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Abstract. This PhD thesis introduces a low cost Software-Based Self-Test 
(SBST) fault detection methodology for small embedded cache memories. The 
methodology leverages existing powerful mechanisms of modern ISAs by 
utilizing instructions that we call in this PhD thesis Direct Cache Access (DCA) 
instructions. Moreover, our methodology exploits the native performance 
monitoring hardware and the trap handling mechanisms which are available in 
modern microprocessors. By effectively combining these features of modern 
microprocessors the proposed methodology applies March test operations with 
lower cost (code size, execution time, system performance overhead) when 
compared with other proposed solutions in the literature for fault detection in 
caches through SBST. Finally, a multithreaded optimization of the proposed 
methodology is also presented. The proposed methodology was applied to three 
processor benchmarks: a) OpenRISC 1200 b) LEON3 and c) OpenSPARC T1. 
Experimental results both for the test code size and test execution time of 
several March tests demonstrate the significant improvements in terms of test 
time (86% for instruction L1 cache, 87% for the data L1 cache, about 40% for 
D-TLB and about 82% for I-TLB) and test code size (83% for instruction L1 
cache, 86% for the data L1 cache, 3% for D-TLB and 35% for I-TLB) when the 
methodology is applied to the same benchmarks (LEON3 for L1 caches and 
OpenSPARC T1 for TLBs) and such DCA instructions are exploited compared 
to SBST solutions that don’t utilize these types of instructions.   

Keywords: Microprocessor testing, Reliability, Software-based Self-test, On-
line testing, Memory testing, March tests 

1   Introduction 

During the past 30 years the semiconductor industry has been characterized by a 
steady path of constantly shrinking transistor geometries and increasing chip size. 
However, this technology achievement leads to new reliability challenges for modern 
systems that have not been considered in the past. Such reliability threats are either 
latent hardware defects that have not been detected by manufacturing tests or 
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hardware defects that may occur during system operation by the increased soft error 
rate or by aging degradation effects. On-line testing schemes aim to detect such faults 
both in logic and memory modules of modern chips during their lifetime. Nowadays, 
in modern processors the relative chip area occupation of cache devices is up to 90%. 
Thus, high quality cache memory on-line testing in modern processors is essential. 

Small memories, such as L1 caches and Translation Lookaside Buffers (TLBs) are 
not usually equipped with Memory Built-In Self-Test (MBIST) hardware or lack a 
programmable MBIST scheme because of its impact on chip area and performance. 
Software-Based Self-Test (SBST) is a flexible and low-cost solution for on-line 
March test application and error detection in such small memories. Although, L1 
caches and TLBs are small components, their reliable operation is crucial for the 
system performance due to the large penalties caused when L1 cache or TLB misses 
occur. 

This PhD thesis introduces a low cost fault detection methodology for small 
embedded cache memories that is based on modern Instruction Set Architectures and 
is applied with SBST routines. The proposed methodology applies March tests 
through software to detect both storage faults [1] when applied to caches that 
comprise SRAM memories only, e.g. L1 caches, and comparison faults [2] when 
applied to caches that apart from SRAM memories comprise CAM memories too, e.g. 
TLBs. The proposed methodology can be applied to all three cache associativity 
organizations: direct mapped, set-associative and full-associative and it does not 
depend on the cache write policy. The methodology leverages existing powerful 
mechanisms of modern ISAs by utilizing instructions that we call in this PhD thesis 
Direct Cache Access (DCA) instructions. Moreover, our methodology exploits the 
native performance monitoring hardware and the trap handling mechanisms which are 
available in modern microprocessors. By effectively combining these features of 
modern microprocessors the proposed methodology applies March write and read 
operations with lower cost (code size, execution time, system performance overhead) 
when compared with other proposed solutions in the literature for fault detection in 
caches through SBST. Moreover, the proposed methodology applies March compare 
operations when needed (for CAM arrays) and verifies the test result with a compact 
response to comply with periodic on-line testing needs. Finally, a multithreaded 
optimization of the proposed methodology that targets multithreaded, multicore 
architectures is also presented in this thesis. The proposed multithreaded optimization 
exploits the thread level parallelism of multithreaded, multicore architectures and the 
low level multiple sub-bank organization of modern cache designs to speedup March 
tests while preserving the March test quality. Hence, in case of multithreaded, 
multicore architectures that can adopt the proposed multithreaded optimization, test 
time is further lowered and such SBST routines can be effectively executed 
periodically during the system’s lifetime with an acceptable performance overhead. 

