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Abstract

With the increase of availability of complex datasets, there is a need
for algorithmic solutions which scale well as the complexity of the data in-
creases. We focus on proximity problems for high-dimensional vectors and
polygonal curves and we present new solutions for the problem of comput-
ing approximate nearest neighbors. In Euclidean spaces, we propose and
analyse random projections to a very low dimension, aiming for a high-
dimensional solution which is also space efficient. For polygonal curves,
we design a data structure with arbitrarily small approximation error. In
addition, we present a new solution for computing good representatives,
when the dataset consists of high-dimensional vectors. Finally, we study
range spaces defined by metrics for polygonal curves and we present new
bounds on their VC dimension.

1 Introduction

Finding similar objects is a general computational task which serves as a sub-
routine for many major learning tasks like classification or clustering. With the
recent increase of availability of complex datasets, the need for analyzing and
handling high-dimensional descriptors has been increased. Likewise, there is a
surge of interest into data structures for trajectory processing, motivated by the
increasing availability and quality of trajectory data.

Proximity problems in metric spaces of low dimension have been typically
handled by methods which discretize the space and hence they are affected by
the prominent curse of dimensionality, so called because it refers to the compu-
tational hardness of analyzing high-dimensional data. In the past two decades,
the increasing need for analyzing high-dimensional data, lead the researchers to
devise approximate and randomized algorithms with polynomial dependence on
the dimension. Similarly, other complex data such as time series or polygonal
curves have been typically handled by approximate or randomized algorithms.

Definition 1 (c-Approximate Nearest Neighbor (c-ANN) problem). Given a
finite set P ⊂M , a distance function d(·, ·), and an approximation factor c > 1,
preprocess P into a data structure which supports the following type of queries:

∀q ∈M , find p∗ such that ∀p ∈ P : d(q, p∗) ≤ c · d(q, p).
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The corresponding augmented decision problem (with witness) is known as
the approximate near neighbor problem, defined as follows.

Definition 2 ((c, r)-ANN Problem). Given a finite set P ⊂M , a distance func-
tion d(·, ·), an approximation factor c > 1, and a range parameter r, preprocess
P into a data structure which supports the following type of queries:

• if ∃p∗ ∈ P s.t. d(p∗, q) ≤ r, then return any point p′ ∈M s.t. d(p′, q) ≤ c·r,

• if ∀p ∈ P , d(p, q) > c · r, then report “Fail”.

The data structure is allowed to return either a point at distance ≤ c · r or
“Fail”.

It is known that one can solve logarithmically many instances of the decision
problem with witness to solve the (1 + ε)-ANN problem [11].

Another problem of interest is that of computing good representatives for a
finite metric space. An r-net for a finite metric space (P,d), |P | = n and for
numerical parameter r is a subset N ⊆ P such that the closed r/2-balls centered
at the points of N are disjoint, and the closed r-balls around the same points
cover all of P . We define approximate r-nets analogously: the closed r/2-balls
centered at the points of N are disjoint, and the closed cr-balls around the same
points cover all of P , where c denotes the approximation factor.

In all proximity problems, there is an explicit notion of dissimilarity or dis-
tance between two input objects. It is natural to define ranges based on the
distance function: a range is essentially a pseudo-metric ball. Generally, a range
space (X,R) (also called set system) is defined by a ground set X and a set of
ranges R, where each r ∈ R is a subset of X. A crucial descriptor of any range
space is its VC-dimension. These notions quantify how complex a range space
is, and have played foundational roles in machine learning and geometry.

1.1 Related work

In this section, we present previous results on proximity problems in two main
settings: normed spaces and polygonal curves.

1.1.1 Normed spaces

Unless otherwise stated, the results concern the case of points in `2.
In high dimensional spaces, classic space partitioning data structures are

affected by the curse of dimensionality. This means that, when the dimension
increases, either the query time or the required space increases exponentially.
An important method conceived for high dimensional data is Locality Sensitive
Hashing (LSH). In general, LSH requires roughly O(dn1+ρ) space and O(dnρ)
query time for some parameter ρ ∈ (0, 1). Lately, it was shown that a data-
dependent scheme achieves ρ = 1

2(1+ε)2−1 + o(1) [4].

