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Abstract. In this dissertation, the problem of comparing pro-
teins based on their three dimensional structure is studied. With
new Protein Structure Comparison (PSC) methods continuously
emerging and no clear method of choice, Multi-Criteria Protein
Structure Comparison (MCPSC) is commonly employed to com-
bine methods and generate consensus structural similarity scores.
We developed methods to allow users to perform MCPSC effi-
ciently, by exploiting the parallelism afforded by todays desktop
computers. We implemented these methods in a Python based
utility, pyMCPSC. We demonstrate how pyMCPSC facilitates the
analysis of similarities in protein domain datasets. Finally, we
exemplify the power of pyMCPSC on several datasets and show
how it can help users gain insights about their datasets.

1 Introduction

For the last three decades the comparison and alignment of protein structures
has been used extensively in computational biology, because naturally occurring
protein fold in three dimensional space and the resulting structure has a strong
correlation to its function [1]. Conservation of proteins is known to be much
higher at the structure than at the sequence level, therefore structural similarity is
essential in assigning functional annotations to proteins [2]. Function assignment
is typically achieved by developing a template of the functional residues of
the proteins and then aligning the template with complete known structures
[3]. Structural comparison approaches are also increasingly employed in drug
repositioning [4]. Protein Structure Comparison (PSC) methods are used to
identify proteins with similar binding sites all of which then become potential
targets for the same ligand [5]. All these important applications require the
structure of one or more proteins (queries) to be compared against a large number
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of known protein structures (one-to-all or many-to-many type comparison) to
identify protein pairs with high structural similarity.

Computational demands in PSC are a result of three pertinent features.
Firstly, pairwise PSC has high computational complexity due to the NP-Hard
nature of the problem. Secondly, classification of newly discovered protein struc-
tures, for the purposes of ascertaining functional properties, requires comparison
with large and fast expanding databases [6]. Thirdly, the lack of consensus
on a single method has led to a trend in the domain to provide results from
more than one structure comparison method |7]. The advantage of such an
approach, Multi-criteria Protein Structure Comparison (MCPSC), is that it
does not call for determining the superiority of an approach over another, but
integration of several protein structure comparison methods into a unified tool.
The approach banks on the idea that an ensemble of classifiers is likely to yield
better performance than any of the constituent classifiers [8].

In published literature instances of the use of distributed computing platforms,
such as clusters of workstations (COWs), computer grids and cloud, can be found
for meeting this computational demand [9]. One such implementation, available
for use to the community, the ProCKSI server [10], is an online resource for
performing all-to-all MCPSC experiments. Results of the experiments returned
to the user include individual PSC method scores as well as a consensus MCPSC
score. While the ProCKSI server provides an excellent one stop resource for
designing and running all-to-all MCPSC experiments, it is limited in the size of
the data (upto 250 protein domains) and is not extendable with PSC methods
of users choice. In general, distributed solutions, specifically Grids, suffer from
problems such as extensibility, maintainability and fault tolerance.

These parallel processing architectures have become more readily available
and instances of their use are beginning to appear in the broader field of
biocomputing. These architectures can in principle be used additively to meet
the ever increasing computational demands of MCPSC by complementing already
in use distributed computing approaches |11]. It is therefore critical that effort
be expended to utilize this desktop scale parallelism. This will allow problems
of a scale that could only be tackled by distributed platforms, to be carried out
on commodity hardware and perhaps even more efficiently [12].

As established, protein structure comparison is a well developed field of
research with a large body of published literature and active current interest
with new techniques being developed continuously. We point out some of what
we believe to be open challenges for large-scale MCPSC:

o Efficient use of modern parallel architectures: Existing works focus on
improving pairwise PSC or on application of distributed resources to the
many-to-many PSC scenario. However, the parallelism afforded by modern
parallel architectures has not been extensively explored or efficiently utilized
especially for many-to-many PSC.

e Biologically Relevant Clustering and Classification: Defining and iden-
tifying classification of different protein structures is still an unresolved



problem. Structured analysis of gain from Multi-criteria PSC towards
resolving this problem is needed.

e Leveraging Structure Comparison: Generating large-scale MCPSC results
currently requires large distributed resources. Since a higher amount of
computational power is available locally to researchers, software needs to
be made available so that they can leverage such results in their every day
work. Thus, effort is needed to deliver high quality easy to use software
that can utilize desktop parallelism.