The proposed methodology was applied to three processor benchmarks: a) 
OpenRISC 1200 b) LEON3 and c) OpenSPARC T1. In detail, the methodology was 
applied to the L1 caches of all three processor benchmarks and to the TLBs of 
OpenSPARC T1 processor. The multithreaded optimization was demonstrated on the 
multithreaded, multicore OpenSPARC T1. Experimental results both for the test code 
size and test execution time of several March tests demonstrate the effectiveness of 
the proposed methodology, its high adaptability and the significant improvements in 



terms of test time and test code size when compared with other proposed solutions in 
the literature for fault detection in caches through SBST that do not exploit DCA 
instructions [9] [13].  

Finally, a test evaluation framework was implemented in this thesis for several on-
line periodic test scenarios in order to evaluate the system performance overhead of 
the proposed methodology. Simulation results indicate that the proposed March test 
implementation through SBST slightly influences the system’s performance, even in 
intensive test scenarios with high test frequency requirements. 

1.1 Related Work 

Several SBST approaches have been proposed [3] – [13] to apply March tests to L1 
caches but none for TLBs. Besides, none of the proposed SBST approaches in the 
literature exploits special instructions that can be considered as DCA instructions. In 
[3], the first systematic approach for transforming March B test algorithm for in-
system testing of Intel 860 processor cache is proposed. In [4], a March test 
transformation methodology is proposed for in-system testing of both data and tag 
arrays of data and instruction cache memories with various organizations by taking 
advantage of features such as enable/disable or freeze. In [5], the authors propose a 
methodology to transform March tests for in-system testing targeting only the data 
cache memory tag without providing implementation details. The transformation 
methodology targets direct mapped caches and is applied on March B and March X 
tests. In [6], the methodology of [4] is enhanced to exploit microprocessor’s 
performance monitoring hardware and on-line hardware detectors to improve test 
observability. In [7], a SBST approach is proposed to develop March-based self-test 
programs for the data array of both instruction and data caches. Experimental results 
for traditional memory faults are provided for a MIPS R3000 processor model for 
different March tests. In [8], March tests are translated in order to effectively test the 
data and tag part of set-associative caches with Least-Recently Used (LRU) 
replacement and both write-back and write-through policies. In [9], a software-based 
methodology is presented for testing memory arrays and logic modules of a direct-
mapped data cache. Experimental results are provided for an ARM-compatible 
processor both for the cache arrays and the logic modules. In [10], a hybrid SBST 
approach is proposed to test data and instruction cache controllers by combining 
instruction-based pattern generation and an I-IP module insertion for observability. 
Experimental results for the cache controllers of OpenRISC 1200 processor are 
provided. In [11], a test program generation approach is proposed to generate suitable 
programs for testing the replacement logic in set-associative caches. Experimental 
results of a cache that implements the LRU policy are provided. In [12], the 
capabilities and limitations of CPU-based at-speed memory testing are presented 
based on test routine examples for an ATMEL RISC microcontroller. Such SBST 
routines can be also adopted for testing cache arrays. Recently in [13], a methodology 
to exploit the ISA to translate generic March tests into SBST programs for set-
associative instruction cache memories is presented and was applied on the instruction 
cache of the LEON3 microprocessor. 



2   Cache arrays testability challenges 

There are three basic cache organizations: direct mapped, set-associative and fully-
associative. In processor design, data and instruction L1 caches are usually organized 
as direct mapped and set-associative caches whereas data and instruction TLBs are 
always organized as fully associative caches.  

