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Abstract

The aim of this work is to study the design and identification of kinematics parameters
of robotic mechanisms for ankle physiotherapy applications. We begin with the study of
the ankle joint complex and we adopt the 2 axes kinematics model from the literature
which provides the necessary DOFs and the kind of the ankle motions. The objective
is to describe the basic movements of the foot about the ankle joint. We accomplish
the design requirements of a physiotherapy robot by performing appropriate experimental
measurements. These requirements are the necessary workspace, velocities, accelerations
and torque bounds. We examine two existing robotic architectures while we finally intro-
duce a new 2-DOF hybrid serial-parallel robot with mechanical adjustability as an ankle
physiotherapy device. The advantages of this physiotherapy device against the existing
physiotherapy robots are the minimum number of its actuators, its increased safety, mod-
ularity and economy. Then we perform the parametric design of this platform which has
been based on the predefined design specifications and then we evaluate the design via
simulations. Finally, we develop a simple, accurate and robust identification method of the
kinematics parameters of the ankle joint complex. This method combines the concept of
robot calibration and arc trajectory fitting in 3D circles.

1 Introduction

In this dissertation we focuss on the design and identification of kinematics parameters of
robotic mechanisms for ankle physiotherapy applications. Our contribution is in the following
three main topics:
-Design framework : A unified design framework for the design of an ankle rehabilitation robot
is missing from the literature. We study the ankle kinematics modeling and we complete with
experimental data a set of design requirements for an ankle rehabilitation robot.
-Design of a new ankle rehabilitation robot : The existing ankle rehabilitation robots are ei-
ther redundant or not follow exactly the ankle movements. The detailed study of the ankle
kinematics led us to introduce a new hybrid parallel-serial robot with 2-DOF and mechanical
adjustability. The parametric design of the new robot is carried out relying on the design spec-
ification described above. This physiotherapy device outperforms to the existing physiotherapy
robots on the minimum number of actuators, safer movements, modularity and economy.
-Identification of the ankle joint complex kinematics: The different kinematics characteristics
between patients reveal the need for identification of the ankle parameters for the appropriate
tuning of a physiotherapy robot. We develop a simple and robust method for identification of
the ankle joint kinematics which combines the concept of robot calibration and arc trajectory
fitting in 3D circles. Despite to the existing identification methods, our method avoids the use
of position tracking of multiple point-markers on the body-member and the use of expensive
optical motion analysis systems. This makes it applicable in a physiotherapy clinic.

1.1 Previous Work

Our study begins with the structure and kinematics modeling of the ankle joint complex. The
human ankle has a complex multi-joint structure which determines the motion of the foot with
respect to the shank. A survey in [7] about the ankle-joint complex modeling starts with early
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models, e.g. spherical joint and concludes with recent work e.g 4-bar modeling. In particular,
certain advanced models incorporated the early findings of the two anatomical joint axes in the
ankle, namely the upper ankle and the subtalar joint axis. In [8] was applied a 2-DOF (Degree
Of Freedom) model to the lower leg, namely as a linkage of two ideal revolute joints and 3 rigid
segments: the shank, the talus and the foot. The orientations axes could be determined by
anatomical landmarks on the bones. In [1] were identified two subject-specific, fixed joint axes
in the ankle complex by applying least-square optimization to minimize the difference between
the real motion of external skin markers and the modeled motion. They noticed the relatively
high variability between subjects especially of the subtalar and upper ankle joint orientation.
Recently, a model that does not imply the existence of two distinct axes of the ankle joint
complex and forms an innovative category of its own, have formulated a 2-dimensional model
of the upper ankle joint by representing it as a closed 4-bar linked chain.

In closer detail, the ankle joint shows a mobile axes with a predetermined (1-DOF) path
during passive flexion, but when loads are applied (e.g. muscle contraction), the mobile axes
can deviate from this passive path, while the subtalar joint plays a stabilizing role. In our work,
this deformable modeling is not required: the two-axes model represents the main movements
and the kinematics of the ankle joint sufficiently well, and is quite accurate for our purposes.
This has been proved in [16], in which was studied the use of the 2-axes ankle model and the
identification procedure presented in [1] for calculation and comparison of the two hinge axes
of the ankle joint complex for non-weight-bearing, weight-bearing and walking ankle motions.
It was found that the 2-axes model fits the experimental data well with non-weight-bearing
motion achieving the best fit. Since physiotherapy exercises especially in the early steps contain
non-weighting-bearing movements the 2-axes model is sufficient for ankle modeling.

