
Virtualizing Information Spaces for the
Expansion and Integration of Heterogeneous

Data Collections and Systems

Kostas Saidis?

saiko@di.uoa.gr

National and Kapodistrian University of Athens
Department of Informatics and Telecommunications

Abstract. The amount of information produced as well as consumed
in the world is constantly expanding. Users anticipate their applications
to cope with such an expansion, demanding the support of novel and
heterogeneous data sources and collections. At the same time, due to
the advanced connectivity offered by the expansion of the Internet, users
need to use the same information in different contexts, reusing and re-
fining data across applications. In this thesis, we deal with the common
challenge underlying the above data expansion, integration and interop-
erability needs, which is how to automate the inclusion of new data in
existing service provisions. To avoid invasive, time-consuming and ex-
pensive source-code extensions that frequently break applications, we
propose the virtualization of information spaces, introducing the notion
of virtual objects. Our proposal seeks to shift the barriers raised by het-
erogeneous data representations, formats and protocols by ascertaining
the following assumption. Should we manage to isolate the “substance”
of data from any application-specific “materialized forms”, we can au-
tomate the process of detaching the data from one context and attach-
ing the data to another, in a multitude of operational environments.
Virtual objects are logically placed between the business-logic and the
data-sources of applications to offer a common, reusable and composable
runtime interpretation of data that transcends the application-context
boundaries. On one hand, proposed virtual objects allow applications to
adapt to new information, without changing their business-logic imple-
mentation. On the other, virtual objects can inter-connect data spaces to
facilitate the integration and interoperability of information. We expect
that data-centric applications will benefit from our approach, while our
experimentation shows that virtual objects impose minimal overheads
even when used atop heterogeneous sources.

Keywords: Virtual Objects, Information Expansion, Data Integration,
Interoperability, Middleware, Domain-specific Languages

? Dissertation Advisor: Alex Delis, Professor



1 Introduction

The concept of virtualization originates from operating systems [1], where a soft-
ware abstraction layer is introduced—the virtual machine—to behave as a com-
puter system’s hardware—a real machine. With the emergence of cloud comput-
ing and the “software as a service” paradigm, virtualization has offered flexibility,
automation and ease of use, reducing OS installation, deployment and mainte-
nance costs [2]. In addition, programming platforms such as Java or .NET have
built upon virtual machines to offer features like architecture neutrality, garbage
collection and network code loading, ultimately advancing developer productiv-
ity.

In this thesis, we use virtualization as a means to enable the use of infor-
mation spaces to transcend the application-context boundaries, allowing users to
create, share, reuse and refine information across applications. To this end, we
work to automate the process of detaching an information space from one con-
text and re-attaching the space to another in various operational environments.
Should we view such data-detach and data-attach as logical operations, at a high
level of abstraction, these operations play a significant role in the information
space life-cycle, since information spaces:

a. constantly expand : automating the ability to attach new information spaces
to existing application contexts will allow for the cost-effective introduction
of novel types of content in applications and, thus, foster the expansion of
information.

b. outlive applications: automating the ability to detach information spaces from
their applications will simplify data migration and also reduce the data lock-in
by legacy technology.

c. should interoperate: automating the ability to detach/attach information spaces
from/to application contexts will clearly simplify interoperability.

In order to separate the information space from the application context, and
offer reusable and composable data detach/attach operations, we propose the
virtualization of the information space. The unique characteristic of our approach
is that we use proposed virtual objects as archetypes of data items, offering a
platonic view of data [3]; a virtual object aims to identify the “substance” of a
data item, independently of any application-specific “materialized forms” such as
storage-specific data layouts, protocol-based data representations or application-
oriented data views. Our objective is to offer a software abstraction layer—a
virtual machine for data objects—which is embedded in applications in order to
enable the use of information to transcend the application-context boundaries.

