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Abstract.  This dissertation focuses on the problem of 3D object re-
trieval from large datasets in a near realtime manner. In ord er to ad-
dress this task we focus on three major subproblems of the eld: (i)

pose normalization of rigid 3D models with applications to 3 D object

retrieval, (ii) non-rigid 3D object description and (iii) s earch over rigid

3D object datasets based on 2D image queries. Regarding the rst of the

three subproblems, 3D model pose normalization, two main novel pose
normalization methods are presented, based on: (i) 3D Re ective Object

Symmetry (ROSy) and (ii) 2D Re ective Object Symmetry compu ted

on Panoramic Views (SymPan/SymPan+). Considering the seco nd sub-
problem, a non-rigid 3D object retrieval methodology, base d on the prop-

erties of conformal geometry and graph-based topological information

(ConTopo++) has been developed. Furthermore, a string matc hing strat-

egy for the comparison of graphs that describe 3D objects, is proposed.
Regarding the third subproblem a 3D object retrieval method , based on
2D range image queries that represent partial views of real 3D objects,

is presented. The complete 3D objects of the database are desribed by
a set of panoramic views and a Bag-of-Visual-Words model is huilt using

SIFT features extracted from them. The methodologies developed and
described in this dissertation are evaluated in terms of ret rieval accuracy
and demonstrated using both quantitative and qualitative m easures via
an extensive consistent evaluation against state-of-the-art methods on

standard datasets.

Keywords: 3D Objects, Rotation Normalization, Shape Modelling, Par-
tial Matching, Range Images

1 Introduction

Information, commonly refers to a useful portion of data locatedamong a collec-
tion of related entities. Recent advances in storage technologiesd the widespread
use of the Internet, have resulted in a vast increase of the amourof data stored
in and distributed from large databases. Any attempt for manual annotation
and information extraction is almost impossible, therefore rendering the need
for an automated procedure, mandatory.
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The process of extracting useful information from large amountsof data, in
an automated manner and based on an example or descriptive queris called
information retrieval. Common types of information that can bene t from such
a retrieval process are: textual, visual, audio and video data and rost recently,
3D and 4D (3D over time) data.

In recent years, through the creation of inexpensive 3D scannsrand the sim-
pli cation of 3D modelling software, a large volume of 3D data has beercreated
and stored in corresponding scienti ¢ and industrial/commercial repositories.
Furthermore, 3D data can be processed in various, application degndent, ways
and occasionally be combined with data of other types and modalitiesd.g. tex-
tual annotation and/or thumbnails of 3D models). These data types can further
be used as queries for the retrieval of 3D objects.

Some example applications that exploit the properties of 3D models ash
could greatly bene t from a retrieval process follow: in medicine large diagnostic
3D data are compared and researched in order to assist the proge of making
medical decisions. In biometrics a person's 3D facial model is searti over
corresponding databases for identi cation purposes. Game delepment utilizes
retrieval and reusability of 3D models in order to minimize production times
and reduce the size of the nal product. Other example applicationareas include
engineering and archaeology. It can therefore be easily deducethat 3D object
retrieval is a key process, although in general it is complex and highlgepended
on the application.

2 Framework and problem statement

3D object retrieval applications can be classi ed into two major categories: inter-
class and intra-class retrieval. Inter-class retrieval focuses oa generic domain
of 3D objects and aims at nding the closest match among a set of 3Dmodels
that belong to a broad range of di erent classes. In this case, thee is usually no
prior knowledge regarding the characteristics or the nature of tle 3D objects.
Intra-class retrieval targets a speci ¢ 3D object domain (e.g. 3Dfaces, non-rigid
3D models, human action models, engineering models etc), where a ich is
sought between 3D models that belong to the same class but have ¢ir special
characteristics de ned di erently. Intra-class 3D object retrie val methods usually
exploit domain knowledge and shape characteristics of the 3D modelén order
to attain higher performance.

For both categories, the generic framework of a 3D object retrieal system
can be outlined as follows: preprocessing, pose normalization, shamescriptor
extraction, feature matching.

At the rst step of the 3D object retrieval pipeline, 3D models are prepro-
cessed. In this step, the 3D models are cleaned up of any inconsistges present
due to the digitization process, i.e. double or reversed faces, stetural gaps, etc.
This step is highly dependent on the method/equipment used for thecreation
of the 3D models and may di er greatly from one application to another.
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After basic preprocessing,Pose Normalization ensures that the geometric
properties of the 3D models are de ned in a uniform manner. The divesity
of 3D object acquisition sources implies that 3D objects which may esn be
part of the same dataset, have their geometrical properties aritrarily de ned.
Therefore, before any kind of processing is carried out, it must bensured that
the 3D objects have been normalized in terms of position, scaling andbtation
(Fig 1 shows an example rotation normalization). Pose normalization & 3D
objects is a common preprocessing step in various computer grajs applications
[2, 22, 23, 27]. Visualization, broken fragment reconstruction, bimetrics and 3D
object retrieval are only a few examples of applications that benet from a pose
normalization procedure. To achieve pose normalization, for evengD object, a
corresponding set of normalization transformations in 3D space mst be de ned.
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Fig. 1. Examples of non-aligned objects (top-row) and the corresponding rotation nor-
malizations (bottom row).

