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Abstract. This dissertation focuses on the problem of 3D object re-
trieval from large datasets in a near realtime manner. In ord er to ad-
dress this task we focus on three major subproblems of the �eld: (i)
pose normalization of rigid 3D models with applications to 3 D object
retrieval, (ii) non-rigid 3D object description and (iii) s earch over rigid
3D object datasets based on 2D image queries. Regarding the �rst of the
three subproblems, 3D model pose normalization, two main novel pose
normalization methods are presented, based on: (i) 3D Reective Object
Symmetry (ROSy) and (ii) 2D Reective Object Symmetry compu ted
on Panoramic Views (SymPan/SymPan+). Considering the seco nd sub-
problem, a non-rigid 3D object retrieval methodology, base d on the prop-
erties of conformal geometry and graph-based topological information
(ConTopo++) has been developed. Furthermore, a string matc hing strat-
egy for the comparison of graphs that describe 3D objects, is proposed.
Regarding the third subproblem a 3D object retrieval method , based on
2D range image queries that represent partial views of real 3D objects,
is presented. The complete 3D objects of the database are described by
a set of panoramic views and a Bag-of-Visual-Words model is built using
SIFT features extracted from them. The methodologies developed and
described in this dissertation are evaluated in terms of ret rieval accuracy
and demonstrated using both quantitative and qualitative m easures via
an extensive consistent evaluation against state-of-the-art methods on
standard datasets.
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tial Matching, Range Images

1 Introduction

Information, commonly refers to a useful portion of data locatedamong a collec-
tion of related entities. Recent advances in storage technologies and the widespread
use of the Internet, have resulted in a vast increase of the amount of data stored
in and distributed from large databases. Any attempt for manual annotation
and information extraction is almost impossible, therefore rendering the need
for an automated procedure, mandatory.
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The process of extracting useful information from large amountsof data, in
an automated manner and based on an example or descriptive query, is called
information retrieval. Common types of information that can bene� t from such
a retrieval process are: textual, visual, audio and video data and most recently,
3D and 4D (3D over time) data.

In recent years, through the creation of inexpensive 3D scanners and the sim-
pli�cation of 3D modelling software, a large volume of 3D data has beencreated
and stored in corresponding scienti�c and industrial/commercial repositories.
Furthermore, 3D data can be processed in various, application dependent, ways
and occasionally be combined with data of other types and modalities (e.g. tex-
tual annotation and/or thumbnails of 3D models). These data types can further
be used as queries for the retrieval of 3D objects.

Some example applications that exploit the properties of 3D models and
could greatly bene�t from a retrieval process follow: in medicine large diagnostic
3D data are compared and researched in order to assist the process of making
medical decisions. In biometrics a person's 3D facial model is searched over
corresponding databases for identi�cation purposes. Game development utilizes
retrieval and reusability of 3D models in order to minimize production times
and reduce the size of the �nal product. Other example applicationareas include
engineering and archaeology. It can therefore be easily deduced,that 3D object
retrieval is a key process, although in general it is complex and highlydepended
on the application.

2 Framework and problem statement

3D object retrieval applications can be classi�ed into two major categories: inter-
class and intra-class retrieval. Inter-class retrieval focuses ona generic domain
of 3D objects and aims at �nding the closest match among a set of 3Dmodels
that belong to a broad range of di�erent classes. In this case, there is usually no
prior knowledge regarding the characteristics or the nature of the 3D objects.
Intra-class retrieval targets a speci�c 3D object domain (e.g. 3Dfaces, non-rigid
3D models, human action models, engineering models etc), where a match is
sought between 3D models that belong to the same class but have their special
characteristics de�ned di�erently. Intra-class 3D object retrie val methods usually
exploit domain knowledge and shape characteristics of the 3D models, in order
to attain higher performance.

For both categories, the generic framework of a 3D object retrieval system
can be outlined as follows: preprocessing, pose normalization, shape descriptor
extraction, feature matching.