1.1 Problem Definition

In working with virtual objects, our contribution is that we simplify and auto-
mate a wide variety of real-world data-expansion, migration and interoperability
issues. Specifically, we manage to answer the common challenge underlying these



issues, which is how to automate the inclusion of new data in existing service
provisions. Data-expansion calls for augmenting the information space with new
data sources and collections, coping with the pressure to rapidly adapt to new
information. In data-migration, the difference is that the new data source has
to be migrated before participating in the existing service provision. In data-
interoperability, the difference is that applications use a data-exchange protocol
to act as the data sources of each other. Yet, in all cases, similar, if not identical,
steps need to be performed, including:

Step 1: revisit data access actors to support newly encountered data sources or
collections. For example, to support a new data source, an application
may need to introduce a new machinery to access the new data, dealing
with network connections, database queries, XML parsing, web services
and other protocols. Similar revisions may need to be performed in order
to support a novel collection type.

Step 2: introduce new business-logic actors to stage the new data. For example,
a Java application has to introduce new Java classes and objects to stage
the newly encountered data items at runtime.

Step 3: extend the current service provision to deal with the new data. For
example, the application has to include the new business-logic actors in
its existing implementation of services.

By virtualizing the information space, we work towards automating these steps
in any operational environments. Viewed from different perspectives, the above
steps raise various multi-disciplinary data integration, data quality and software
evolution/adaptation issues [4–7]. Clearly, developers can handle these cases by
code re-engineering. However, data expansion or integration requirements cannot
always be predicted in detail during the initial application design and develop-
ment phases. Consequently, the support of a new type of content may break the
application, imposing drastic, invasive and expensive source code changes to all
service provision actors. Developers may follow an ad-hoc approach to revisit
service provision implementation and they can ultimately succeed in including
this new content. However, yet another new requirement for supporting addi-
tional types of content may render this approach problematic, breaking service
provision actors yet again.

The crucial need here is not to predict the future, but rather to achieve the
return of investment on existing services; indeed, the challenge is to enable the
existing service provision to operate atop constantly expanding, inter-connected
and heterogeneous information spaces. Thus, a better approach is to base the
application on a flexible framework that can isolate the application logic from
the type of context and add indirection between the business-logic and the infor-
mation space. Although adding indirection is a simple idea, designing a general
and flexible framework for data expansion and integration is anything but sim-
ple. The framework needs to: a) isolate the structure of data, i.e., how the logical
organization of data (e.g., the tuples of a database, or the elements of XML doc-
uments) map to the application’s expectations; b) adapt the physical access to



data (e.g., provide network or database connections to objects in a way trans-
parent to the application); c) abstract the object presentation, i.e., smoothly
integrate the display of new kinds of objects in the application user interface;
d) abstract the object manipulation, i.e., allow new object modification in a
uniform way; and e) perform these tasks conveniently and efficiently, in particu-
lar without imposing significant runtime overhead over an inflexible, hard-coded
implementation of the same features.

1.2 Contribution

Our proposal meets the above challenging requirements by virtualizing the in-
formation space. We use the term information space to refer to the dataset being
managed by an application. Given that different applications develop different
data manifestations and issue different mechanisms for their management, such
application-specific characteristics designate the application-specific information
context, or simply the application-context. The proposed virtual object environ-
ment decouples the information space from the application-context, achieving
the multi-dimensional separation [8] of the following concerns:

1. data-access/storage: the storage representation(s) of data,
2. data-synthesis: the usage and composition of data,
3. data-conceptualization: the logical structure and modeling of data,
4. data-discovery : the data searching/indexing functionality.

These four concerns reflect the essential dimensions that couple the data to the
application. By loosening these couplings, we manage to treat the four dimen-
sions that compose the data/application interactions in in an orthogonal manner.
Such a separation virtualizes the information space, automating the three data
expansion/integration steps, by offering a common interpretation of heteroge-
neous and diverse data that transcends the application-context boundaries. Our
proposal is well-aligned with the long-term objective of data independence [9,
10] and contributes to the open challenge of interpreting and synthesizing het-
erogeneous data in an automated manner [11, 12]. To the author’s knowledge,
the proposed virtual object approach is the first to deal with data expansion,
interoperability and migration in a unified and integrated way. The majority of
our work with virtual objects appears in [13–17] and [18].