For practical applications, memory consumption is often a limitation. Most
of the previous work in the (near) linear space regime dn1+o(1) focuses on the
case that ε is greater than 0 by a constant term. After the original submission
our paper [2], a query time of O(n1−4ε2+O(ε3)) has been established [3]. The
bound has been shown to be optimal for a large class of data structures. Despite
the fact that our algorithm is sub-optimal, it is simpler and easier to implement.



Significant amount of work has been done for pointsets with low doubling
dimension. In [15], a new notion of nearest neighbor preserving embeddings has
been presented. It has been proven that in this context we can achieve dimension
reduction which only depends on the doubling dimension of the dataset. Such
an approach can be combined with any known data structure for (1 + ε)-ANN.

One related problem is that of computing (1+ε)-approximate r-nets. In [12],
they show that an approximate net hierarchy for an arbitrary finite metric X,
such that |X| = n, can be computed in O(2ddim(X)n log n). This is satisfactory
when doubling dimension is constant, but requires a vast amount of resources
when it is high. In the latter case, one approach is that of [10], which uses LSH

and requires time O(n1+1/(1+ε)2+o(1)).

1.1.2 Polygonal curves

For polygonal curves, we focus on discrete Fréchet (DFD) and Dynamic Time
Warping (DTW) distance functions.

The first result for DFD by Indyk [13], defined by any metric (X, d(·, ·)),
achieved approximation factor O((logm + log logn)t−1), where m is the maxi-
mum length of a curve, and t > 1 is a trade-off parameter. The data structure

achieves space and preprocessing time in O(m2|X|)tm1/t · n2t, and query time
in (m log n)O(t). It is not clear whether the approach may achieve a 1 + ε ap-
proximation factor by employing more space.

More recently, a new data structure was devised for the DFD of curves in
Euclidean spaces [7]. The approximation factor is O(d3/2). The space required
is O(24mdn log n+mn) and each query costs O(24mdm log n). They also provide
a trade-off between performance, and the approximation factor. At the other
extreme of this trade-off, they achieve space in O(n log n+mn), query time in
O(m log n) and approximation factor O(m). Furthermore, it is shown that the
result establishing an O(m) approximation [7] extends to DTW.

1.2 Contribution

1.2.1 Normed spaces

Approximate Nearest Neighbors. In [2], we introduce a notion of “low-
quality” randomized embeddings and we employ standard random projections
à la Johnson-Lindenstrauss in order to define a mapping from `d2 to `d

′

2 , for
d′ = O

(
ε−2 · log

(
n
k

))
, such that an approximate nearest neighbor of the query

lies among the pre-images of k approximate nearest neighbors in the projected
space. This observation allows us to combine random projections with the
bucketing method [11], and obtain a randomized data structure with optimal
space and sublinear query for the augmented decision problem. The main result
states that there exists a randomized data structure for the (1 + ε, r)-ANN
problem, with linear space, linear preprocessing time, and query time O(dnρ),
where ρ = 1 − Θ(ε2/log(1/ε)). For each query q ∈ Rd, preprocessing succeeds
with constant probability, and can be amplified by repetition. We extend our
results to doubling subsets of `2.

Our ideas directly extend to the (1+ε)-ANN problem, but it achieves bounds
which are weaker than the ones obtained through the (1+ε, r)-ANN solution, but



the algorithm is very simple and quite interesting in practice, since reducing (1+
ε)-ANN to (1+ε, r)-ANN is nontrivial and typically avoided in implementations.

Finally, we are able to define a mapping from any metric which admits an
LSH family of functions to the Hamming space. Using this mapping, we achieve
improved query time in Õ(dn1−Θ(ε2)).