A typical L1 cache organization comprises of at least two SRAM memory arrays 
(or two SRAM arrays per way in set-associative organizations) - the data array and 
the tag array - whereas a fully-associative TLB organization comprises of one SRAM 
array - the data array - and one CAM array - the tag array. CAM is a special type of 
memory that compares all the stored data in parallel with incoming data and is 
utilized in the tag part of fully associative caches to speed up the tag comparison. 
Further down, those arrays will be denoted as DL1-Data, DL1-Tag, IL1-Data and 
IL1-Tag for the data and instruction L1 cache whereas for TLBs those arrays will be 
denoted as DTLB-Data, DTLB-Tag, ITLB-Data and ITLB-Tag for the data and 
instruction TLB, respectively.   

All these cache arrays (either for L1 caches or TLBs) are implicitly accessed 
because they are not directly visible to the assembly programmer through the ISA. 
Hence, applying test patterns and observing the test responses through a software test 
routine is challenging. The challenges of accessing and thus testing those implicitly 
accessed cache arrays are summarized in Table 1 and thoroughly described in the 
thesis manuscript. 

Table 1: Cache arrays testability challenges 
Testability Challenges  Cache arrays 

DL1 
Data 

DL1 
Tag 

IL1 
Data 

IL1 
Tag 

DTLB 
Data 

DTLB  
Tag 

ITLB 
Data 

ITLB 
Tag 

Direct access from generic ISA         
Indirect March write          
Indirect March read          
Data Backgrounds         
Ascending Address Order          
Descending Address Order         
March Compare operation - - - - -  -  

 
The proposed methodology overcomes all these testability challenges for all cache 

arrays of both L1 caches and TLBs and optimizes the SBST routines in terms of test 
time and test code size by exploiting DCA instructions. 

3   DCA instructions in modern ISAs 

So far, previous SBST approaches cannot successfully overcome all the above 
mentioned challenges by using generic instructions to access cache arrays both for 
write and read operations. Fortunately, modern ISAs include dedicated instructions 
for debug-diagnostic and performance purposes that provide direct controllability and 



observability of cache arrays. These instructions are extremely suitable for cache and 
TLB SBST; we use the term Direct Cache Access (DCA) instructions to refer to them. 

In order to gain direct access to the cache arrays for all three cache organizations 
(direct mapped, set-associative and fully-associative) and implement a software-based 
March test, an ideal DCA instruction needs to contain the following fields: 

Fields for selecting cache/TLB content: 

• Way Selection (WS) field. 

• Set Selection (SS) field. 

• Line Word Selection (LWS) field. 

Field for selecting internal cache array: 

• Data/Tag Array Selection (AS) field. 

Field for selecting March operation: 

• Write/Read/Compare operation (WRC) field 

Field for addressing register/memory for fetching DBs: 

• From/To data Address (A) field 

An ideal DCA instruction that contains all these fields gains direct access to any 
cache array, hence it can apply March operations through ISA to these arrays in a 
very effective way and overcome all the above described  testability challenges. 
DCAs that access direct mapped caches should contain only fields SS and LWS while 
DCAs for accessing set associative L1 caches should contain all three WS, SS and 
LWS fields. DCAs that access fully associative caches and TLBs should contain only 
WS and LWS fields (fully associative caches contain 1 set with many ways) 
respectively. When the cache organization imposes a uniform cache line (e.g. TLBs) 
LWS field is not required. Finally, if the cache organization does not comprise a CAM 
memory (e.g. L1 caches), the March operation selection field can be renamed to WR 
field (only write/read operations, no compare). 

In Figure 1 and Figure 2, ideal DCA instructions and the way that every field is 
utilized to access a 2-way set associative L1 cache and a TLB, are presented, 
respectively. 