There have been a number of robotic devices proposed for ankle physiotherapy. Important
work has been carried out at Rutgers University [10] with the development of a haptic interface
for human ankle rehabilitation. This haptic interface has been based on a 6-DOF Stewart plat-
form that applies variable forces and virtual reality exercises on the patient’s foot, including
remote control operation. However the Stewart platform is redundant for this application, the
actuators used are noisy, the controller is oversized and the cost of the device is consequently
high. In addition, in the rehabilitation program, there is no reference as to what extent the
special characteristics of each patient’s foot can be considered. Also the work in [3] is based
on the study of ankle functional anatomy, which is represented in an orientation image space.
Three parallel tripod-type ankle rehabilitation mechanisms were proposed. These are three or
four actuator platforms and therefore they are redundant. Also, the rotation of the moving
platform is performed about a vertical pivot strut, which is not a desirable characteristic for
foot movements. In [27] was proposed an ankle rehabilitation device based on a reconfigurable
parallel robot with 4-DOF and two moving platforms. However, this platform is quite complex
and heavy and as a result is rather difficult in construction and transfer. A 2-DOF redundantly
actuated parallel mechanism for ankle rehabilitation was proposed in [19]. The proposed device
allows plantar- dorsiflexion and inversion-eversion using actuation redundancy to eliminate sin-
gularity, and to improve the workspace dexterity. However, this device is over-actuated, which
means that there are redundant actuators.

The next important problem studied here is to determine the kinematics parameters of
the ankle joint complex. Ankle joint complex kinematics is similar with that of a 2R serial
manipulator (R denotes a revolute joint)[2] and therefore we approach the identification problem
as a serial manipulator calibration problem. Identification of the axes of rotation of the limb-
joints, by tracking specific point-markers on the body member, has received significant attention.
In [1] was used the 2-axes model and identified the twelve parameters of an ankle joint complex
model which is based on transformation matrices. This method requires the assignment of at
least 3 non-collinear point-markers on each limb segment and tracking by the use of optical
motion analysis systems. In [11] was proposed a least squares method by minimizing specific
cost functions formed by the vector differences of the points markers positions. One drawback
of the method is that for certain configurations of point markers (e.g. the markers distributed
on a plane that contains the rotation axis) leads to ill-conditioned problems. Also, in [9] was
presented a least squares method for average center and axis of rotation estimation. This
method does not perform well if there is significant radial displacement from the center of the
axis of rotation and needs at least three non-planar markers in general. These methods rely
on position tracking of multiple point-markers which are assigned on the body by the use of
expensive optical motion analysis systems.
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(a) Foot anatomy and bones. (b) Ankle rotation axes and the assigned D-
H frames.

Figure 1: The ankle joint complex anatomy and kinematics.

2 Design specifications for an ankle rehabilitation robot

In order to design a robotic physiotherapy device the first step is to define the necessary design
framework. For this we begin with the kinematics modeling of the ankle joint complex and we
complete the design requirements with experimental data.

2.1 The ankle joint complex kinematics

The human ankle has a complex multi-joint structure. The central bone is the talus. Its
surrounding bones are the calcaneus, the navicular and the cuboid; they are responsible for
the rotation of the ankle joint in 3D (fig. 1(a)). The upper part of the talus articulates with
the shank segment through the tibia and fibula bones. This is the upper ankle joint (UAJ);
it supports the rotational dorsiflexion-plantarflexion motion. The movements between the fore
bones are strictly coupled. Motion of the foot wrt the talus is regarded as a rotation about the
(fixed) subtalar axis (STJ); this supports inversion-eversion motion.

Among previous works, the early single-joint models are insufficient while the recent models
do not fully describe foot rotations (e.g. they may consider only dorsiflexion-plantarflexion).
Here we adopt the ankle joint complex model as a 2R serial manipulator [8], assuming the
ankle rotation axes are straight lines through specific points. The lower limb is assumed to be
composed of 3 rigid links capable to rotate between each other: the shank, the talus and the
foot configuring a serial manipulator. The main movements of the foot are the plantarflexion-
dorsiflexion and inversion-eversion. The size of foot bones and their relative positions as well as
the orientation of rotation axes determine the foot kinematics. Many factors influence the joint
rotation, e.g. shape of articular surfaces, position of rotation axes. Constraint and resistance
on the foot motions are due to ligaments, capsules and tendons.