Our implementation of virtual objects, called DOLAR (Data Object Lan-
guage And Runtime), is realized in Java and consists of a virtual object domain-
specific embeddable language (DSEL) [19–21] and the respective runtime envi-
ronment. We have used DOLAR in several real-world applications and opera-
tional environments, allowing us to effectively answer various data expansion,
integration and interoperability needs. For example, DOLAR has allowed us
to deal with data-expansion in Pergamos, the Univ. of Athens digital library
(http://pergamos.lib.uoa.gr (http://pergamos.lib.uoa.gr)). Pergamos is the largest
academic digital library in Greece, hosting about 300,000 items and exceeding
1 TB of space, while it has been in production use for more than five years. In



the thesis, we present how the use of DOLAR has helped us answer the need to
gradually (a) use Pergamos to develop a variety of collections originating from
independent digitization projects at the University, (b) add existing University
collections in Pergamos, including digitized books, Domino-based dissertations,
etc. The use of virtual objects has achieved the return of investment on Perg-
amos services, allowing the business-logic to adapt to the gradual inclusion of
new data sources and collections without modifications. In general, embedding
virtual objects in applications dissociates the application-logic from the data-
inherent idiosyncrasies, enabling applications to extend their “low-level” infor-
mation space options without modifying their “high-level” business-logic ser-
vices. In terms of cross-context DOLAR usage, we have used virtual objects in a
real-world interoperability scenario originating from John S. Latsis Public Ben-
efit Foundation (http://www.latsis-foundation.org). We show how the virtual
space has allowed the Foundation’s digital archive and its collections to tran-
scend the application boundaries, presenting the effectiveness, automation and
reuse offered when dealing with data migration and interoperability issues. Fi-
nally, our experimental evaluation, carried out in both synthetic and production
environments, shows that DOLAR-imposed operational overheads are minimal;
DOLAR-enabled applications scale as well as the underlying datastore(s), even
when used atop a variety of heterogeneous SQL, XML and Web data sources.

2 Related Work

Interoperability is a strong and diachronic requirement of data-intensive sys-
tems. Syntactic interoperability refers to the ability of systems to communicate
and exchange data, while semantic interoperability refers to the ability of sys-
tems to accurately and meaningfully interpret and use the data in an automated
manner [11, 12]. XML is a flexible markup language, offering an extensible rep-
resentation to store and exchange data. To this effect, XML has been used to
deliver a plethora of protocols for achieving syntactic interoperability. The Se-
mantic Web [22] uses RDF and ontologies [23] to build upon XML to offer
semantic interoperability. However, as put in [24], it may be that there are many
semantic webs. Indeed, various middleware [25, 26] and service-oriented archi-
tectures [27] are used to consolidate heterogeneous APIs and services to make
them interoperate in various operational environments. Although interoperabil-
ity involves various cultural, social and legal issues [28], the key challenge is to
achieve automation, enabling information that originates in one context to be
used in another in ways that are as highly automated as possible [29].

This is the exact goal of our approach, decoupling the information space from
the application-context to permit the use of data to transcend the application-
context boundaries. Our virtual space proposal builds upon the separation of
concerns to loosen the data/application couplings and automate the cross-context
usage of data. The key here is that the proposed virtual space offers a uniform
means to deal with the three data expansion/integration steps, which are rele-
vant to all kinds of applications and all types of data. The virtual object space



can be used in conjunction with any application architecture and in the thesis we
demonstrate the use of DOLAR in two production cases, where virtual objects
are used in an MVC [30] and a REST[31] architecture.