The main step of a 3D object retrieval system is the computation ofa feature
set for each 3D model. In this step, the structural and/or other special character-
istics of a 3D object are modelled and a shape descriptor that faithflly encodes
the shape of the 3D model, in an e cient manner, is created. Featue selection
is tightly connected to the corresponding application and can vary geatly for
each 3D object retrieval system (e.g. intra-class retrieval expliss features that
are more distinguishing within a speci c domain, whereas inter-class etrieval
uses more generic characteristics).

Finally, each 3D object's shape descriptor is used as a signature ding the
matching procedure. At this step, the signatures of the 3D modelsstored in
the database, are compared to the corresponding signatures dahe query 3D
model(s), using a speci ed metric. The selected metric is also deperat on both
the features selected and the corresponding application. Finally, e response of
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the 3D object retrieval system is the set of 3D object(s) that carespond to the
closest match(es) of the given user query.

3 Contributions

This dissertation has made the following research contributions in tle eld of 3D
object retrieval: two new 3D model pose normalization methods, a an-rigid 3D
object retrieval methodology and a 3D object retrieval algorithm, based on range
image queries. In detail, the contributions of this dissertation are te following:

3.1 ROSy Pose Normalization Method

A general purpose global pose normalization method, based on 3[bgect re ec-
tive symmetry.

In the ROSy method, the problem of pose normalization is describedtrough
the Surface-Oriented Minimum Bounding Box (SoMBB), a modi ed ver sion of
the Axis-Aligned Bounding Box (AABB) which is commonly used in collision
detection techniques [24, 8].

The motivation behind the proposed method is to minimize the SOMBB ofa
3D object so that the latter becomes aligned with its SOMBB and conecutively
with the principal axes of space. Furthermore, to ensure that ttre 3D object's
large planar areas are also in alignment with the principal planes of spee, it
is required that the average normal to the object's large planar aeas become
parallel to the box's face normals (Fig. 2).

Fig. 2: 3D objects enclosed in their SOMBBs.

Initially, the axis-aligned minimum bounding box of a rigid 3D model is
modi ed by requiring that the 3D model is also in minimum angular di erence
with respect to the normals to the faces of its bounding box.

To estimate the modi ed axis-aligned bounding box, a set of prede red prin-
cipal planes of symmetry is used and the corresponding symmetric adels are
computed. Then, a combined spatial and angular distance, betwaethe 3D model
and its symmetric model, is calculated.
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By minimizing this combined distance, through a set of rotations in spae,
the 3D model ts inside its modi ed axis-aligned bounding box and alignment
with the coordinate system is achieved. [18]

3.2 SymPan+ Pose Normalization Method

A pose normalization method, based on panoramic views and re ectig symme-
try, is presented.

The motivation for the proposed method is that the use of re ective symme-
try as a feature for pose normalization and 3D object retrieval sems to enhance
the results [11], as most of the 3D objects exhibit symmetrical proprties to
some degree. These properties tend to be distinct between di erg classes and
similar between objects of the same class, therefore enhancingeldiscrimination
achieved by other commonly used characteristics, such as the stial distribu-
tion and/or surface orientation of the 3D models. Qualitative and experimental
investigation in 3D data-sets has led us to the observation that mosobjects
possess at least a single plane of symmetry. Our approach is thus igied by this
observation.

Initially, the surface of a 3D model is projected onto the lateral suface of a
circumscribed cylinder, aligned with the primary principal axis of spac. Based
on this cylindrical projection, a normals' deviation map is computed.

Through an iterative procedure, the symmetry plane of the 3D moctl is
parallelized with the axis of the projection cylinder, thus computing the rst
principal axis of the 3D model. This is achieved by rotating the 3D modé and
computing re ective symmetry scores on panoramic view images (Fig).
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Fig. 3: Aligning the symmetry plane normal with the XY plane

The other principal axes of the 3D model are then estimated by comuting
the variance of the 3D model's panoramic views. [17, 21]

3.3 ConTopo++ Non-Rigid 3D Object Retrieval

Combining the properties of conformal geometry and graph-bas# topological
information, a non-rigid 3D object retrieval methodology is proposed, which is
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both robust and e cient in terms of retrieval accuracy and computation speed.
While graph-based methods are robust to nonrigid object deformaons, they
require intensive computation which can be reduced by the use of gpopriate
representations, addressed through geometry-based methedin this respect, a
3D object retrieval methodology, which combines the above advatages in a
uni ed manner, is presented.