The parameters of this model are specified by a number of point markers that have been
assigned on the human foot as in fig. 1(b). These point markers are used to obtain a set of
distance measurements. We assign frame O1 at the knee, centered between P1, P2, with the
z-axis parallel to (P1, P2) and the x-axis vertical, passing through the midpoint of (P3, P4). By
using the Denavit-Hartenberg(D-H) method [12, 22] we assign relative frames Oi between the
moving links. T i+1

i is the transformation matrix from Oi+1
i into Oi. The transformation matrix

from the last into the first coordinate system is given from the relationship: T 3
1 = T 2

1 T
3
2 . For

a point P = [x y z 1]T on the last(foot) coordinate system the above transformation into the
first(shank) coordinate system can be expressed as Po = [xo yo zo 1]T :

Po = T 3
1P (1)

from which the coordinates xo, yo, zo are nonlinear functions fi(ai, αi, di, ϑi, x, y, z) of the D-
H parameters ai, αi, di, ϑi. These equations give a parametric formula in the movement of P
wrt the fixed coordinate system of the shank. The independent variables of the model are
angles ϑ2 (dorsiflexion-plantarflexion), ϑ3 (inversion-eversion) while ϑ1 is constant. According
to the right-hand coordinate system assigned to the lower limb, the signs for rotation angles
are: dorsiflexion(+), plantarflexion(-), eversion(+) and inversion(−). Movements of the left leg
are assumed to be the mirror-image of the right leg [8]. The parameters αi, ai, di depend on the
foot anatomy and size.

The transformation matrices were estimated for a male subject, and distances between the
bony landmarks taken from [8]. From this data, a kinematics model of the foot was based on
homogenous matrix transformations in Euler angles. Using calculations on the distances, we
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Figure 2: Workspace from a point on the sole under the ankle.

obtain the D-H parameters. From the above analysis, the knee axis have angle 38.23o with the
UAJ and the UAJ with the STJ have angle 60.21o.

We take ϑdp, ϑie as the new variables for the dorsiflexion-plantarflexion and inversion-
eversion angles measured from the standing posture, and insert ϑ2 = ϑo

2 + ϑdp, ϑ3 = ϑo
3 + ϑie

into eqts (1). Now ϑdp, ϑie are the input variables of the model. Common ranges for the move-
ment are −40o ≤ ϑdp ≤ 30o, −20o ≤ ϑie ≤ 20o [22]. Based on the model, we specify the foot
workspace when inputs range through all possible motions. Our first requirement is the shank
to be fixed and vertical wrt the World Coordinate system attached to the base of the robot.

We fix point Pf on the sole under the ankle where the center of the moving platform will be
attached. We assume Pf is on the positive axis of the knee’s frame and has a distance equal to
this of P6. The workspace produced by the foot will be derived from the motion study of Pf .
By eqts (1) and letting inputs ϑdp, ϑie run through their entire regions, Pf traces the surface
of fig. 2(a). Feet of every size and anatomy produce the surface in fig. 2(a). The geometric
characteristics of this surface (e.g. shape, curvature), depend on αi, ai, di. Every trajectory
traced by Pf is within this surface.

Table 1: Coordinate ranges of a point on the sole under the ankle.

∆X=56 mm ∆Y=41.7 mm ∆Z=17.3 mm
Min X Max X Min Y Max Y Min Z Max Z
-33.5 22.4 -19.6 22 -2.8 14.4

We compute the orientation of the foot when its axes are rotated in specific angles. First,
we establish a reference frame with its origin at Pf . The axes are parallel with those of the base
frame when the foot is in the neutral position. The rotation angles roll(α), pitch(β), yaw(γ) of
this frame wrt the base frame are the rotation angles of the moving platform. The foot model,
when ϑdp, ϑie take all values in their ranges, yield the rotation workspace in fig. 2(b). By

Table 2: Orientation ranges based on the model.

∆α=30.56 deg ∆β=76.58 deg ∆γ=62.49 deg
Min α Max α Min β Max β Min γ Max γ
-20.71 9.84 -39.95 36.63 -25.34 37.15

assuming that the angle axes parameters in eqts (1) are found in well specified intervals, we
will specify the extended workspace produced by the model (eq. (1)). In [14], the orientation of
the lower limp rotation axes, and the ranges in the relevant angles between them are measured.
The results depend on the position of the foot even for a given patient. Different patients will
give different results. We conclude that the model parameters are quite uncertain and so the
model must be extended to include uncertainties. By computing the minimum and maximum
values we take the values in table 3.

2.2 Experimental data

A Mephisto 3D Scanner was used to take images of the right foot sole of 11 adult healthy human
subjects of different age, height, weight and gender. We used 5 positions: Neutral, Right-Up,
Right-Down, Left-Up and Left-Down. The reference is a central point on the sole under the
ankle because this point will be controlled by the platform. The coordinate differences among
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Table 3: Extended coordinate ranges of a point on the sole under the ankle.