In [8], we study the problem of reducing the dimension for doubling subsets
of `1. While this embeddability question has a negative answer in general, we
show that one can reduce the dimension considerably when focused on the (c, r)-
ANN problem. The main requirement is that the dimension reduction preserves
enough information for reducing the (c, r)-ANN problem in a high dimensional
space to the (c, r)-ANN problem in a much lower dimensional space.

Approximate Nets. In [5], we present a new randomized algorithm that
computes (1+ ε)-approximate r-nets in time time Õ(dn2−Θ(

√
ε)). This improves

upon the complexity of the best known algorithm, when ε is sufficiently small.

1.2.2 Polygonal curves

Approximate Nearest Neighbors. In [9], we study the (1 + ε)-ANN prob-
lem for polygonal curves. We present a notion of distance between two polygonal
curves, which generalizes both DFD and DTW. The `p-distance of two curves
minimizes, over all traversals, the `p norm of the vector of all Euclidean distances
between paired points. Hence, DFD corresponds to `∞-distance of polygonal
curves, and DTW corresponds to `1-distance of polygonal curves.

Our main contribution is an (1+ε)-ANN data structure for the `p-distance of
curves, when 1 ≤ p <∞. This easily extends to `∞-distance of curves by solving
for the `p-distance, for a sufficiently large value of p. Our target are methods
with approximation factor 1 + ε. Such approximation factors are obtained for
the first time, at the expense of larger space or time complexity. Moreover, a
further advantage is that our methods solve (1 + ε)-ANN directly instead of
requiring to reduce it to near neighbor search.

We also focus on DFD, and we provide a solution which is especially efficient
in the short query regime. For the Euclidean space, we give a randomized data

structure with space in n · O
(
kd3/2

ε

)dk
+ O(dnm) and query time in O (dk),

where k denotes the length of the query curves. The data structure can be
derandomized with a slight worsening of the performance. We give analogous
results for arbitrary doubling metrics.

Vapnik-Chervonenkis dimension. In [6], we analyze the VC dimension of
range spaces defined by polygonal curves. To the best of our knowledge, the
results presented here are the first for this problem. For Discrete Hausdorff or
Fréchet balls defined on point sets (resp. point sequences) in Rd we show that the
VC dimension is at most near-linear in k, the complexity of the ball centers that
define the ranges, and at most logarithmic in m, the size of the point sets of the
ground set. For the Fréchet distance, where the ground set X are continuous
polygonal curves in R2 we show an upper bound that is quadratic in k and
logarithmic in m. These initial bounds assume a fixed radius of the metric balls
that define the ranges R. The same holds for the Hausdorff distance, where the
ground set are sets of line segments in R2.



2 Randomized Embeddings with slack

We introduce a new notion of embedding for metric spaces requiring that, for
some query, there exists an approximate nearest neighbor among the pre-images
of its k > 1 approximate nearest neighbors in the target space. In Euclidean
spaces, we employ random projections à la Johnson-Lindenstrauss to a dimen-
sion inversely proportional to k. In other words, we allow k false positives,
meaning that at most k far points will appear as near neighbors in the pro-
jected space.

Let us now revisit one form of the classic Johnson-Lindenstrauss Lemma:

Theorem 3 ([14]). Let G be a d′ × d matrix with i.i.d. random variables fol-
lowing N(0, 1). There exists a constant C > 0, such that for any v ∈ Rd with
‖v‖2 = 1:

• Pr
[
‖Gv‖22 ≤ (1− ε) · d

′

d

]
≤ exp

(
−Cd′ε2

)
,

• Pr
[
‖Gv‖22 ≥ (1 + ε) · d

′

d

]
≤ exp

(
−Cd′ε2

)
.

In the initial proof [16], they show that this can be achieved by orthogonally
projecting the pointset on a random linear subspace of dimension d′. Instead of
a gaussian matrix, we can apply a matrix whose entries are independent ran-
dom variables with uniformly distributed values in {−1, 1} [1], or even random
variables with uniform subgaussian tails [17].

The following has been introduced in [15] and focuses on the distortion of
the nearest neighbor.