In this work, three PSC methods — TMalign [13], CE [14] and USM [15] —
were ported on the Intel Single-chip Cloud Computer (SCC) [16], a Network
on Chip (NoC) based many-core processor with 48 Pentium cores organized in
a mesh network. In order to facilitate porting PSC methods to the Intel SCC
an algorithmic skeleton library called rckskel was developed. The library was
designed to provide basic functions needed for exploring hybrid parallelization
strategies, for speeding up protein structure comparison algorithms. The result
was an application that uses the three PSC methods to perform all-to-all protein
structure comparison. The application makes use of all SCC cores (available at
run-time) to run multiple pairwise PSCs concurrently.

The MCPSC implementation for the SCC was used to conduct several
experiments to study its speedup characteristics. Each pairwise PSC with a
single method was considered as a job, which is the most fine-grained work
distribution setup that can be achieved, resulting in N x N x M jobs, where N is
the number of proteins and M is the number PSC methods. In the experimental
setup the lengths of the pair of proteins were used as a factor indicating the
expected time complexity of performing pairwise PSC. Preliminary results, with
TMalign alone, showed that using the 48 cores of the SCC in a distributed
setting (master running on a separate processor) is not efficient, giving a speedup
lower than a factor of 3x. Several experiments conducted with load balancing
strategies revealed that dynamic round-robin job distribution outperforms static
job partitioning schemes. It was observed that a near linear speedup can be
achieved as the number of slave-cores is increasing, which suggests even higher
speedups are possible with bigger NoCs [16].

Prototype FPGA implementations of two PSC methods — TMalign and USM
— were also developed. A feasibility study was conducted to ascertain if such
implementations are viable. Using FPGAs for speeding up PSC was not found to
be feasible because: a) either the parallelizable parts of PSC methods are a very
small factor of the overall method as in the case of TMalign, or b) the software
implementations are already highly optimized and no significant gains can be
achieved from the hardware implementations, as in the case of USM. A byproduct
of our initial experiments into the development of an efficient superposition
subroutine for the FPGA, was a Python module for structure superposition,
QCPSuperimposer, which was submitted and accepted as a module in BioPython
v1.66 |17].

A multi-threaded implementation of the MCPSC software was developed for
comparison with the many-core implementation. Experiments were designed



to assess how the MCPSC problem scales with increasing number of cores on a
modern multi-core CPU and to compare this with the speedup observed on a
many-core CPU. The multi-threaded implementation makes use of OpenMP for
introducing threads and uses shared memory constructs to replace the message-
passing communication handled by rckskel in the many-core implementation.
Our experiments showed that, when running on a quad-core Intel i7 (with 8
hyper-threaded cores), speedup is observed up to the 4 threads configurations
thereafter a steep speedup drop (efficiency loss) is observed. This was attributed
to the fact that the work-load placement is not suited to taking advantage
of the super-scalar structure of the CPU which requires varied workloads to
deliver higher performance. Comparison of the many-core and multi-core CPU
throughputs, on several datasets of varied sizes, showed that while the i7 is
superior in raw times it only achieves a 4x throughput (in terms of pairwise
protein structure comparisons per second) as compared to SCC while it runs at
7.5x the frequency [18].

Finally, experiments with a very large protein domain dataset (3,213,631
protein domain pairs) using a utility we developed, named pyMCPSC' , containing
five PSC methods - TMalign, CE, USM, Fast [19], GRalign [20] - were carried out
to determine the characteristics of consensus-based MCPSC. The experiments
were designed to run only on a multi-core CPU due to the memory limitations
of the Intel SCC many-core processor. As a software architecture, pyMCPSC
is organized into several modules called in sequence by the main entry point.
An overview of the processing sequence is shown in Figure Qualitative
analysis using Receiver Operating Characteristics (RoC) curves revealed that
simple consensus schemes, such as using the average score, resulted in MCPSC
performing near-optimally in comparison to its component PSC methods. This
was also validated in terms of its structural classification ability using a Nearest
Neighbor approach. A key observation of these experiments was that MCPSC
closely follows the best performing PSC method, which is of importance in the
absence of the ground-truth in a domain where no single method is considered
to be complete or superior. Finally, we visualize the dataset in domain and
topology spaces and show that such visualizations reveal interesting information
about presence of correlations and clusters within a large dataset.