∆X=114.2 mm ∆Y=98.9 mm ∆Z=37.3 mm
Min X Max X Min Y Max Y Min Z Max Z
-67.6 46.9 -4.55 53.4 -7.6 29.7
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Figure 3: Recorded data in full rotations of the foot.

the point’s positions are found inside the following enclosing volume: ∆X=12cm , ∆Y=12 cm,
∆Z=12 cm.

To measure orientation angles, rotation velocities, and accelerations, we performed experi-
ments with an MTi motion sensor of XSens Motion Technologies. It provides and records pitch,
roll and yaw angles, rate of turn and linear accelerations in axes X,Y, Z. We used the right foot
of 5 adult healthy humans of both genders and different heights, with the shank kept vertical
and fixed. The only moving part was the foot. The sensor was attached on the sole of the foot
under the ankle. Data were recorded during dorsiflexion-plantarflexion and inversion-eversion
throughout the entire range of movement. Fig. 3(a) shows roll, pitch and yaw wrt time of a
foot, in extreme rotational movement. Fig. 3(b) shows angular velocities wrt time in extreme
rotational movement while fig. 3(c) shows linear accelerations wrt time in extreme rotational
movement. The maximum recorded angular velocity was 9.3rad/sec and therefore the upper
bound of 10 rad/sec is adopted.

The torque bounds are coming from the literature in which they studied the tension torque
that the soleus and tibialis anterior muscles can exert. These are two of the main dorsiflexor-
plantaflexor muscles and the maximum measured torque was about 121Nm. Also, in another
work the maximum measured torques of the whole plantarflexor and dorsiflexor muscle groups
were about 143Nm [22, 24]. Therefore a desired upper bound of 200Nm includes a wide range
of foot torque capabilities. Thus, our platform will operate up to 200Nm, to handle torque-
producing tasks at different velocities during concentric or eccentric muscle actions.

3 Design of a 2-DOFs hybrid parallel-serial ankle physio-
therapy robot

Initially, we studied two existing robotic architectures as possible ankle physiotherapy devices
[23]. The first one was the Agile Eye. Although the Agile Eye has only 3 rotational DOFs and
large workspace, its sensitivity to transfer and its rotations about only one point led us to reject
this robot. The second one was a parallel Tripod(3-RPS) with an extra rotation axis on the
moving platform as a possible ankle rehabilitation device was studied in . The Tripod has two
rotational (pitch, roll) and one translational (z) degrees of freedom. As the yaw angle changes
significantly during the foot movements on the platform, an extra rotation axis was added on
the moving platform to provide the necessary extra yaw angle. Although this device can not
follow the foot movements satisfactorily or include mechanical adjustability and our effort is to
design a robot with fewer DOFs.

To overcome the previous disadvantages we proposed a hybrid serial-parallel robotic archi-
tecture with 2-DOF and mechanical adjustability [24]. The robot consists of a base platform
and a moving platform like most parallel robots. The latter is where the patient’s foot shall be
placed. A vertical strut connects the base of the robot with a passive serial chain. The serial
chain has structure similar to that of the foot and provides the necessary constraints on the
movements. It has one revolute and one cylindrical joint which support the rotations about the
two main rotation axes of the ankle, see Figure 4. R1 is a revolute-joint which is collinear with
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Figure 4: The hybrid serial-parallel 2DOF ankle physiotherapy robot.

the Upper Ankle Joint (UAJ) and C1 is a cylindrical-joint which is collinear with the Subtalar
Joint (STJ) of the foot. The serial chain is connected with the moving platform and has two
adjustable screws so that the corresponding lengths D1, D2 can be adjusted according to the
axes position of each individual patient’s foot. The parallel chain consists of two prismatic
actuators which are connected with the moving platform through S-Joints (points A1, A2) and
with the base platform through U-Joints (points B1, B2).

3.1 Kinematics modeling of the platform

We start by modeling the kinematics of our device. The mobility of the platform is modeled by
applying the Grubler formula for spatial structures. The total number of its degrees of freedom
N is given as follows: N = 6(n− j − 1)+

∑n
i fi = 6(8− 9− 1)+ 14 = 2, where n represents the

total number of rigid bodies of the mechanism, including the base, j is the total number of joints,
and fi the number of degrees of freedom of joint i. Initially we assign the base coordinate frame
Obxbybzb on the fixed base and the moving frame Opxpypzp on the moving platform as shown in
figure 4. The two frames are parallel when the moving platform is in zero position. As we have
a serial kinematics chain it is useful to implement the Denavit-Hartenberg method [12] for the
assignment of the relative reference frames on the passive serial chain and therefore to obtain
the overall kinematics formula of the platform. The Ooxoyozo frame is the base frame of the
serial chain and is placed arbitrarily on the strut with the axis zo collinear with the UAJ axis,
and xo collinear with zb, as shown in Figure 4. The origin O2 of the O2x2y2z2 frame is the Op

of the platform frame and the axis z2 is parallel with z1 (C1). The total transformation matrix
T is given by the multiplication: T = TbT