Our approach to realize the virtual space as a DSEL aims to achieve an
additional level of separation, that is, to decouple the data from the application-
context in terms of the programming-language used. Our long-term goal with
virtual objects is to offer an embeddable, language-independent, data-centric
runtime environment—a virtual machine for data objects. Although our cur-
rent DOLAR implementation is realized in Java, the key elements of the virtual
space—including virtual objects and prototypes, datastore drivers and connec-
tors, composition schemes and virtual object inheritance—can be clearly im-
plemented in any general-purpose programming-language. Moreover, the pro-
totype format feature of our DSEL builds upon the introspection of DOLAR
prototypes to bridge virtual objects with multiple syntactic notations, including
JSON, XML or our custom DOLAR syntax. Different applications can use dif-
ferent notations for storing and exchanging their prototypes, yet, all notations
are parsed to generate identical prototypes in terms of the DOLAR language.
This way, we manage to treat the data exchange and definition syntax as a
pluggable component of the virtual space and not as a hard-coded option. In
general, the DOLAR DSEL combines the flexibility and versatility of XML with
the programmability and ease of use of scripting languages, in an effort to offer
a foundation for issuing multiple data-definition utilities; for example, we also
present DOPs Creator, a GUI tool for defining prototypes.

Finally, XML ontologies are widely used to model and conceptualize infor-
mation in various contexts [32]. The main difference between ontologies and
our approach—which stands for any comparison between ontologies and OO
systems—is that ontologies use inference as the primary compositional mecha-
nism, while in DOLAR we use virtual object instantiation and inheritance.

3 Overview of the Virtual Object Space

A virtual object offers a runtime manifestation of data which separates (a) how
the data are being accessed and stored, (b) how the data are logically arranged
at runtime and (c) how the data are synthesized and composed. Figure 1 depicts
a virtual object, comprising (from left to right):

a. an application-specific physical/storage representation of data. The virtual
object uses our datastore driver (DOStore) mechanism to capture the physical
data access/storage options of applications.

b. an application-neutral logical structure of data. The virtual object conforms
to a conceptualization expressed in terms of a structural prototype definition,
offering a uniform, application-neutral representation of the logical arrange-
ments of data at runtime.

c. an application-specific behavior of data. The virtual object adheres to a behav-
ioral prototype, yielding application-specific sub-objects which are compatible
with the application’s service provision expectations.



Fig. 1. A virtual object comprising a datastore driver, a structural and a behavioral
prototype

By separating the left, data storage concern from the middle, data conceptu-
alization concern, we manage to virtualize the datastores and treat heterogeneous
storage artifacts as serializations of virtual objects. A virtual object adheres to
the logical structure defined by its structural prototype consisting of fields, used
for holding attributes, metadata or similar name/value pairs; relation contexts,
used for holding the relationships among objects; and stream handles, used as
pointers to files and similar document-based content. In OO terms, these ele-
ments designate the internal state of virtual objects; the structural prototypes
provide the logical arrangements of data, offering the “data object classes”, and
virtual objects provide the runtime manifestation of data, offering the “data
object instances”. During instantiation, virtual objects use the datastore driver
mechanism to establish a two-way link to the underlying storage artifacts. The
driver connects the virtual field, relation-context and stream-handle runtime
structures to any respective storage-specific structures employed by the datas-
tore(s) used beneath. The datastore driver mechanism designates the data-access
API of the virtual space, where the datastore drivers play the role of the data-
access actors of Step 1. The virtual space uses the driver mechanism in a trans-
parent to the developer fashion, offering an effective virtual object load/store
metaphor which virtualizes the datastores. For example, developers can both
load and store heterogeneous virtual objects using literally a single line of code.
The developer is provided with the abstraction that heterogeneous storage arti-
facts are serializations of virtual objects, dealing with runtime artifacts that can
access and also update any datastores with identical effectiveness and ease of
use. Behind the scenes, the virtual space automatically deals with common data
fetching tasks including (a) staging the data in virtual object runtime struc-
tures, (b) synchronizing the access to these structures and, finally, (c) flushing
such structures to underlying datastores as needed.