At the �rst step of the 3D object retrieval pipeline, 3D models are prepro-
cessed. In this step, the 3D models are cleaned up of any inconsistencies present
due to the digitization process, i.e. double or reversed faces, structural gaps, etc.
This step is highly dependent on the method/equipment used for thecreation
of the 3D models and may di�er greatly from one application to another.
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After basic preprocessing,Pose Normalization ensures that the geometric
properties of the 3D models are de�ned in a uniform manner. The diversity
of 3D object acquisition sources implies that 3D objects which may even be
part of the same dataset, have their geometrical properties arbitrarily de�ned.
Therefore, before any kind of processing is carried out, it must beensured that
the 3D objects have been normalized in terms of position, scaling androtation
(Fig 1 shows an example rotation normalization). Pose normalization of 3D
objects is a common preprocessing step in various computer graphics applications
[2, 22, 23, 27]. Visualization, broken fragment reconstruction, biometrics and 3D
object retrieval are only a few examples of applications that bene�t from a pose
normalization procedure. To achieve pose normalization, for every3D object, a
corresponding set of normalization transformations in 3D space must be de�ned.

Fig. 1: Examples of non-aligned objects (top-row) and the corresponding rotation nor-
malizations (bottom row).

The main step of a 3D object retrieval system is the computation ofa feature
set for each 3D model. In this step, the structural and/or other special character-
istics of a 3D object are modelled and a shape descriptor that faithfully encodes
the shape of the 3D model, in an e�cient manner, is created. Feature selection
is tightly connected to the corresponding application and can vary greatly for
each 3D object retrieval system (e.g. intra-class retrieval exploits features that
are more distinguishing within a speci�c domain, whereas inter-class retrieval
uses more generic characteristics).

Finally, each 3D object's shape descriptor is used as a signature during the
matching procedure. At this step, the signatures of the 3D models, stored in
the database, are compared to the corresponding signatures ofthe query 3D
model(s), using a speci�ed metric. The selected metric is also dependent on both
the features selected and the corresponding application. Finally, the response of
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the 3D object retrieval system is the set of 3D object(s) that correspond to the
closest match(es) of the given user query.

3 Contributions

This dissertation has made the following research contributions in the �eld of 3D
object retrieval: two new 3D model pose normalization methods, a non-rigid 3D
object retrieval methodology and a 3D object retrieval algorithm, based on range
image queries. In detail, the contributions of this dissertation are the following:

3.1 ROSy Pose Normalization Method

A general purpose global pose normalization method, based on 3D object reec-
tive symmetry.

In the ROSy method, the problem of pose normalization is described through
the Surface-Oriented Minimum Bounding Box (SoMBB), a modi�ed ver sion of
the Axis-Aligned Bounding Box (AABB) which is commonly used in collision
detection techniques [24, 8].

The motivation behind the proposed method is to minimize the SoMBB ofa
3D object so that the latter becomes aligned with its SoMBB and consecutively
with the principal axes of space. Furthermore, to ensure that the 3D object's
large planar areas are also in alignment with the principal planes of space, it
is required that the average normal to the object's large planar areas become
parallel to the box's face normals (Fig. 2).

Fig. 2: 3D objects enclosed in their SoMBBs.

Initially, the axis-aligned minimum bounding box of a rigid 3D model is
modi�ed by requiring that the 3D model is also in minimum angular di�erence
with respect to the normals to the faces of its bounding box.

To estimate the modi�ed axis-aligned bounding box, a set of prede�ned prin-
cipal planes of symmetry is used and the corresponding symmetric models are
computed. Then, a combined spatial and angular distance, between the 3D model
and its symmetric model, is calculated.
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By minimizing this combined distance, through a set of rotations in space,
the 3D model �ts inside its modi�ed axis-aligned bounding box and alignment
with the coordinate system is achieved. [18]

3.2 SymPan+ Pose Normalization Method

A pose normalization method, based on panoramic views and reective symme-
try, is presented.

The motivation for the proposed method is that the use of reective symme-
try as a feature for pose normalization and 3D object retrieval seems to enhance
the results [11], as most of the 3D objects exhibit symmetrical properties to
some degree. These properties tend to be distinct between di�erent classes and
similar between objects of the same class, therefore enhancing the discrimination
achieved by other commonly used characteristics, such as the spatial distribu-
tion and/or surface orientation of the 3D models. Qualitative and experimental
investigation in 3D data-sets has led us to the observation that most objects
possess at least a single plane of symmetry. Our approach is thus guided by this
observation.

Initially, the surface of a 3D model is projected onto the lateral surface of a
circumscribed cylinder, aligned with the primary principal axis of space. Based
on this cylindrical projection, a normals' deviation map is computed.

Through an iterative procedure, the symmetry plane of the 3D model is
parallelized with the axis of the projection cylinder, thus computing the �rst
principal axis of the 3D model. This is achieved by rotating the 3D model and
computing reective symmetry scores on panoramic view images (Fig3).