Set 0
Set 1
Set 2

.
Set k

.
Set N-1

Tag 0 Data 0 Tag 1 Data 1
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setCache LineTag 0 Tag 1
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Figure 1: Ideal DCA instruction for 2-way set associative L1 cache 



Selected 
TLB entry 

TLB

DCA instruction
OpcodeWRC ASWS

or or

A

Tag Array
(CAM)

Data Array
(SRAM)

PPNVPN

L2 or Main Memory Register File

Data(A) Data(A)

or

 
Figure 2: Ideal DCA instruction for TLB 

In detail, in L1 set-associative caches the data or tag array (selected by the AS 
field) is accessed both for write and read operation (selected by the WR field). The 
selection of a word inside a cache line is controlled in three steps. First, the SS field 
selects the set, then, the WS field selects the cache way and finally the LWS field 
selects the word inside the cache line. Furthermore, all DBs can be composed by 
initializing either a general purpose register or a memory location that can be accessed 
by the A field.  In TLBs, the data or tag array of the TLBs can be accessed by 
controlling the AS field. The March operation can be selected with the WRC field to 
write, read or compare a selected TLB entry. Compare operation is valid only for tag 
array. TLBs are fully associative arrays; hence the WS field is needed in the ideal 
DCA instruction to gain access to every TLB entry. Note that, such an instruction has 
no limitation to access a cache either in ascending or in descending order. 

In practice, such an ideal DCA instruction does not exist in ISAs but it can be 
indirectly implemented by combining a set of existing DCA instructions that together 
totally cover all fields of the ideal instruction. Representative examples of such 
special purpose instructions, which can be considered as DCAs, are present in RISC 
architectures, such as MIPS, ARM and SPARC architectures and in CISC 
architectures such as x86 architectures. A detailed presentation of these existing DCA 
instructions is included in the thesis manuscript. 

4   SBST methodology for small caches 

The methodology targets all cache arrays for both data and instructions (either L1 
caches or TLBs) and is suitable for all three cache organizations with any write 
policy. An SBST technique that targets L1 caches cannot be cache resident, since the 
actual L1 cache is under test. However, this is not a limitation in case of on-line 
testing, since the test routines can be stored and executed from either L2 cache or the 
chip’s main memory that is available at test time. Moreover, when the SBST 
methodology targets TLBs, the SBST routine should be placed in a non-pageable 
memory location that is not cached to the instruction TLB since the actual TLB arrays 
are under test. 

The proposed SBST methodology implements low cost SBST March tests that 
target cache arrays by taking advantage of existing debug-diagnostic instructions in 



modern ISAs, as described in Section 3. These instructions must cover in total the 
fields of the ideal DCA instruction to overcome the testability challenges of the cache 
arrays. The main feature of the methodology is low cost March write/read 
implementation due to high controllability and observability of DCA instructions. The 
proposed SBST methodology is briefly summarized in Figure 3 for L1 caches and 
TLBs respectively and is thoroughly presented in the thesis manuscript. The main 
features of the proposed methodology are:  

• Low cost March writes due to the high controllability of DCA write instructions. 
• Low cost March reads due to the high observability of DCA read instructions. 
• Low cost March comparisons due to the special features of DCA compare 

instructions. 
• Low cost March reads for tag arrays by exploiting performance monitoring 

hardware, if DCA read instructions do not exist in the ISA. 
• Low cost March comparisons for TLB tag arrays by exploiting the trap handler 

mechanism, if DCA compare instructions do not exist in the ISA. 
• Test response compaction to comply with on-line testing requirements. 
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Figure 3: SBST Methodology for a) L1 caches b) TLBs 

 



5   Multithreaded optimization for multi-bank L1 caches 

We propose a multithreaded optimization of the SBST methodology that 
elaborates the low level multiple bank organization of modern cache designs to 
exploit the thread level parallelism of modern multithreaded multicore processors and 
speedup March test execution time. 

In cache designs, SRAM arrays are partitioned into sub-banks to save power or to 
tweak the cache dimensions or even multiple banks to minimize internal wiring delay. 
Such cache designs that consist of one bank but multiple sub-banks are called 
Uniform Cache Architectures (UCA) whereas these that that consist of both multiple 
bank and sub-banks are called Static/Dynamic Non-Uniform Cache Architectures (S-
NUCA/ D-NUCA) based on the way that the mapping of data into cache banks is 
achieved [12]. 