By separating the middle, data-conceptualization concern from the right,
data-synthesis concern, we separate the data-inherent from application-inherent
behavior as follows:

– data-inherent behavior depends on the logical arrangements of the data in
question; for example, the thumbnail of a “book” item may originate from



a digitized image of the book’s first page, while the thumbnail of a “photo”
item may originate from the digitized image of the photo itself.

– application-inherent behavior depends on the service provision requirements
of the application at hand, regardless of the data items supported; for ex-
ample, an application will either provide a thumbnail display for all of its
items or it will not support such a display at all.

As far as the business-logic is concerned, the acquisition of a thumbnail from
a photo, a book, or any other item should be transparent. The interpretation
of data-inherent behavior (i.e. how to acquire the thumbnail) depends on the
structure of the data item at hand. The implementation of application-inherent
behavior (i.e. what to do with the thumbnail) depends on the service provision
at hand. We use the notion of composition schemes to achieve this separation,
offering an amalgamation of (a) a method construct of OO languages and (b)
a projection operation of query languages. There is a direct analogy between
the methods of “code objects” and the composition schemes of virtual objects:
the methods/schemes available on an object define the messages the object can
respond to. Yet, in contrast to “code objects”, a virtual object does not con-
tain executable code but responds to messages by transforming its internal state.
A behavioral prototype defines a set of composition schemes, designating the
runtime interface between virtual objects and application artifacts such as com-
ponents and modules. The analogy, in a general-purpose OO language, is that
schemes correspond to methods and behavioral prototypes correspond to inter-
faces. Schemes are realized and behave at runtime as sub-objects, transforming
the structure of virtual objects to automatically match the application’s expecta-
tions. Composition schemes are are a unique feature of our approach, providing
the key for enabling virtual objects to expose different behavior when used across
applications.

The virtual object environment is logically placed between the business-logic
and the data sources to offer:

1. a common representation of heterogeneous data. For example, heterogeneous
storage artifacts, such as SQL “book” tuples and XML “book” documents,
will adhere to a uniform “book” virtual object representation at runtime.
This is achieved with the help of the virtual object load/store metaphor, as
realized by virtual object prototypes and datastore drivers described before.
This metaphor enables us to treat heterogeneous storage artifacts as native
objects of the virtual space, simplifying Steps 1 and 2.

2. a uniform composition of semantically different data. For example, diversely
structured data, such as “book” and “photo” items, regardless of their storage
representations, will conform to uniform manipulation at runtime. Here, we
build upon the common representation offered by the virtual space to manage
diversely structured virtual objects through a uniform programming interface.
This is critical, as we seek objects that can be defined by their responses to
messages and not by their internal representation [33]. With the use of our
composition schemes and behavioral prototypes, the service provision logic



can catch up with the gradual addition of new content without source code
modifications, automating Step 3.

3. a set of reusable and composable data attach/detach mechanisms. For exam-
ple, applications can build upon the virtual objects of each other, regardless of
their network location, logical structure or storage representation, to share,
reuse and refine their data spaces. The data attach/detach mechanisms of
DOLAR include virtual object inheritance and the virtual space connector and
prototype format mechanisms. On one hand, prototype formats and virtual
space connectors offer a pluggable and disciplined means to (a) exchange pro-
totypes and (b) inter-connect virtual spaces, allowing DOLAR applications to
instantiate the virtual objects of each other. On the other hand, virtual object
inheritance allows for the reuse and refinement of virtual object definitions,
automating the inclusion of new data in existing service provisions.

Building upon such virtual object structural and behavioral prototypes, we
offer a mixin-based [34–36] multiple inheritance mechanism. With virtual object
inheritance, we support the subclassing, subtyping and specialization features
offered by inheritance in general, yet, we use these features to automate the
cross-context usages of data. For example, virtual objects can be polymorphic in
the OO sense, yet, the virtualization offered by the proposed environment allows
virtual objects to effectively support different polymorphisms in different con-
texts. Virtual object inheritance provides the most powerful data attach/detach
mechanism of our proposal, as it enables developers to reuse and extend virtual
objects for attaching/detaching information among different contexts.

