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Abstract. In computer and communication systems, competition and mutual in-
teractions among users sharing system resources is frequently observed. Typical 
examples include the sharing of bandwidth in a wireless network or storage ca-
pacity in caching systems. In this context, we study different problems, such as 
load-balancing and proactive resource management in cellular networks, dy-
namic spectrum access and transmission power control, as well as distributed 
management of caching storage capacity. Due to mutual user interference, we 
have modeled and analyzed the aforementioned problems by means of eco-
nomic theories and methodologies (e.g., game theory, auctions, markets, pric-
ing), which provide useful mathematical tools for studying such situations. Dif-
ferent solution concepts have been considered (e.g., Nash equilibrium, or Nash 
bargaining solution, in cooperative contexts) and appropriate optimization 
methods have been applied to characterize such solutions and provide corre-
sponding algorithmic methods to calculate the respective operating points (cen-
trally or in a distributed manner).  

Keywords: Mobile computing, Distributed systems, resource management, 
game theory, optimization theory. 

1   Introduction 

In the recent years, we are experiencing an exciting development in wireless and 
mobile communications. In almost every place in the world, voice or data services are 
available through 2G (Global System Mobile – GSM), or 3G (Universal Mobile Tele-
communications System – UMTS) systems. Moreover, wireless local area networks 
(WLANs) cover various public spaces, such as airports, malls, companies and Uni-
versity campuses. This ever-increasing interest in wireless technologies has triggered 
a huge amount of research, as shown in the relevant literature. 

In addition to wireless and mobile systems that enable Internet access, of particular 
importance are the Internet services per se, and their efficient operation. Currently, 
one of the most important and widely adopted Internet services is the World Wide 
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Web (WWW). The impressive and ever-increasing use of the WWW service imposes 
the necessity for optimization in the access of informational content. Important is the 
role of WWW caching technology and content distribution networks (CDNs). Such 
technologies achieve a reduction in the delay of content delivery to users, as well as a 
reduction of network traffic, as the requested content is placed closer to the users.  

This dissertation focuses on two basic axes: 1) resource management in mobile 
computing, and 2) resource management in distributed computer systems, emphasiz-
ing in the efficient operation of the WWW service. In what regards mobile comput-
ing, the following problems are studied: (i) Load balancing in wireless cellular net-
works, (ii) Handover blocking avoidance in wireless cellular networks, (iii) Dynamic 
spectrum access, and (iv) Power control. Regarding distributed computer systems and 
the WWW service, the study focuses on the avoidance of the monopolization of stor-
age capacity by aggressive users, in order to achieve fair and efficient resource shar-
ing. Specific problems that are studied are the following: (i) Distributed fair sharing 
of disk space capacity of an L1 caching proxy, and (ii) Management of storage capac-
ity of caching hierarchies (case study L2 caching). 

Notice that, typically, the decisions made by a user in a communication or com-
puter system affect the other users, directly or indirectly. Such interactions, which 
strongly resemble real societies and social interaction problems, have already at-
tracted the interest of mathematicians and economists, mostly in the previous century, 
resulting in the development of Game Theory [1]. Game Theory is a mathematical 
tool for studying situations with mutual interactions and conflicts of interests among 
selfish entities, termed players. Game Theory has been applied to various sciences, 
such as Economics, and Psychology. In the last decades, it has also been applied to 
problems relating to computer and communications systems.  

In this dissertation, Game Theory as well as other economic concepts (e.g., auc-
tions, pricing) are the basis for studying the examined resource management prob-
lems. Different solution concepts have been considered (e.g., Nash equilibrium, or 
Nash bargaining solution, in cooperative contexts) and compared. For the sake of 
brevity, here, we only present a representative contribution of the dissertation, the 
study of the power control problem in wireless networks.  

2   CDMA Power Control 

Wideband Code Division Multiple Access (WCDMA) has been widely adopted as the 
air interface technology for third generation (3G) networks [2]. WCDMA is interfer-
ence limited: the multiple access interference, due to the simultaneous user transmis-
sions in the same frequency, is the most significant factor in determining system ca-
pacity and quality of service (QoS).  

A popular approach to the power control problem in CDMA networks is based on 
economic models [4], [12]. In such models, preferences for each user are represented 
by a utility function, which quantifies the level of user satisfaction. Each user seeks to 
maximize his utility in a selfish and distributed manner, and the game, potentially, 
settles at a Nash equilibrium (NE) [1].  



A well-known, game theoretic, power control model has been introduced in [4]. 
Users select their transmission power, in a distributed manner, driven by a utility 
function, which quantifies the tradeoff between achieved throughput and consumed 
energy. The discussed game has a unique NE, which, however, is not quite efficient, 
as there are other power allocations yielding higher utility for all users. Specifically, it 
has been observed that if all users decrease their NE power by a given factor, a utility 
increase may be achieved for all of them.  

An approach for urging users to reduce their transmission power is the introduction 
of pricing. To this end, the authors of several papers (e.g., [4], [5]) have proposed 
charging users proportionally to their transmission power. The users selected their 
power in order to maximize their net utility (utility minus cost). Such games are also 
known as “leader-follower” (Stackelberg) games [1], with the leader being the net-
work (setting the pricing factor) and the follower the wireless users. Note, however, 
that a Pareto optimal operating point, still, could not be reached. Another important 
issue in pricing-based power control is that fairness tends to be undermined. For in-
stance, in [4], at the NE with pricing, users that encounter high path loss are charged 
more and receive fewer resources, compared to users close to the BS. 