In UCA and S-NUCA architectures, the mapping of data into cache banks and 
sub-banks is predetermined based on the block index of the architecture and thus can 
reside in only one bank of the cache. Several cache modeling tools (e.g. Cacti) enable 
fast exploration of the cache design space by automatically choosing the optimal bank 
and sub-bank count, size, and orientation of UCA and S-NUCA architectures. Each 
sub-bank has a separate memory array, decoder, write drivers, and sense amplifier. 
The S-NUCA cache consists of multiple banks. Every bank is organized as a UCA 
with multiple sub-banks.  

Each cache sub-bank in UCA and S-NUCA multibank architectures can be 
considered as a separate SRAM array with a distinct functional fault set, since no 
coupling faults can occur between memory cells of different cache banks and sub-
banks. Therefore, an on-line test strategy that considers every sub-bank as an 
independent memory array can be developed since the memory mapping is known to 
test engineers. 

The proposed optimization considers exclusive fault sets for every L1 cache array 
sub-bank and proposes a fine-tuned clustering of the applied March tests in smaller 
subroutines based on the information provided for the physical implementation of a 
multibank cache (sub-bank address mapping, address scrambling etc.). Every cluster 
targets a sub-bank of the cache and the logical union of all clusters ends up to the 
initial March test for the whole cache array under test. These March test clusters 
target separate cache array sub-banks which can be executed concurrently without 
diminishing the March test effectiveness. Such a clustering is well suited to 
multithreaded processors, where concurrent execution can be achieved by assigning 
test clusters to different threads and hence SBST March test execution time is divided 
by the factor of available number of test threads. The test threads are dynamically 
scheduled software threads among the other executed processes. These test threads 
should be isolated during on-line testing in order to prevent the rest of the software 
processes to corrupt the March test effectiveness. In case that the March tests clusters 
outnumber the available threads, more than one March test clusters are assigned to 
every thread. Finally, the proposed multithreaded optimization is suitable both for 
simultaneous multithreading and interleaved multithreaded architectures, since it is 
independent of the way that the threads are issued and it is compatible with any 
resource allocation policies (e.g. physical register file size, register windows, register 
renaming e.t.c). 



6   Case studies: LEON3, OpenRISC 1200, OpenSPARC T1 

We have applied the proposed SBST methodology to three processor benchmarks: 
a) LEON3, b) OpenRISC 1200 and c) OpenSPARC T1. We have also applied the 
multithreaded optimization to the L1 caches of OpenSparc T1. 
In order to evaluate the effectiveness of the self-test routines we have used RAMSES 
memory fault simulator [14]. 

The first benchmark is LEON3, a publicly available processor designed by 
Aeroflex Gaisler that implements a SPARC V8 compliant architecture. The SPARC 
V8 ISA, that LEON3 implements, includes privileged store/load instructions, denoted 
as alternate load/store (lda/sta instructions). These instructions can directly access 
cache arrays for diagnostic purposes by specifying alternate space identifiers (ASIs) 
that are defined by the SPARC architecture for both write and read access at 
supervisor level. These instructions have been used as DCA instructions for March 
write/read operations to apply and read the test patterns in SBST routines. 

The second benchmark is OpenRISC 1200, a publicly available processor core. 
OpenRISC 1200 lacks debug-diagnostic instructions in its ISA to access the cache 
arrays. However, it includes a cache prefetch mechanism for both data and instruction 
L1 caches and maps prefetch operations to valid instructions. These instructions have 
been utilized as DCA instructions for March write operations. For March read 
operations, generic load and call instructions have been used. The observability of the 
March tests has been improved by exploiting the performance counters. 