4 Conclusions

Our proposal offers a novel virtual object language and runtime that transcends
the data, knowledge and software engineering boundaries in order for informa-
tion spaces to transcend the storage, programming-language and application
boundaries. We view our virtual object approach as an effort to offer a virtual
machine for data objects, an embeddable environment that permits applications
to develop a common, reusable and composable interpretation of data that tran-
scends the application-context boundaries. The virtual space can be embedded
in applications; it can reused across contexts; it can be refined to effectively
match different service provision expectations. The virtual view of data em-
ployed in our approach allows us to deal with the common challenge underlying
data expansion, integration and migration, that is, the adaption of existing ser-
vice provisions to new information. As the amount of information undergoes
constant growth globally, the above adaptation requirement becomes more and
more dominant, as it involves all types of applications and all kinds of data. The
proposed virtual objects meet this requirement by allowing developers to ex-
pand applications to support novel information without breaking their existing
implementations.



References

1. R.P. Goldberg. Survey of virtual machine research. IEEE Computer Magazine,
pages 34–45, June 1974.

2. M. Rosenblum. The reincarnation of virtual machines. Queue, 2(5):34–40, 2004.

3. D. Ross. Plato’s Theory of Ideas. Oxford University Press, 1951.

4. M. Lenzerini. Data integration: a theoretical perspective. In PODS ’02: Proceedings
of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, pages 233–246, New York, NY, USA, 2002. ACM.

5. K. Chen, H. Chen, N. Conway, H. Dolan, and J. M. Hellerstein T. S. Parikh.
Improving data quality with dynamic forms. In ICTD’09: Proceedings of the 3rd
international conference on Information and communication technologies and de-
velopment, pages 487–487, Piscataway, NJ, USA, 2009. IEEE Press.

6. I. Lukovic, P. Mogin, J. Pavicevic, and S. Ristic. An approach to developing
complex database schemas using form types. Softw., Pract. Exper., 37(15):1621–
1656, 2007.

7. D. Parsons, A. Rashid, A. Telea, and A. Speck. An architectural pattern for design-
ing component-based application frameworks. Softw. Pract. Exper., 36(2):157–190,
2006.

8. P. Tarr, H. Ossher, W. Harrison, and S.M. Sutton. N degrees of separation: Multi-
dimensional separation of concerns. In Proc. of the 21st Int. Conf. on Software
Engineering (ICSE), pages 107–119, 1999.

9. C. J. Date and P. Hopewell. File definition and logical data independence. In
Proceedings of the 1971 ACM SIGFIDET (now SIGMOD) Workshop on Data De-
scription, Access and Control, SIGFIDET ’71, pages 117–138, San Diego, Califor-
nia, 1971. ACM.

10. J.M Hellerstein. Toward network data independence. SIGMOD Rec., 32(3):34–40,
September 2003.

11. S. Heiler. Semantic interoperability. ACM Comput. Surv., 27(2):271–273, 1995.

12. A.M. Ouksel and A. Sheth. Semantic interoperability in global information sys-
tems. SIGMOD Rec., 28(1):5–12, 1999.

13. K. Saidis, G. Pyrounakis, and M. Nikolaidou. On the effective manipulation of
digital objects: A prototype-based instantiation approach. In Proceedings of the
9th European Conference on Digital Libraries, pages 26–37, Vienna, Austria, 2005.

14. K. Saidis, G. Pyrounakis, M. Nikolaidou, and A. Delis. Digital object prototypes:
An effective realization of digital object types. In Proceedings of the 10th European
Conference on Digital Libraries, Alicante, Spain, September 2006.

15. K. Saidis and A. Delis. Towards a Unified Runtime Model for Managing Networked
Classes of Digital Objects. In 2nd DELOS Workshop on Foundations of Digital
Libraries, In conjunction with the 11th European Conference on Digital Libraries,
Budapest, Hungary, 2007.

