarchy can be climbed onto (e.g. in our case, addition to multiplication),
without any respective time complexity increase.

Another advantage of using QFT based arithmetic is the lower space require-
ments. This is manifested in Beauregard’s modular exponentiation [4] , where
2n + 1 qubits are adequate for the full Shor’s algorithm. The reason is that
no carry computations are needed in the QFT adder as this is done implicitly
with the angle additions. While this advantage is not observed in the proposed
modular exponentiation circuit due to the divider complexity, it remains in the
multiplier/accumulator ΦMAC where no ancilla qubit is used. Also, robustness
of such circuits to gate pruning and rotation angle approximation is observed in
various instances.

All these remarks suggest that arithmetic circuits, like the proposed ones,
are estimable as building blocks for larger and more complex arithmetic circuits.

The obvious follow up to the QFT arithmetic circuits would be to exploit
them to derive more complex arithmetic circuits, useful for various quantum
algorithms, like the constant divider was for Shor’s algorithm. In the same branch
of interest, the subject of approximate computations can be further investigated
through simulations. The bounds reported in the thesis may be loose and better
results may be obtained with numerical simulations. Numerical simulations of
the full Shor’s algorithm, like the ones performed in [22, 23], are difficult for the
case of the proposed circuit because of the requirement of 8n + 2 qubits. For
example, to factor N = 15 we would need to simulate 8 · 4 + 2 = 34 qubits. The
joint state vector of 34 qubits consists of 234 ≈ 16 ·109 complex elements leading
to about 128Gbytes of memory when using single precision floating point, only
for the state vector. Yet, partial simulations can be proven useful. A simulation
to derive distances between the ΦMAC and an approximated ΦMAC are feasible
(3n+1 qubits), or even a similar simulation for the whole divider (6n+1 qubits).

The hierarchical design method we propose in the doctoral thesis offers ad-
vantages relative to Bennett’s method in terms of speed and memory of the
target circuit. The specifications of the synthesizable circuit are given as a se-
quence of arithmetic or logic functions. These functions are supposed to be part
of a library of quantum circuits. The library can be constructed by using other
lower level synthesis methods, or contain known parametrized circuits of the
literature (e.g. adders) or be populated with new circuits of the same hierarchi-
cal method. Also, the library contains the inverse circuits due to the necessity
described above. The end result of the synthesis in the form of directed acyclic
graph (Quantum Dependence Graph - QDG) describes the target circuit, where
the nodes of the graph represent the modules of the library and the arcs of the
graph represent the interconnections between the modules.

Regarding the hierarchical synthesis method, a next obvious step is to develop
a complete software which would include front-end and back-end submodules.
The front-end must be a compiler accepting the description of the classical algo-
rithm in a suitable language and transforming it in the internal representation
required by the synthesis algorithm. The back-end must combine the final QDG
representation with information stored in the library so as to export the syn-



thesized circuit in a low gate-level description such as in a quantum assembly
format. Equipped with such an integrated tool, we could do a more systematic
comparison with other high level synthesis tools, although the advantages of the
proposed synthesis methodology are clear even without the tool.
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