2 Results and Discussion

We will demonstrate the use of pyMCPSC' using protein pairs obtained from
the Proteus dataset. PSC scores were obtained for these pairs and analyzed as
discussed in the previous section. The number of pairwise PSC jobs processed
per PSC method is actually one half of this value because of the symmetry of the
PSC scores matrix, however the post processing and performance calculations
are performed with the full matrix. The PDB files, the ground-truth SCOP
classification and the pairwise domain list as well as the experimental setup are
included in the test folder of the downloadable sources. pyMCPSC' generates
performance results for three sets of domain pairs, defined as follows: a) Original



Fig 1. Schematic overview of the architecture of pyMCPSC.
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pyMCPSC' is organized into several modules, each one implementing a specific

functionality. The main entry point of the utility drives the sequence of activities
shown. Similarity scores are generated for all protein pairs using the executable
binaries of the included PSC methods. Subsequently the scores are scaled, missing
data (similarity scores) are imputed (local average fill) and consensus MCPSC
scores are calculated for all domain pairs. If the user has supplied ground-truth
domain classification information, then comparative analysis results are also
generated based on the similarity scores. The modules where the respective
functionalities are implemented are specified in parenthesis.

Dataset: all pairwise scores but with missing values, b) Common Subset: excludes
pairs where any pairwise PSC score is missing and ¢) Imputed Dataset: missing
values supplied by imputing.

2.1 Performing MCPSC on a multi-core processor

Using pyMCPSC we generated pairwise similarity scores (all-to-all) based on
the 5 PSC methods and the 5 MCPSC schemes (M1 - M5) included in the
utility by default, as well as the pairwise median MCPSC scheme. Experiments
were carried out using multi-threaded processing on an Intel Core i7- 5960X
“Haswel” 8-Core (16 Threads) CPU running at 3.0 GHz with 32 GB of RAM
and an SSD running Linux. The Core i7 CPU features highly optimized out-
of-order execution and HT (Hyper Threading), Intel’s flavor of Simultaneous
Multi-Threading (SMT).

The number of domain pairs for which scores were successfully generated
varies among the PSC methods, with GRALIGN and FAST having the lowest



Fig 2. Speedup factor and total processing time for performing
all-to-all MCPSC with increasing number of threads on a Intel Core
i7 multicore CPU using the Proteus 300 dataset.
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coverage. This is attributed to differences between the build and runtime
environments, the thresholds built into the PSC method programs and errors
in the structure files downloaded from the PDB. A speedup factor of 9.13 is
achieved for end-to-end processing of the Proteus 300 dataset using pyMCPSC
when p = 16 threads are used [21].

In Figure [2] we show the speedup factor achieved and the total processing
time as the number of threads increases from 1 to 16. Nearly linear speedup
is observed till the number of threads reaches the number of available cores of
the CPU (8). The speedup continues to grow with the number of cores even
beyond that point, albeit at a slower rate. This analysis suggests that the
emerging many-core processors with more than 16 cores could also be exploited
by pyMCPSC to analyze very large datasets.

2.2 pyMCPSC generates quality consensus scores

Receiver Operating Characteristics (ROC) analysis can be used to compare the
classification performance of MCPSC with that of the component PSC methods.
pyMCPSC uses ROCs and corresponding Area Under the Curve (AUC) values
for performance benchmarking if ground truth data is available.

In Figure [3] we see that for this dataset TM-align achieves the highest AUC
among the five supported PSC methods. Moreover using the median MCPSC
score matches or exceeds the AUC performance of the best component method.
This actually remains the case even if we remove TM-align from the pool of the
PSC methods and repeat the same analysis with the four remaining methods.