16. K. Saidis and A. Delis. Type-consistent Digital Objects. D-Lib Magazine, 13(5/6),
May/June 2007. [doi:10.1045/may2007-saidis].

17. K. Saidis and A. Delis. Integrating multi-dimensional information spaces. In 2nd

Workshop on Very Large Digital Libraries, In conjunction with the 13th European
Conference on Digital Libraries, Corfu, Greece, 2009.

18. K. Saidis, Y. Smaragdakis, and A. Delis. Dolar: virtualizing heterogeneous infor-
mation spaces to support their expansion. Software: Practice and Experience, Ac-
cepted for publication, 2010, available online at http://dx.doi.org/10.1002/spe.1050.



19. P. Hudak. Building domain-specific embedded languages. ACM Computing Sur-
veys, 28(4es), 1996.

20. D. S. Wile. Supporting the DSL Spectrum. Journal of Computing and Information
Technology, CIT 9(4):263–287, 2001.

21. M. Mernik, J. Heering, and A.M. Sloane. When and how to develop domain-specific
languages. ACM Computing Surveys, 37(4):316–344, 2005.

22. N. Shadbolt, T. Berners-Lee, and W. Hall. The semantic web revisited. IEEE
Intelligent Systems, 21(3):96–101, 2006.

23. S. Decker, S. Melnik, F. van Harmelen, D. Fensel, M. C. A. Klein, J. Broekstra,
M. Erdmann, and I. Horrocks. The semantic web: The roles of xml and rdf. IEEE
Internet Computing, 4:63–74, 2000.

24. C. Marshall and F. Shipman. Which semantic web? In HYPERTEXT ’03: Pro-
ceedings of the fourteenth ACM conference on Hypertext and hypermedia, pages
57–66, New York, NY, USA, 2003. ACM.

25. P. A. Bernstein. Middleware: a model for distributed system services. Commun.
ACM, 39:86–98, February 1996.

26. F. Kon, F. Costa, G. Blair, and R. H. Campbell. The case for reflective middleware.
Commun. ACM, 45:33–38, June 2002.

27. T. Erl. Service-Oriented Architecture: Concepts, Technology, and Design. Prentice
Hall, 2005.

28. P. Miller. Interoperability. What is it and Why should I want it? Ariadne, Issue
24, June 2000. http://www.ariadne.ac.uk/issue24/interoperability/intro.html.

29. IDF. The DOI Handbook, The International DOI Foundation, 2006. Edition 4.4.1,
October 2006, [doi:10.1000/182].

30. E. Gamma, R.Helm, R.Johnson, and J.Vlissides. Design Patterns Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1997.

31. R. T. Fielding and R. N. Taylor. Principled design of the modern web architec-
ture. In ICSE ’00: Proceedings of the 22nd international conference on Software
engineering, pages 407–416, New York, NY, USA, 2000. ACM.

32. B. Chandrasekaran, John R. Josephson, and V. Richard Benjamins. What are
ontologies, and why do we need them? IEEE Intelligent Systems, 14(1):20–26,
1999.

33. H. Lieberman. The continuing quest for abstraction. In Proceedings of the 20th
European Conference on Object Oriented Programming (ECOOP), pages 192–197,
2006. doi: 10.1007/11785477 12.

34. G. Bracha and W. R. Cook. Mixin-based Inheritance. In OOPSLA / ECOOP,
pages 303–311, 1990.

35. Y. Smaragdakis and D. Batory. Implementing layered designs with mixin lay-
ers. In Proceeding of the European Conference on Object Oriented Programming
(ECOOP), 1998.

36. N. Scharli, S. Ducasse, O. Nierstrasz, and A. Black. Traits: Composable units
of behaviour. In ECOOP 2003 – Object-Oriented Programming, volume 2743 of
Lecture Notes in Computer Science, pages 327–339. Springer Berlin / Heidelberg,
2003.