Fig. 3: Aligning the symmetry plane normal with the XY plane

The other principal axes of the 3D model are then estimated by computing
the variance of the 3D model's panoramic views. [17, 21]

3.3 ConTopo++ Non-Rigid 3D Object Retrieval

Combining the properties of conformal geometry and graph-based topological
information, a non-rigid 3D object retrieval methodology is proposed, which is
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both robust and e�cient in terms of retrieval accuracy and compu tation speed.
While graph-based methods are robust to nonrigid object deformations, they
require intensive computation which can be reduced by the use of appropriate
representations, addressed through geometry-based methods. In this respect, a
3D object retrieval methodology, which combines the above advantages in a
uni�ed manner, is presented.

Initially, we de�ne a graph, that captures the topological structu re of an
arbitrary 3D mesh. Each node of the graph represents a unique connected com-
ponent, while each edge of the graph describes the relation between adjacent
connected components. Each connected component is composedof 3D mesh
faces that have the same label and are also pathwise-connected.

In this work we have used discrete conformal factors [1] as a labeling criterion
due to their ability to identify the protrusive parts in a mesh. The fac es of the
3D mesh are partitioned based on a linear multi-thresholding of the values of
the discrete conformal factor, thus splitting the mesh into a set of connected
components (see Fig. 4).

Fig. 4: Illustration of an eight-level quantized mesh and th e corresponding graph.

Mesh matching compares both geometrical and topological features as a mea-
sure of similarity between two 3D meshes in a uni�ed manner. During matching,
the topological equivalence between the graphs of two 3D meshes isexamined
and enhanced by node-to-node comparison of geometrical features.

The matching procedure is based on string matching. Each orderedpath,
of graph nodes, that extends from thecore partition of the 3D mesh down to
each of its articulations is considered astring. Furthermore, besides the ordered
connectivity of the string (graph) nodes, a number of features are also attached
to them, which are used for the geometrical matching. [19]

3.4 3D Object Retrieval based on 2D Range Image Queries

A 3D object retrieval method, based on range image queries that represent par-
tial views of real 3D objects, is presented.

The motivation behind the proposed method, is to use a 2D image in order
to query a database of 3D objects and bridge the representationgap between
the two in an e�cient manner.

The complete 3D models of the database are described by a set of panoramic
views and a Bag-of-Visual-Words model is built using SIFT features extracted
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from them. To address the problem of partial matching, a spatial histogram
computation scheme, on the panoramic views, that represents local information
by taking into account spatial context, is suggested.

Furthermore, a number of optimization techniques are applied throughout
the process, for enhancing the retrieval performance. [20]

4 Experimental Results

The experimental evaluation is based on the Precision-Recall curves and �ve
quantitative measures: Nearest Neighbor (NN), First Tier (FT), Second Tier
(ST), E-measure (E) and Discounted Cumulative Gain (DCG) [9, 22] for the
classes of each corresponding dataset.

4.1 ROSy and SymPan+ Pose Normalization Methods

For the evaluation of the ROSy pose normalization method, we have chosen a
state-of-the-art 3D object retrieval methodology, by Papadakis et al. [14], as the
evaluation vehicle.

Papadakis' 3D object retrieval system, in its original form, uses acombina-
tion of the CPCA and NPCA algorithms to achieve pose normalization ofa 3D
model. ROSy itself has similar performance to CPCA and NPCA. However, the
combination of the three pose normalization methods (namely ROSy+) gives
a signi�cant boost to the discriminative power of the retrieval process, outper-
forming the original hybrid (CPCA, NPCA) approach.

Similar to the way that the ROSy+ system has been used for the quantitative
evaluation of the ROSy pose normalization method, for SymPan+ we have cho-
sen the PANORAMA state-of-the-art 3D object retrieval system, by Papadakis
et al. [15] as the evaluation vehicle. The proposed method replaces the NPCA
pose normalization method in the existing hybrid scheme.

The direct e�ect of the proposed alignment methods can be evaluated by com-
paring against the original 3D object retrieval methods' performance. In terms of
object retrieval performance, we compared against DLA [3], GSMD+SHD+R [12],
Light�eld [4], SH-GEDT [10] and DESIRE [25].

In Fig. 5, using the experimental results given in [18, 17], we illustratethe P-R
scores for the test subset of the PSB dataset, for the proposed pose normalization
methods.