Definition 4. Let (Y, dY ), (Z, dZ) be metric spaces and X ⊆ Y . A distribution
over mappings f : Y → Z is a nearest-neighbor preserving embedding with
distortion D ≥ 1 and probability of correctness P ∈ [0, 1] if, ∀ε ≥ 0 and ∀q ∈ Y ,
with probability at least P , when x ∈ X is such that f(x) is an c-ANN of f(q)
in f(X), then x is a (D · c)-approximate nearest neighbor of q in X.

Let us now consider a closely related problem. While in c-ANN we search one
point which is approximately nearest, in the k approximate nearest neighbors
problem, or c-kANNs, we seek an approximation of the k nearest points, in the
following sense. Let X be a set of n points in Rd, let q ∈ Rd and 1 ≤ k ≤ n. The
problem consists in reporting a sequence S = {p1, . . . , pk} of k distinct points
such that the i-th point pi is an c-approximation to the i-th nearest neighbor
of q. Furthermore, the following assumption is satisfied by the search routine of
certain tree-based data structures, such as BBD-trees.

Assumption 5. The c-kANNs search algorithm visits a set S′ of points in X.
Let S = {p1, . . . , pk} be the k nearest points to the query in S′. We assume that
for all x ∈ X \ S′ and y ∈ S, d(x, q) > d(y, q) · c.

Assuming the existence of a data structure which solves c-kANNs and sat-
isfies Assumption 5, we propose to weaken Definition 4 as follows.

Definition 6. Let (Y,dY ), (Z,dZ) be metric spaces and X ⊆ Y . A distribution
over mappings f : Y 7→ Z is a locality preserving embedding with distortion
D ≥ 1, probability of correctness P ∈ [0, 1] and locality parameter k if, ∀c ≥ 1



and ∀q ∈ Y , with probability at least P , when S = {f(p1), . . . , f(pk)} is a
solution to c-kANNs for q under Assumption 5, then there exists f(x) ∈ S such
that x is a (D · c)-approximate nearest neighbor of q in X.

According to this definition we can reduce the problem of c-ANN in di-
mension d to the problem of computing k approximate nearest neighbors in
dimension d′ < d.

We employ the Johnson-Lindenstrauss dimensionality reduction technique
and, more specifically, Theorem 3.

Remark 7. In the statements of our results, we use the term (1+ε)2 or (1+ε)3

for the sake of simplicity. Notice that we can replace (1 + ε′)2 by 1 + ε just by
rescaling ε′ ← ε/4 =⇒ (1 + ε′)2 ≤ 1 + ε, when ε < 1/2.

We are now ready to prove the main theorem of this section.

Theorem 8. Under the notation of Definition 6, there exists a randomized
mapping f : Rd → Rd′ which satisfies Definition 6 for

d′ = O
(
ε−2log

n

k

)
,

ε ∈ (0, 1/2], distortion D = (1 + ε)2 and probability of success 2/3.

Proof. Let X be a set of n points in Rd and consider map

f : Rd 7→ Rd
′

: v 7→
√
d/d′ ·G v,

where G is a matrix chosen from a distribution as in Theorem 3. Without loss
of generality the query point q lies at the origin and its nearest neighbor u lies
at distance 1 from q. We denote by c′ ≥ 1 the approximation ratio guaranteed
by the assumed data structure (see Assumption 5). That is, the assumed data
structure solves the c′-kANNs problem. Let N be the random variable whose
value indicates the number of false positives, that is

N = | {x ∈ X : ‖x‖2 > γ ∧ ‖f(x)‖2 ≤ β} |,

where we define β = c′(1 + ε), γ = c′(1 + ε)2. Hence, by Lemma 3,

E[N ] ≤ n · exp(−Cd′ · ε2),

where C > 0 is a constant. The event of failure is defined as the disjunction of
two events:

N ≥ k ∨ ‖f(u)‖2 ≥ (β/c), (1)

and its probability is at most equal to

Pr[N ≥ k] + exp
(
−Cd′ε2

)
,

by applying again Theorem 3. Now, we set d′ = Θ
(
log(nk )/ε2

)
and we bound

these two terms. Hence, there exists d′ such that

d′ = O
(
ε−2 · log

n

k

)



and with probability at least 2/3, the following two events occur:

‖f(q)− f(u)‖2 ≤ (1 + ε)‖u− q‖2,

|{p ∈ X|‖p−q‖2 > c(1+ε)2‖u−q‖2 =⇒ ‖f(q)−f(p)‖2 ≤ c(1+ε)‖u−q‖2}| < k.