Initially, we de ne a graph, that captures the topological structu re of an
arbitrary 3D mesh. Each node of the graph represents a unique cmected com-
ponent, while each edge of the graph describes the relation betweeadjacent
connected components. Each connected component is composefl 3D mesh
faces that have the same label and are also pathwise-connected.

In this work we have used discrete conformal factors [1] as a labelincriterion
due to their ability to identify the protrusive parts in a mesh. The fac es of the
3D mesh are partitioned based on a linear multi-thresholding of the véues of
the discrete conformal factor, thus splitting the mesh into a set ¢ connected
components (see Fig. 4).

Fig. 4: lllustration of an eight-level quantized mesh and th e corresponding graph.

Mesh matching compares both geometrical and topological featws as a mea-
sure of similarity between two 3D meshes in a uni ed manner. During méaching,
the topological equivalence between the graphs of two 3D meshes éxamined
and enhanced by node-to-node comparison of geometrical feats.

The matching procedure is based on string matching. Each orderegbath,
of graph nodes, that extends from thecore partition of the 3D mesh down to
each of its articulations is considered astring. Furthermore, besides the ordered
connectivity of the string (graph) nodes, a number of features & also attached
to them, which are used for the geometrical matching. [19]

3.4 3D Object Retrieval based on 2D Range Image Queries

A 3D object retrieval method, based on range image queries thatepresent par-
tial views of real 3D objects, is presented.

The motivation behind the proposed method, is to use a 2D image in ordr
to query a database of 3D objects and bridge the representatiogap between
the two in an e cient manner.

The complete 3D models of the database are described by a set ofparamic
views and a Bag-of-Visual-Words model is built using SIFT features gtracted
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from them. To address the problem of partial matching, a spatial Hstogram
computation scheme, on the panoramic views, that represents l@t information
by taking into account spatial context, is suggested.

Furthermore, a number of optimization techniques are applied thraughout
the process, for enhancing the retrieval performance. [20]

4 Experimental Results

The experimental evaluation is based on the Precision-Recall cungeand ve
quantitative measures: Nearest Neighbor (NN), First Tier (FT), Second Tier
(ST), E-measure (E) and Discounted Cumulative Gain (DCG) [9, 22] br the
classes of each corresponding dataset.

4.1 ROSy and SymPan+ Pose Normalization Methods

For the evaluation of the ROSy pose normalization method, we have lwosen a
state-of-the-art 3D object retrieval methodology, by Papad&is et al. [14], as the
evaluation vehicle.

Papadakis' 3D object retrieval system, in its original form, uses acombina-
tion of the CPCA and NPCA algorithms to achieve pose normalization ofa 3D
model. ROSy itself has similar performance to CPCA and NPCA. Howeve, the
combination of the three pose normalization methods (namely ROSy3 gives
a signi cant boost to the discriminative power of the retrieval process, outper-
forming the original hybrid (CPCA, NPCA) approach.

Similar to the way that the ROSy+ system has been used for the quatitative
evaluation of the ROSy pose normalization method, for SymPan+ we lave cho-
sen the PANORAMA state-of-the-art 3D object retrieval system, by Papadakis
et al. [15] as the evaluation vehicle. The proposed method replacesié NPCA
pose normalization method in the existing hybrid scheme.

The direct e ect of the proposed alignment methods can be evaluagd by com-
paring against the original 3D object retrieval methods' performance. In terms of
object retrieval performance, we compared against DLA [3], GSMBSHD+R [12],
Light eld [4], SH-GEDT [10] and DESIRE [25].

In Fig. 5, using the experimental results given in [18, 17], we illustratehe P-R
scores for the test subset of the PSB dataset, for the proposggpose normalization
methods.

ROSy+ is able to achieve an average performance gain of about 3% ewrthe
original hybrid approach (mean value over the quantitative measues used). Fur-
thermore, it is clear that ROSy+ performs better than state-of-the-art methods
by an average of 2% - 5%. SymPan+ improves the discriminative poweof the
PANORAMA 3D object retrieval system by an average of 7% over the original
approach. Furthermore, the SymPan+ method exhibits improved performance
over ROSy+ by an average of 2 - 3%.



8 Konstantinos S kas
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e =
~

A
i

Precision

—SymPan+ on PANORAMA [0.793, o.ssm\
—SymPan on PANORAMA [0,785, 0,544, 0,673, 0,778
—ROSy+ [0,779, 0,524, 0,659, 0,756]

PANORAMA [0,753, 0,479, 0,603, 0,750]
+GSMD+SHD+R [0,731, 0,472, 0,602, 0,721]
02 H DLA[0,713, 0,429, 0,552, 0,687] N
~-DESIRE [0,658, 0,404, 0,513, 0,633] ‘\‘\\‘s
- SH-GEDT [0,553, 0,310, 0,414, 0,584]
=LFD [0,657, 0,380, 0,487, 0,643]

o
~
T

7
/
/

0 0,05 0,15 0,25 0,35 0,45 0,55 0,65 0,75 0,85 o,
Recall

Fig. 5: Precision-Recall plot for the Princeton Shape Benchmark test dataset. SymPan,
SymPan+ 3D model pose normalization methods on PANORAMA ret rieval results are
compared against state-of-the-art 3D object retrieval tec hniques.