1
0 T

2
1 Tr, where Tb is a constant homogeneous rotation

matrix defining the relative rotation of the Ooxoyozo frame into the base Obxbybzb frame. The
points on the platform coordinate frame need to be multiplied with an extra rotation matrix Tr

in order to be transformed into the last D-H frame of the serial chain. The inverse kinematics
problem is described from the following two equations:

L2
i = ‖BiAi‖2 = ‖T ·Ai −Bi‖2, (2)

where i=1,2 and Li, are the length of the actuated links. It is well known that the Jacobian
matrix is a key part for the study and design of robots. By following the normalized Plucker
vector-based procedure for the inverse Jacobian calculation of a general parallel robot as it is
described in detail in [18] we get:

J−1 =

[
n1 n1 ×A1Op

n2 n2 ×A2Op

]
, (3)

where n1, n2 are the unit vectors of B1A1, B2A2.

3.2 Velocity and Force Transmission

When the linear actuators are activated their velocities and applying forces are transferred
onto the moving platform. The relations between the forces-velocities of the actuators and
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the moving platform are expressed by the Jacobian matrix and are pose-dependent. Here we
follow the kinetostatic capability analysis of parallel manipulators described in [15] where the
calculation of the magnitude bounds of the force and velocities of the end-effector is reduced to
an eigenvalue problem. Matrix M is essential here and is defined as follows:

M = J−TJ−1 =

[
A B
BT C

]
(4)

Given the desired velocities as well as the force and moments that should be handled by the
platform, the extreme values of the velocities and forces of the linear actuators are computed
in the design phase. The linear forces and torques have different units it is reasonable for the
bounds computation of force-torques at the end-effector to be decoupled into two constraint
maximization subproblems, one for the forces f and one for the torques m. By use of matrix M
the two maximization subproblems can be rearranged into eigenvalue subproblems. Following a
similar procedure as in the force transmission analysis, velocity transmission analysis is decou-
pled in two subproblems, one for the linear ν and one for the angular ω velocities magnitudes.

‖f‖
afmax

≤ ‖τ‖ ≤ ‖f‖
afmin

,
‖m‖

ammax
≤ ‖τ‖ ≤ ‖m‖

ammin
(5)

aνmin‖ν‖ ≤ ‖L̇‖ ≤ aνmax‖ν‖, aωmin‖ν‖ ≤ ‖L̇‖ ≤ aωmax‖ν‖ (6)

where A, C are the 3 × 3 submatrices of M and ν, ω the 3 × 1 vectors of linear and angular
velocities of the end-effector, f, m the 3 × 1 vectors of linear forces and torques on the end-
effector. The bounds of the velocities magnitudes are therefore given from the inequalities
where aνmax and aνmin denote the square roots of the maximum and minimum eigenvalues
of A, and aωmax and aωmin are those of the maximum and minimum eigenvalues of C. By
discretizing the whole workspace of the robot and computing the global extreme eigenvalues of
M, the global magnitude bounds of velocities and forces are computed.