The third benchmark is OpenSPARC T1 that includes both data and instruction L1 
caches and fully functional TLBs. Therefore, the SBST methodology has been fully 
applied to both the L1 cache and TLB arrays. OpenSPARC T1 implements a SPARC 
V9 compliant ISA and includes privileged store/load instructions, denoted as alternate 
load/store (ldxa/stxa instructions). We have exploited these alternate load/store 
instructions for March write/read operations to directly access all cache arrays for 
both L1 caches and TLBs for March write and March read operations at low cost by 
utilizing the appropriate ASI at the hypervisor level. SPARC V9 ISA does not 
implement a debug/diagnostic compare instruction for implementing the March 
compare operation. Therefore, a custom “miss-no-refill” trap handler has been 
utilized to implement March compare operations to test DTLB-Tag and ITLB-Tag 
CAM arrays for comparison faults. We have also applied the multithread optimization 
to the March tests that target the four SRAM arrays of both data and instruction L1 
caches of a SPARC core. 

We have applied a set of March tests with different test complexities to both data 
and instruction caches. Solid data backgrounds (all-zero/all-ones) have been used to 
all tests. The test quality is verified with RAMSES for all the applied March tests and 
100% fault coverage has been verified for all cache arrays. 

Detailed experimental results and comparisons both for the test code size and test 
execution time of these March tests are provided in the thesis manuscript and 
demonstrate the effectiveness of the proposed methodology, its high adaptability and 
the significant improvements in terms of test time (86% for instruction L1 cache, 87% 
for the data L1 cache, about 40% for D-TLB and about 82% for I-TLB) and test code 
size (83% for instruction L1 cache, 86% for the data L1 cache, 3% for D-TLB and 
35% for I-TLB) when the methodology is applied to the same benchmarks (LEON3 



for L1 caches and OpenSPARC T1 for TLBs) and such DCA instructions are 
exploited compared to SBST solutions that don’t utilize these types of instructions. 
Moreover, experimental results show a speedup of more than 1.7 (for two threads) 
and more than 3.7 (for four threads) in test time when the proposed multithreaded 
optimization is applied to the L1 caches of OpenSPARC T1.  

7   Performance overhead evaluation 

In this section, we present the evaluation framework that was utilized to estimate 
the performance overhead of the proposed SBST routines. We have implemented 
several on-line periodic testing scenarios and we will present detailed statistics of the 
performance overhead introduced in a typical workload under these test scenarios. 

We have utilized a SunFire T2000 server running a set of multithreaded programs 
-the PARSEC benchmark suite- over Solaris 10 to evaluate the performance overhead 
of the deployed SBST routines. Our server is powered by a quad-core UltraSPARC 
T1 processor. OpenSPARC T1 processor is the free version of UltraSPARC T1 that is 
utilized in SunFire T2000 servers. Hence, the SBST routines that were developed 
above for OpenSPARC T1 processor can be directly compiled to our server to 
evaluate their performance overhead. 

We have selected the optimized 2-thread March C- SBST routine that targets the 
data L1 cache (both DL1-Tag and DL1-Data) to be utilized as our self-test routine in 
the evaluation framework. The test time of this test routine has been measured about 
1.2sec in our system. Any other SBST routine (or a set of March tests) could have 
been selected. Since we do not have access on the hypervisor level on the 
UltraSPARC T1 processor of a native system, we have slightly altered the SBST test 
routines in order to comply with Solaris OS limitations on executing hyper privileged 
instructions. 

The modified SBST routines have the same memory footprint and test execution 
time with the OpernSPARC’s T1 implemented routines, thus the modified self-test 
routine is sufficient for studying the performance impact of the proposed on-line self-
tests. 

Here after, we will utilize the terms of Test Period (TP) and Test Latency (TL) as 
described below: 

• Test period (TP) and is the amount of time from the beginning of a self-test on a 
core to the beginning of the next self-test on the same core.  

• Test latency (TL) is the duration of an on-line self-test. 

We have applied several on-line testing scenarios with a fixed TL (1.2sec) and 
several short TPs (< 1min) that are suitable for detecting early-life failures on two 
different framework configurations, a 1core/4thread setup and a 4core/16thread setup 
as described below in detail. 

• 1core/4threads setup, TL=1.2sec, TP=2, 15 and 60 sec 

Firstly, Solaris capability of creating virtual processor sets has been exploited to 
isolate a single SPARC core from OpenSPARC T1 and both PARSEC workload 



applications and SBST routine have been set -by utilizing Light Weight Process 
(LWP) binding- to be executed in this SPARC core. 