4.2 ConTopo++ Non-Rigid 3D Object Retrieval Method

In the sequel, we compare the proposed non-rigid 3D object retrial method
ConTopo++ against other state-of-the-art methods on standard datasets.

In Fig. 6 we illustrate the P-R scores of the proposed method agairisthe
published results of the SHREC'10Non-rigid 3D Models dataset. It is clear
that the proposed method outperforms the track contestants even though the
published results were already of high performance.

SHREC'1Ron-rigid 3D Model®ataset
10 —
09 —
08 —
07 —
g 06 —
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Qoa | —-MR-BF- e I
~BF-DSIFT-E I~ ‘ N ‘
03 | —DMEVD_runl |~ [~ — — | — — i
-+-DMEVD_run2
02 — e - — —_ = —
---DMEVD_run3 17 ‘ ﬂ'i ‘
01— | _cr — =A==+ —— -
00 | | | | |
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Recall

Fig. 6: Comparative results based on the average P-R scores dér the SHREC'10 Non-
rigid 3D Models dataset.
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4.3 3D Object Retrieval Based on 2D Range Image Queries

The datasets that we used for the experimental evaluation of ouproposed 3D ob-
ject retrieval, based on 2D image query method are the following: (lISHREC'09
Querying with Partial Models [6] and (i) SHREC'10 Range Scan Retrieval[7].
We compared against existing results of the participating contestats.

More speci cally, on the SHREC'09 Querying with Partial Models we com-
pared against the variations of CMVD (Compact MultiView Descriptor ) by
Daras and Axenopoulos [5] and the BF-SIFT and BF-GridSIFT methods by Fu-
ruya and Ohbuchi. The P-R scores of Fig. 7 illustrate that the proposed method
achieves superior performance compared to the variations of thEMVD, as well
as both the BF-SIFT and the BF-GridSIFT retrieval methods.

SHREC'0Querying with Parsal ModelsDataset SHREC'IRange Scan RetrievBlataset

Fig.7: Comparative results based Fig.8: Comparative results based
on the average P-R scores for the on the average P-R scores for the
SHREC'09 Querying with Partial SHREC'10 Range Scan Retrieval
Models dataset. dataset.

On the SHREC'10 Range Scan Retrievaldataset we compared against the
variations of the BF-DSIFT-E method proposed by Ohbuchi and Furuya [13]
and the variations of the SURFLET method proposed by Hillebrand et al. [26].
The P-R scores of Fig. 8, illustrate that the proposed method outrforms the
track contestants.

5 Conclusions

To address the problems of 3D model pose normalization, 3D objeatetrieval
with applications to rigid and non-rigid models, as well as image based 3@bject
retrieval, four novel methodologies have been developed.

In the eld of 3D model pose normalization two main novel methods, tased
on the re ective symmetry properties of 3D objects, have been ppposed. All the
proposed methods are able to produce high quality alignments of 3D lgjects,
regardless of their originating class or morphology. These alignmestare both
stable and consistent.
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To address the problem of non-rigid 3D object retrieval the ConTgo++ de-
scriptor has been proposed. This non-rigid 3D object retrieval mtéhodology is
able to achieve high levels of retrieval accuracy and outperform may of the com-
peting descriptors at a low computational cost. Fig. 9 illustrates sane retrieval
samples from the SHREC'10Non-rigid 3D Models dataset.

A AU e

Fig. 9: Sample queries from the SHREC'10 Non-rigid 3D Models dataset. First column
indicates the query model and results are illustrated in ran king order. The thumbnails
have been taken from the SHREC'10 Non-rigid 3D Models dataset.

In the eld of image-based 3D object retrieval, we proposed a spaal his-
tograms strategy in a Bag-of-Visual-Words context that ts the information
presentin panoramic views of 3D objects to the task of partial mathing. This im-
proved 3D object retrieval methodology, was evaluated on the SREC'09 Query-
ing with Partial Models and SHREC'10 Range Scan Retrievaltracks against the
corresponding state-of-the-art 3D object retrieval methoddogies. In every case,
the proposed method outperforms competing descriptors.

The described methodologies have proven to be robust in terms oktrieval
accuracy and outperformed previous state-of-the-art methds in the correspond-
ing evaluation tests. These tests were conducted on publicly availdb datasets.
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