3.3 Parametric Design of the Robot

This section presents the parametric design of our mechanism, since we have chosen the robotic
architecture. Design concerns the calculation of the geometric parameters of the robot satisfying
our requirements [18]. Based on the above foot analysis, the following values were selected for
initial dimensioning of the device: Moving platform: 0.40x0.20m so that it can accept all or at
least the majority of human foot sizes. Base platform: 0.60x0.40m. The first axis zo is placed
50cm above the fixed base. The bounds of rotation axes of the serial chain were defined according
to the range of the feet rotations. The STJ axis, and so the z1 has the mean foot orientation as it
is given and forms an angle of 23o with the xpzp plane and an angle of 41o with the xpyp plane.
This work has been extended and in order to complete the design of the robot, additional
measurements on the foot of several human subjects have been conducted. Coordinates of
specific points of the foot, have been measured, utilizing a Microscribe coordinate measuring
device. For the experimental measurements the right feet of 19 adult males and females have
been used in the erect standing pose. The UAJ is defined by points P3 (lateral malleolus) and
P4 (medial malleolus), while the STJ is defined by points P6 (calcaneus point) and P7 (navicular
point). For calculating the bounds on distance D1 the points P3, P4 and P6 were projected
on the horizontal plane. The vertical distance of the projected point P6 from the projected
line P3P4 defines distance D1. The computed values of D1 were found to be in the range:
3.5cm ≤ D1 ≤ 5.6cm, with mean value 4.83cm and standard deviation 0.68cm. For calculating
the range of distance D2, the mean value of the height of points P3 and P4 from the horizontal
plane was computed. The resulting values are in the following range: 5.4cm ≤ D2 ≤ 9.3cm,
with mean value 7.29m and standard deviation 1.02cm. Points A1, A2 on the moving platform
have been assigned coordinates (0.15,-0.06,0) and (0.15,0.06,0) of the moving frame respectively.
If the points are far from the rotation axis then the actuators apply smaller forces but larger
velocities. Reversely, if the points are near the rotation axis then the actuators apply forces
with larger values and smaller velocities. Therefore, the points are selected to be in the middle
of the platform in order to balance the amounts of the velocities and forces exerted by the
actuators. The coordinates of the base platform points B1, B2 have been assigned to (0.10,-
0.15,0) and (0.10,0.15,0) respectively, on the base reference frame nearer to the origin so to
avoid singularities. The coordinate units are in m. When the platform moves through the
entire range of rotations and parameters D1, D2 take all values in the above intervals, then
the length of the legs are found in the range: [0.31m, 0.56m]. Having computed the kinematics
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parameters of the robot as well as the desired end-effector velocities and wrench forces, the
actuator velocities and forces can be computed. The platform must handle torque values up to
200Nm. In order for the platform to achieve these torque bounds, the actuator forces must be
greater than 675N according to equation (5). Similarly, for velocities calculation used the upper
bounds of 10rad/sec in angular velocities of the platform. According to equation (6), the linear
actuators should achieve velocities at least 2.1m/sec in order characteristics providing the robot
motion can be selected. Simulations with the maximum design values movements shows that
the platform fulfils the design requirements, proving the succeed of design [24].

4 Identification of the ankle joint complex kinematics

For the identification of the ankle joint complex kinematics parameters it is useful to implement
robot calibration techniques. Since the internal joint ankle values is difficult to be measured,
conventional calibration techniques are not applicable. Therefore, we approach the problem by
trying algebraic elimination and trajectory fitting in 3D circles [21].

4.1 Algebraic methods

We first approached identification via algebraic variable elimination. Algebraic elimination of
the two rotation angles of the ankle might be a reliable approach, just as it has been for parallel
robots [4, 5]. However, the case of serial robots presents certain difficulties compared to parallel
robots. In the latter case, the kinematics equations are produced by one multiplication with one
homogeneous transformation matrix. In serial robots, the kinematics equations are obtained by
successive multiplication with as many homogeneous matrices as the number of links. Hence,
the final kinematics equations are quite complex [21].

One approach is to linearize the polynomial system by resultants. It is typically expressed
as a matrix determinant, and the resultant matrix can be used to reduce system solving to
a problem in linear algebra [6]. In the case of a manipulator with two revolute joints, its
kinematics model is the product of two D-H matrices. To eliminate the two rotation angles by
resultants, the mresultant function of MAPLE package Multires yields a 21× 21 matrix which
contains polynomials of degree up to 15, therefore the determinant is very hard to compute.

4.2 Identification by nonlinear fitting in 3D circles

This section presents identification without using internal joint values, based on fitting 3D
circles. Let us consider a serial manipulator with only revolute joints, where all the joints are
fixed in their zero position. Starting from the last axis we rotate it and record the Cartesian
position of the end-effector. After we fix the last axis, we rotate the previous axis while all the
remaining axes are unmovable in the zero position and record the end-effector’s positions. We
repeat until the rotation of the end-effector about the first axis is recorded. Rotation of a point
about an arbitrary axis in 3D traces a circular arc. Given N measured points of the arc, we
estimate the parameters (center, radius, normal) in two steps: (1) the points are fitted on the
plane of the arc, while the plane-normal defines the rotation axis, (2) we compute the center
and radius of the arc.

Nonlinear least-squares minimize f =
∑N

i=1 e
2
i , where the ei denote the errors, by iteratively

linearizing around the parameters the following:

∆f = Jk∆x, (7)

where ∆f is the error between measured and residual function, ∆x is the correction of parameter
vector x in the current estimate, and Jk is the identification Jacobian. Usually, weighting of
least-squares gives better accuracy and is achieved by task variable and column scaling. The
measured data are of the same units and therefore task variable scaling via noise covariance
matrices is not necessary. On the other hand, column scaling improves the condition number
κ = σ1/σp, where σ1 is the largest and σp the smallest nonzero singular values of Jk. Column
scaling does not affect the solution and is achieved by right multiplication of Jk by matrix
H = diag(h1, . . . , hn) with

hi =

{
||J−1

ki ||, if ||Jki|| 6= 0,
1, if ||Jki|| = 0 ,

(8)
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where Jki is the i-th column of Jk. With column scaling the singular values of Jk become com-
parable. Studying Jk before the actual identification, provides information about identifiability
and the observability.