Note that we have selected to isolate an idle core that does not execute any other 
OS process in order to evaluate the real performance overhead due to the SBST 
routine’s periodic execution only. The PARSEC suite has been configured to be 
executed by four threads (the maximum number of threads in the core). These four 
threads share the same L1 cache. Hence, both workload and March test application 
access the same cache SRAM arrays. Afterwards, several TPs have been selected to 
represent different test scenarios. For example a demanding testing scenario may 
require intensive test period (e.g. TP=2sec) while a more relaxed test scenario may 
require less intensive test periods (e.g. TP=60sec). 

• 4cores/16threads setup, TL=1.2sec, TP=10, 30 and 60 sec 

In this configuration we have utilized all four available SPARC cores of our 
server. Hence, apart from the PARSEC applications and the periodic execution of the 
SBST routine, the OS processes were also executed in the background. The PARSEC 
suite has been configured to be executed by all the available sixteen threads of our 
system (four threads per SPARC core). A script has been composed to call the SBST 
routine for every SPARC core in a round-robin way in every TP. Moreover, in each 
SBST routine execution, the script forms a virtual processor set of the 4 threads that 
belong to the core under test to ensure that the SBST routine will be executed only by 
the selected core under test. This is a critical requirement to guarantee the test quality 
by preventing the test patterns to be stored in L1 cache of other cores, apart from the 
core under test. Several TPs have been selected to represent different test scenarios, in 
a similar way that was presented for the 1core/4threads setup. The selected TPs were 
longer in these case studies due to the need of executing the same SBST routine four 
times (one for the L1 cache of each SPARC core). 

The system in both configuration setups was configured to execute all the 13 
multithreaded programs of the PARSEC suite. All PARSEC programs have been 
compiled to utilize the pthreads parallelization model and the native dataset was 
utilized in all simulations. After estimating the workload execution time in both 
configuration setups without test, the PARSEC programs were executed several times 
while the SBST routine was scheduled to be executed in the background at a fixed TP 
in every test scenario for both configurations. 

Detailed statistics for the performance overhead for each test scenario are provided 
in the thesis manuscript and even in the more demanding test scenario of a quad core 
processor does not exceed the 11% of the performance of the system without test. 
Considering that this performance penalty refers to a demanding on-line periodic self-
test scenario that applies March C- algorithm to both D-Tag and D-Data SRAM 
arrays for all four L1 caches of the quad core system every 10sec, such performance 
degradation can be affordable when a strict test scenario is required. In contrary, in a 
relaxed test scenario (e.g. not more than a test per minute), the performance overhead 
is lower. For example, when the SBST routine is periodically executed every minute 
in a single core system (e.g. a single core system can be an embedded processor), the 
performance overhead is less than 1%, thus negligible. Thus, the proposed SBST 
methodology can periodically apply March tests to L1 caches effectively during the 
system’s lifetime with acceptable performance overhead in workload execution. 



Conclusions 

We have presented a low cost SBST fault detection methodology for small 
embedded cache memories that leverages existing powerful mechanisms of modern 
ISAs by utilizing existing DCA instructions, exploits the native performance 
monitoring hardware and the trap handling mechanisms which are available in 
modern microprocessors. Furthermore, a multithreaded optimization of the proposed 
methodology has been presented. The methodology has been applied to three 
processor benchmarks: a) OpenRISC 1200 b) LEON3 and c) OpenSPARC T1. 
Experimental results for several March test implementations demonstrate the 
significant improvements in terms of test time and test code size when the 
methodology is applied to the same benchmarks (LEON3 for L1 caches and 
OpenSPARC T1 for TLBs) and such DCA instructions are exploited compared to 
SBST solutions that don’t utilize these types of instructions. Finally, a performance 
evaluation framework has been presented to demonstrate that the implemented SBST 
routines have acceptable performance overhead for periodic on-line testing. 
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