ROSy+ is able to achieve an average performance gain of about 3% over the
original hybrid approach (mean value over the quantitative measures used). Fur-
thermore, it is clear that ROSy+ performs better than state-of- the-art methods
by an average of 2% - 5%. SymPan+ improves the discriminative powerof the
PANORAMA 3D object retrieval system by an average of 7% over the original
approach. Furthermore, the SymPan+ method exhibits improved performance
over ROSy+ by an average of 2 - 3%.
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Fig. 5: Precision-Recall plot for the Princeton Shape Benchmark test dataset. SymPan,
SymPan+ 3D model pose normalization methods on PANORAMA ret rieval results are
compared against state-of-the-art 3D object retrieval tec hniques.

4.2 ConTopo++ Non-Rigid 3D Object Retrieval Method

In the sequel, we compare the proposed non-rigid 3D object retrieval method
ConTopo++ against other state-of-the-art methods on standard datasets.

In Fig. 6 we illustrate the P-R scores of the proposed method against the
published results of the SHREC'10 Non-rigid 3D Models dataset. It is clear
that the proposed method outperforms the track contestants, even though the
published results were already of high performance.

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0,0 0,2 0,4 0,6 0,8 1,0

P
re

ci
si

on

Recall

SHREC'10 Non-rigid 3D Models Dataset

ConTopo++

MR-BF-DSIFT-E

BF-DSIFT-E

DMEVD_run1

DMEVD_run2

DMEVD_run3

CF

Fig. 6: Comparative results based on the average P-R scores for the SHREC'10 Non-
rigid 3D Models dataset.
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4.3 3D Object Retrieval Based on 2D Range Image Queries

The datasets that we used for the experimental evaluation of ourproposed 3D ob-
ject retrieval, based on 2D image query method are the following: (i)SHREC'09
Querying with Partial Models [6] and (ii) SHREC'10 Range Scan Retrieval[7].
We compared against existing results of the participating contestants.

More speci�cally, on the SHREC'09 Querying with Partial Models we com-
pared against the variations of CMVD (Compact MultiView Descriptor ) by
Daras and Axenopoulos [5] and the BF-SIFT and BF-GridSIFT methods by Fu-
ruya and Ohbuchi. The P-R scores of Fig. 7 illustrate that the proposed method
achieves superior performance compared to the variations of theCMVD, as well
as both the BF-SIFT and the BF-GridSIFT retrieval methods.
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Fig. 7: Comparative results based
on the average P-R scores for the
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On the SHREC'10 Range Scan Retrievaldataset we compared against the
variations of the BF-DSIFT-E method proposed by Ohbuchi and Furuya [13]
and the variations of the SURFLET method proposed by Hillebrand et al. [26].
The P-R scores of Fig. 8, illustrate that the proposed method outperforms the
track contestants.

5 Conclusions

To address the problems of 3D model pose normalization, 3D objectretrieval
with applications to rigid and non-rigid models, as well as image based 3Dobject
retrieval, four novel methodologies have been developed.

In the �eld of 3D model pose normalization two main novel methods, based
on the reective symmetry properties of 3D objects, have been proposed. All the
proposed methods are able to produce high quality alignments of 3D objects,
regardless of their originating class or morphology. These alignments are both
stable and consistent.
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To address the problem of non-rigid 3D object retrieval the ConTopo++ de-
scriptor has been proposed. This non-rigid 3D object retrieval methodology is
able to achieve high levels of retrieval accuracy and outperform many of the com-
peting descriptors at a low computational cost. Fig. 9 illustrates some retrieval
samples from the SHREC'10Non-rigid 3D Models dataset.

Fig. 9: Sample queries from the SHREC'10 Non-rigid 3D Models dataset. First column
indicates the query model and results are illustrated in ran king order. The thumbnails
have been taken from the SHREC'10 Non-rigid 3D Models dataset.

In the �eld of image-based 3D object retrieval, we proposed a spatial his-
tograms strategy in a Bag-of-Visual-Words context that �ts the information
present in panoramic views of 3D objects to the task of partial matching. This im-
proved 3D object retrieval methodology, was evaluated on the SHREC'09 Query-
ing with Partial Models and SHREC'10 Range Scan Retrievaltracks against the
corresponding state-of-the-art 3D object retrieval methodologies. In every case,
the proposed method outperforms competing descriptors.

The described methodologies have proven to be robust in terms of retrieval
accuracy and outperformed previous state-of-the-art methods in the correspond-
ing evaluation tests. These tests were conducted on publicly available datasets.
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