Fig 3. ROC curves of all PSC methods and the median MCPSC
method using the Imputed dataset of pairwise similarity scores. The
ROCs are generated at the SCOP Superfamily level (Level 3).
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In reality, we do not expect to know which PSC method will perform the best
for any given dataset. So as the results suggest, combining PSC methods to
obtain MCPSC scores and then using their median as the final consensus score
to assess similarities is an effective strategy.

2.3 pyMCPSC consensus scores can be used to accurately
classify query domains

Nearest-neighbor (NN) auto-classification can be used to assess how well PSC
methods can classify a query domain, given pairwise PSC scores and the structural
classification of other domains. When a new protein structure is determined,
it is typically compared with the structures of proteins with known SCOP
classifications. Therefore, the accuracy of the PSC and MCPSC based NN-
classifiers effectively reflects their ability to be used for automatic protein
domain classification.

Distance matrices based on the PSC and MCPSC scores are used by pyM-
CPSC to perform NN domain classification. MCPSC based NN-classification
matches or exceeds the performance of the best PSC method at all SCOP hi-
erarchy levels, with and without data imputation Table [l Moreover, whereas
the classification performance of the five supported PSC component methods
varies considerably for the same SCOP level, the performance of the five different
MCPSC methods is consistent. This suggests that using pyMCPSC to implement



Original dataset Common subset Imputed dataset

SCoOP

Level 1 2 3 4 1 2 3 4 1 2 3 4
TM-align 1.00 1.00 | 0.99 | 0.99 0.74 0.57 | 0.57 | 0.57 1.00 1.00 0.99 0.99
CE 0.78 0.61 0.61 0.60 0.63 0.47 | 0.47 | 0.47 0.76 0.60 0.60 0.58
GRALIGN 1.00 1.00 1.00 1.00 0.74 | 0.57 | 0.57 | 0.57 0.89 0.89 0.89 0.88
FAST 0.20 0.08 | 0.08 | 0.08 0.19 0.07 | 0.07 | 0.07 0.20 0.08 0.08 0.08
TSM 0.84 | 0.72 0.67 | 0.65 0.65 0.51 0.40 | 0.49 0.84 0.72 0.67 | 0.65
M1 0.99 0.98 | 0.98 | 0.98 0.73 0.57 | 0.56 | 0.56 0.99 0.99 0.98 0.98
M2 0.99 0.98 | 0.98 | 0.98 0.75 0.57 | 0.56 | 0.56 0.99 0.98 0.97 | 0.97
M3 1.00 1.00 1.00 1.00 0.74 0.57 | 0.57 | 0.57 1.00 1.00 1.00 1.00
M4 0.99 0.909 | 0.99 | 0.99 0.72 0.57 | 0.57 | 0.57 | 0.99 0.99 0.99 0.99
M5 1.00 1.00 1.00 1.00 0.74 | 0.57 | 0.57 | 0.57 1.00 1.00 1.00 1.00
Median 0.99 0.99 | 0.99 | 0.99 0.74 0.57 | 0.57 | 0.57 0.99 0.99 0.99 0.99
MCPSC

Table 1. Fraction of domains correctly classified at different SCOP hierarchy
levels using a Nearest-Neighbor classifier built with similarity scores produced
by different PSC and MCPSC methods. In the SCOP hierarchy: Level 1 =
Class, Level 2 = Fold, Level 3 = Superfamily and Level 4 = Family.

different MCPSC methods and then using their median score in conjunction
with NN classification can provide trustworthy query domain auto-classification
results. These results also highlight that in the absence of ground truth informa-
tion and/or lack of prior knowledge as to the best PSC method for a dataset,
MCPSC can be employed to accurately auto-classify new domains.

The results show that the best MCPSC method matches the performance
of the best component method and the Median MCPCS based classification
is almost always optimal, which makes median MCPSC a good choice for
classifying query domains when prior knowledge about the best PSC method is
not available. Moreover, the performance differences of the MCPSC methods
are minor, suggesting that they are all quite robust to significant variations
on the performance of their component PSC methods. The lower performance
observed for all methods on the Common subset is probably a result of the
small percentage of domain pairs for which similarity scores are available by all
methods (less than 50%).