a) Identifiability: This determines whether all parameters can be identified independently,
or some are non-identifiable because depend on others. Non-identifiable parameters exist if Jk
is rank deficient. In this case, several approaches have been proposed [13] for identification: (i)
elimination of the non-identifiable parameters by QR decomposition (ii) zeroing small singular
values, and (iii) incorporating a priori estimates, where small or zero singular values are counter-
acted by a constant weighting factor. An efficient technique we use here is (ii), which identifies
without removing any parameter or a priori estimates. Our method begins with singular value
decomposition (SVD) of scaled matrix Jk = UΣV T , where U is N ×N orthogonal, V is n× n
orthogonal, and Σ is N × n diagonal, with singular values σ1 ≥ · · · ≥ σp > 0 = · · · = 0. If
p < n, then Jk is rank deficient so each iteration step of 7 computes

∆x =
n∑

j=1

uT
j ∆f vj

σj
, (9)

where, if σj is zero or numerically small, we set 1/σj = 0.
b) Observability: Observability concerns the selection of the best measurement sets according

to an observability index. Several observability indices which indicate the measurements of high
accuracy have been proposed. A very interesting one is the noise amplification index O = σ2

p/σ1

, which relates the amplification of the measurement noise with the estimated parameters. It
is more sensitive to measurement and modeling error than previous indices. The measurement
poses set with larger O results to a more accurate identification.

Step 1 : The coordinate data will be fitted to the 4 parameter plane: Ax+By+Cz+D=0.
The vertical distance di of a 3D point i from a plane is given by:

di =
Axi +Byi + Czi +D√

A2 +B2 + C2
. (10)

We have to minimize the objective: fd =
∑N

1 d2i . Identification is performed after certain
iterations of linear least-squares 7. The identification Jacobian is the stacked matrix for all
measurements of the rows J l

k of the following derivatives : J l
k =

[
∂di

∂A
∂di

∂B
∂di

∂C
∂di

∂D

]
.

Step 2 : The arc points are projected onto the plane by computing a verticality condition.
The center and radius of the arc is defined by an intersecting sphere with the resulting plane of
Step 1. The residuals of the sphere and measured data points are: ei = (xi−xc)

2+(yi− yc)
2+

(zi − zc)
2 − R2. Therefore, to find the best fitting sphere, we solve the constrained nonlinear

least-squares: fe =
∑N

1 e2i , subject to: h(xc, yc, zc) = Axc + Byc + Czc + D = 0. Similarly
with the linearized procedure of Step 1, the constrained nonlinear least-squares can be solved
by iteratively solving: [

−JT
s Js JT

h

Jh 0

]
·
[
pk
λk

]
=

[
JT
s ei
−h

]
, (11)

where Js the identification Jacobian, namely the stacked matrix for all measurements of the rows

J l
s of the following derivatives of the residuals:J l

s =
[

∂ei
∂xc

∂ei
∂yc

∂ei
∂zc

∂ei
∂R

]
, where matrix

Jh is the Jacobian of the constrained equation h with respect to the parameters (xc, yc, zc),
pk = [xc, yc, zc, R] is the vector of estimated parameters, and λk is the scalar Lagrange multiplier
for the constraint. The two steps yield the circle center pc = (xc, yc, zc), radius R, as well as
the normal vector −→n , which is the unit vector of −→p = [A,B,C].

4.3 Identification by linear fitting in 3D circles

We follow the previous two-steps procedure of fitting the plane and circle but avoid to use non-
linear least-squares.We employ direct methods which are computationally faster and accurate.

Step 1 : The plane is estimated via SVD [20]. Let pp be a point on the best fitted plane,
pi a given point, and ~a the normal vector to the plane. The vertical distance of pi from this
plane is di = ~a · (~pi − ~pp), so minimizing J =

∑N
1 di yields ~a subject to |~a| = 1. By Lagrange

multipliers, one obtains a 3 × 3 eigenproblem: (MTM)~a = λ~a, where M = [xT
i y

T
i z

T
i ] is the

N × 3 data matrix. Eventually, we get:
∑

i(~a · ~pi) = λ|~a|2 = λ, so minimizing J is reduced
to computing the minimum eigenvalue of MTM . This is the square of the minimum singular
value of M , computed by SVD, which is quite stable numerically. The corresponding singular
vector is ~a. Since the centroid of the data belongs to the plane, we can specify all parameters
of the plane equation.
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Step 2 : The center and radius of rotation will be estimated by applying 2D methods. After
the estimation of the best plane, the measured data are projected onto the plane. A coordinate
frame is defined as follows: −→a is the unit vector through p1, pn,