Let us consider the case when the random experiment succeeds, and let
S = {f(p1), . . . , f(pk)} be a solution of the c′-kANNs problem in the projected
space, given by a data-structure which satisfies Assumption 5. It holds that
∀f(x) ∈ f(X) \ S′, ‖f(x)− f(q)‖2 > ‖f(pk)− f(q)‖2/c′, where S′ is the set of
all points visited by the search routine.

If f(u) ∈ S, then S contains the projection of the nearest neighbor. If
f(u) /∈ S, then if f(u) /∈ S′ we have the following:

‖f(u)− f(q)‖2 > ‖f(pk)− f(q)‖2/c =⇒ ‖f(pk)− f(q)‖2 < c(1 + ε)‖u− q‖2,

which means that there exists at least one point f(p∗) ∈ S s.t. ‖q − p∗‖2 ≤
c′(1 + ε)‖u− q‖2. Finally, if f(u) /∈ S but f(u) ∈ S′ then

‖f(pk)− f(q)‖2 ≤ ‖f(u)− f(q)‖2 =⇒ ‖f(pk)− f(q)‖2 ≤ (1 + ε)‖u− q‖2,

which means that there exists at least one point f(p∗) ∈ S s.t. ‖q − p∗‖2 ≤
c′(1 + ε)2‖u− q‖2.

Hence, f satisfies Definition 6 for D = (1+ε)2 and the theorem is established.

Theorem 8 essentially translates the c-ANN problem to the c-kANNs prob-
lem. While this is convenient in practice, better bounds can be achieved when
working with the (c, r)-ANN problem.

2.1 Approximate Near Neighbor

This section combines the ideas developed in Section 2 with a simple, auxiliary
data structure, namely the grid, yielding an efficient solution for the augmented
decision (c, r)-ANN problem. In the following, the Õ(·) notation hides factors
polynomial in 1/ε and log n.

The data structure succeeds if it indeed answers the approximate decision
problem for query q. Building a data structure for the Approximate Nearest
Neighbor Problem reduces to building several data structures for the decision
(c, r)-ANN problem. For completeness, we include the corresponding theorem.

Theorem 9. [11, Theorem 2.9] Let P be a given set of n points in a metric
space, and let c = 1 + ε > 1, f ∈ (0, 1), and γ ∈ (1/n, 1) be prescribed pa-
rameters. Assume that we are given a data structure for the (c, r)-ANN that
uses space S(n, c, f), has query time Q(n, c, f), and has failure probability f .
Then there exists a data structure for answering c(1 + O(γ))-NN queries in
time O(log n)Q(n, c, f) with failure probability O(f log n). The resulting data
structure uses O(S(n, c, f)/γ · log2 n) space.

A natural generalization of the (c, r)-ANN problem is the k-Approximate
Near Neighbors Problem, denoted (c, r)-kANNs.

Definition 10 ((c, r)-kANNs Problem). Let X ⊂ Rd and |X| = n. Given
c > 1, r > 0, build a data structure which, for any query q ∈ Rd:



• if |{p ∈ X | ‖q− p‖2 ≤ r}| ≥ k, then report S ⊆ {p ∈ X | ‖q− p‖2 ≤ c · r}
s.t. |S| = k,

• if a := |{p ∈ X | ‖q − p‖2 ≤ r}| < k, then report S ⊆ {p ∈ X | ‖q − p‖2 ≤
c · r} s.t. a ≤ |S| ≤ k.