2.4 pyMCPSC reveals structural relations between do-
mains

pyMCPSC uses PSC/MCPSC based distance matrices in conjunction with Multi-
Dimensional Scaling (MDS) to generate insightful scatterplots of protein domain
organization in the structural space. An N x N, distance matrix D is constructed,
with N being the number of unique domains in the dataset. Matrix element
D;; corresponds to 1 - S;;, the pairwise scaled dissimilarity score of domains d;
and dj, where 7,j < N, are drawn from the imputed data set. Missing values
(N? — P) are set to 1. The value of 1 (max dissimilarity) is selected so that all
domains appearing close in the visualization are in fact close to each other based
on the selected method’s score.

pyMCPSC uses matrix D as the basis for MDS to produce scatterplots of
domains. This effectively assigns a 2-Dimensional coordinate to each protein
domain constrained by the pairwise domain distances specified in matrix D. The
resulting scatterplots can be used to visually explore a domains dataset, revealing



Fig 4. MDS scatter plot based on median MCPSC scores. Domains
are colored according to their SCOP class (Level 1).
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existing correlations. Figure [] shows the layout of the domains of the imputed
dataset in 2-D space resulting from MDS using the median MCPSC scores. Such
a visualization produced by pyMCPSC suggests that for the given dataset the
SCOP Class C domains (red color) exhibit higher interdomain similarity. This is
in stark contrast to the domains of SCOP Class D (cyan color) which are diffused
across the scatterplot. This observation is further evidenced by the Heatmaps
also generated by pyMCPSC which in addition reveal finer level structure inside
each class.

2.5 pyMCPSC can reveal functional relations between
protein domains

pyMCPSC uses similarity score based distance matrices (D) in Phylogenetic trees
to provide functional grouping of domains. pyMCPSC uses a Neighbor-joining
algorithm from dendropy to create dendrograms and uses them to generate
unrooted circular layout Phylogenetic trees. The goal is to create trees where
the domains are separated into clades based on their function.

In Figure [5] we have marked two groups of domains belonging to different
clades in the tree. The most common keyword for Group 1 is ‘GTP-Binding’
while for Group 2 it is ‘Phosphoprotein’. The clades of the Phylogenetic Tree
generated by pyMCPSC could therefore be used by a researcher to identify
groups of domains (within the same SCOP class as in this example) that are



Fig 5. The unrooted Phylogenetic Tree based on median MCPSC
consensus scores. Domains are colored according to their SCOP
class (Level 1). Domains of the two clades that are marked belong
to Class C but represent different functional groups.

functionally different.

3 Conclusion

As the number of protein structures grows we are faced with the important but
complex task of assigning function to proteins as well as classifying them into
biologically pertinent groups. The faster these tasks can be performed, the faster
biologists and medical researchers can determine possible applications for the
protein. The main focus of this thesis was on developing computational methods
which facilitate fast and efficient Multi-criteria Protein Structure Comparison
(MCPSC).

Results obtained from large-scale MCPSC, show that MCPSC delivers near
optimal performance in terms of classification and clustering of proteins. This
is largely because MCPSC scores tend to trace the best performing component
PSC method. We believe that this is an interesting result because in the absence
of the ground-truth data it is not evident which PSC methods is performing the
best. Consensus based MCPSC scores can therefore be used to analyze existence
of clusters within datasets of biological importance as well as to auto-classify
protein (domains) into categories similar to SCOP/CATH.

Finally, more effort is needed to study further the complete structure space
by carrying out even larger-scale experiments (with all the PDB for instance).
Understanding the nature of the complete structure space can be catalytic in
defining and identifying unique structural units that are recurrent between
protein structures. Such a finding could help design better structure alignment
metrics, as well as improve the ability of existing methods to categorize proteins



in a biologically relevant manner. Currently, domains are considered evolutionary
units because they show similar activity even when extracted from a protein chain
all together. Thus proteins with similar domains or with similar arrangements
of domains are considered similar. However, the sequence diversity with the
domains as recurring structural units is still huge and certainly worth exploring
both for causes and consequences.
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