−→n is the unit normal vector of
the plane, −→o = −→n ×−→a . The following matrix maps the arc points from the frame of −→a ,−→o ,−→n ,
to the base frame of the sensor:

T =

[ −→a −→o −→n −→p1
0 0 0 1

]
. (12)

Now, we have to estimate the circle in 2D. After estimation of the center and radius, the
former is mapped through T back to 3D space. Here we compare existing nonlinear and linear
methods for 2D arc fitting. These methods are: (1) Algebraic circle fit with ”hyperaccuracy”,
(2) Karimaki’s,(3) Landau’s,(4) Pratt’s with SVD,(5) Riemann sphere fitting, (6) Levenberg-
Marquard, (7) the Trust region,(8) Linear least squares by Kasa, and (9) Thomas’ method.

The previous methods are evaluated, on a 2D arc estimation. An arc of 60o is selected and
normal distributed noise with standard deviation σ = 0.06 was added. As evaluation factors for
the methods we selected (a) the distance between the estimated center and the actual center,
(b) the difference of the estimated radius from the actual one, and (c) execution time. The
Riemann sphere fitting method was more accurate and fast, because it is non-iterative and has
been selected for arc fitting.

The fitting with Riemann-spheres [17], is based on the 1-to-1 mapping of a 2D circle to
a Riemann sphere through stereographic projection. A circle on the Riemann sphere is its
intersection with a plane in 3D, therefore the fitting of a 2D circle is reduced to fitting a plane
in the Riemann sphere. The procedure is non-iterative, fast, accurate, and has 3 steps [21].

Figure 5: Simulation evaluation of the linear and nonlinear methods with noise (σ = 0.04).

Figure 6: Experimental evaluation of the linear and nonlinear identification.

Both nonlinear and linear methods yields the equations of the 2 ankle axes. The D-H
parameters can be computed geometrically based on the definition of the method [21]. Results:
Initially the proposed method is evaluated on the model. First, the inversion-eversion motion
were executed taking all the values in its range producing 41 points. Next, we fix STJ, and UAJ
is rotated in its full range, producing 66 dorsiflexion/plantarflexion data of point P8. Normally
distributed noise with standard deviation (σ = 0.04) was added on the measured data and the
simulation results are shown in fig 5. For the plane estimation of Step 1 the observability index
O was evaluated on several position sets. The position set with many equally distributed points
along the arc gave the maximum O value. By performing SVD on the identification Jacobian
we found that only the 4th singular value vanishes. Similarly, for the center estimation of Step
2 several position sets were tested. Position set with many equally distributed points along the
arc gave the maximum O value. The identification Jacobian in Step 2 has full rank and there
were no non-identifiable parameters.
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Our method is evaluated on an actual human foot. An adult male subject of height 1.85m
and weight 80kg has been used, and the motions of the right foot were measured. For recording,
we used a Microscribe 5-axes coordinate measurement device. For the dorsiflexion-plantarflexion
motion, 13 positions were recorded, while for the inversion-eversion motion, we recorded 12. In
comparison with the simulation results (fig. 6), the deviation between the two methods is larger
which emanates from the smaller number of measurement points.

5 Conclusion and future work

In this thesis was studied the design and identification of kinematics parameters of robotic
mechanisms for ankle physiotherapy applications. Initially, we adopted the suitable 2 axes
ankle joint kinematics model from the literature and we received experimental data, in order
to define a design framework for the design of a rehabilitation robot. Then, we introduced
a new 2-DOF hybrid serial-parallel robot with mechanical adjustability and we performed its
parametric design. This physiotherapy device outperforms to the existing physiotherapy robots
on the minimum number of actuators, safety, modularity and economy. Finally, we developed
a simple, robust and accurate method for identification of the ankle joint complex kinematics
parameters for the appropriate tuning of a physiotherapy robot. Our method avoids the use
of position tracking of multiple point-markers on the body-member and the use of expensive
optical motion analysis systems. This makes it applicable in a physiotherapy clinic.

As future work, we may consider the structural study and construction of the robot. We
have to investigate appropriate compliance control laws (e.g. stiffness, impedance, hybrid po-
sition/force control) [25, 26] in order to evaluate their suitability for physiotherapy operations.
The development of the user software with teleoperation capabilities and operation of the plat-
form with patients under the supervision of physiotherapist are in our interests. Also, we may
revisit algebraic techniques, investigating sophisticated algorithms such as sparse interpolation,
or parameter reduction so as to reduce the complexity of the resultant calculations in the kine-
matics parameters identification of the ankle joint complex.
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