The following algorithm is essentially the bucketing method which is de-
scribed in [11] and concerns the case k = 1. We define a uniform grid of side
length ε/

√
d on Rd. Clearly, the distance between any two points belonging

to one grid cell is at most ε. Assume r = 1. For each ball Bq = {x ∈ Rd |
‖x− q‖2 ≤ r}, q ∈ Rd, let Bq be the set of grid cells that intersect Bq.

In [11], they show that |Bq| ≤ (C ′/ε)d. Hence, the query time is the time to
compute the hash function, retrieve near cells and report the k neighbors:

O(d+ k + (C ′/ε)d).

The required space usage is O(dn).
Furthermore, we are interested in optimizing this constant C ′. The bound

on |Bq| follows from the following fact:

|Bq| ≤ V d2 (R),

where V d2 (R) is the volume of the ball with radius R in `d2, and R = 2
√
d
ε . Now,

V d2 (R) ≤ 2πd/2

d · Γ(d/2)
Rd =

2πd/2

d(d/2− 1)!
Rd ≤ 2πd/2

(d/2)!
Rd ≤

≤ 2πd/2

e(d/(2e))d/2
Rd ≤ 2d+1(18)d/2

εde
≤ 9d

εd
.

Hence, C ′ ≤ 9.

Theorem 11. There exists a data structure for Problem 10 with required space
O(dn) and query time O

(
d+ k + ( 9

ε )d
)
.

The following theorem is an analogue of Theorem 8 for the Approximate
Near Neighbor Problem.

Theorem 12. The ((1 + ε)2c, r)-ANN problem in Rd reduces to checking the
solution set of the (c, (1+ε)r)-kANNs problem in Rd′ , where d′ = O

(
log
(
n
k

)
/ε2
)
,

by a randomized algorithm which succeeds with constant probability. The delay
in query time is proportional to d · k.

Proof. The theorem can be seen as a direct implication of Theorem 8. The
proof is indeed the same.

Let X be a set of n points in Rd and consider map

f : Rd 7→ Rd
′

: v 7→
√
d/d′ ·G v,

where G is a matrix chosen from a distribution as in Theorem 3. Let u ∈ X a
point at distance 1 from q and assume without loss of generality that lies at the
origin. Let N be the random variable whose value indicates the number of false
positives, that is

N = | {x ∈ X : ‖x‖2 > γ ∧ ‖f(x)‖2 ≤ β} |,



where we define β = c(1 + ε), γ = c(1 + ε)2. Hence, by Theorem 3,

E[N ] ≤ n · exp
(
−Cd′ε2

)
.

The probability of failure is at most equal to

Pr[N ≥ k] + exp
(
−Cd′ε2

)
,

by applying again Theorem 3. Now, we bound these two terms for d′ = Θ
(
log n

k

)
/ε2.

With probability at least 2/3, these two events occur:

• ‖f(q)− f(u)‖2 ≤ (1 + ε).

• |{p ∈ X|‖p− q‖2 > c(1 + ε)2 =⇒ ‖f(q)− f(p)‖2 ≤ c(1 + ε)}| < k.

2.1.1 Finite subsets of `2

We are about to show what Theorems 11 and 12 imply for the (c, r)-ANN
problem.

Theorem 13. There exists a data structure for the (c, r)-ANN problem with
O(dn) required space and preprocessing time, and query time Õ(dnρ), where
ρ = 1−Θ(ε2/log(1/ε)) < 1.

Proof. For k = Θ (nρ), (
9

ε

)d′
+ dk ≤ O(dnρ)

Since, the data structure succeeds only with probability 9/10, it suffices to build
it O(log n) times in order to achieve high probability of success.

3 Conclusions

In this thesis, we investigated proximity problems for high-dimensional vectors
and polygonal curves. We proposed algorithms and data structures for various
important problems such as the approximate nearest neighbor problem and the
problem of computing nets. Most of the techniques analyzed in this thesis
are actually simple and can be easily implemented. Hence, we believe that
the rigorous arguments presented in this thesis have the potential to lead to
practical innovations.
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