Centralized power control may sometimes be quite beneficial for the wireless us-
ers, as more efficient operating points than the NE may be selected. In [6] and [7], the 
BS computes an “optimum” power allocation and then communicates it to the users. 
In both works, at the optimum power allocation, all users reach the BS with the same 
power, i.e., achieve equal signal-to-interference ratio (SIR). However, these works 
lack a formal analysis on the efficiency of the reported results. The Pareto optimality 
of the proposed solution is proven in [8]. 

In this paper, we are primarily concerned with the determination of fair and opti-
mal operating points, in the power control problem, subject to individual user QoS 
constraints. We consider bandwidth-elastic, delay intolerant data services (e.g., voice, 
video, real time file transfers). We first assume a non-cooperative setting and derive 
the corresponding NE. Based on this game, we consider an alternative scheme, using 
the Nash bargaining solution (NBS) [3], which by definition results in Pareto optimal 
and fair outcomes. The NBS leads to a nonlinear optimization problem, which is 
shown to have a unique solution. For determining this solution we propose an appro-
priate numerical algorithm.  

3   System Model 

In this section, we describe the model adopted for studying the CDMA power control 
problem. Let I = {l, ..., N} be the set of users who share the uplink bandwidth of a 
CDMA cell. User i controls his transmission power pi in order to optimize a certain 
performance measure. We assume that pi is chosen from Si = [0, +∞). Let p = (p1, …, 
pN)T be a typical strategy profile vector in the strategy space S = S1 × … × SN. We also 
assume that user i has certain QoS requirements in terms of lower and upper bounds 
on the achieved throughput. This is a natural assumption for real-time applications 
with adaptive coding, such as voice and video, which are tolerant to fluctuations in 
the available throughput.  



We assume that the QoS (throughput) requirements of user i are expressed in terms 
of lower and upper bounds on the achieved SIR, γm,i and γM,i, respectively (γm,i < γM,i)1.  
Let Γ = { p ∈ S : γm,i ≤ γi(p) ≤ γM,i , ∀ i ∈ I } be the set of power allocations that result 
in feasible achieved SIR, where γi denotes the SIR of  user i, as seen by the BS, and is 
defined as follows: 
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W is the chip rate, R is the transmission rate, and W/R is the CDMA processing 
gain. hi is the path loss from the mobile terminal to the BS, and σ2 is the additive 
white Gaussian noise (AWGN) power at the receiver. Note that Γ is a convex and 
closed polyhedron in the space of power allocations, since the SIR constraints boil 
down to linear inequalities. 

We assume that user i has a utility function ui: Γ → ℜ quantifying his level of sat-
isfaction for using system resources. This function takes into account both the 
achieved QoS (throughput), as a result of the user’s transmission power and the inter-
ference from the other users, and the energy consumption due to the transmission 
power, by measuring (approximately) the number of bits that are successfully re-
ceived per unit of consumed energy. Although ui is of similar form to the utility func-
tion in [4], our utility function is defined over the set of acceptable SIRs Γ, which is a 
subset of the power allocation space S = S1 × … × SN. The utility function ui of user i 
is 
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where L is the length of the user frame, and M the length of the frame including head-

ers (M > L). The term ( )Mie γ5.01 −−  is an approximation to the probability of correct 
frame reception for asynchronous FSK modulation, assuming an additive Gaussian 
channel and no channel coding2. More details on the adopted utility function can be 
found in [4].  

4   SIR-Constrained Non-Cooperative Power Control  

In this section, we study the non-cooperative power control game. For the sake of 
brevity, we do not present all technical details, but only provide the analytical expres-

                                                            
1 In CDMA, the SIR at the receiver is directly coupled with the achieved bit-error-rate, and 

thus, throughput. However, their exact relation depends on the adopted modulation scheme. 
In this paper, to maintain the generality of the analysis and avoid mapping issues, we con-
sider SIR as the only metric of the level of achieved QoS.  

2 This simplistic channel model is considered sufficient for modeling the power control game 
[4]. 



sion of the NE3 (a power allocation where, given the power levels of the other users, 
no user can improve his utility by making individual changes to his transmission 
power – a stable operating point). The NE of the game, in SIR terms is given as fol-
lows [8]: 

⎪
⎩

⎪
⎨

⎧

<<
≤<
<≤

=
*

,,,

,
*

,
*

,,
*

,
*

  ,
  ,
  ,

γγγγ
γγγγ
γγγγ

γ

iMimiM

iMim

iMimim

i  (3) 

The term γ* is the unique non-zero solution of (4).  

ieM i
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By solving the linear system of SIR equations (see (1)), for γi = γi
*, ∀ i ∈  I., we also 

obtain the NE power allocation, as follows: 
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where qi = hipi is the power with which user i reaches the BS.  
From (5), we note that, for a power allocation to be feasible, the following con-

straint should be satisfied: 
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Otherwise, the power (as determined by (5)) becomes infinite or negative. Constraint 
(6) expresses the capacity limitation of a CDMA system (also termed pole capacity), 
and can be easily adopted as the basis for a simple call admission control (CAC) 
mechanism.  

The NE of a game is a natural and stable operating point of the system. Apart from 
stability, however, another important attribute is efficiency. A commonly accepted 
notion of efficiency is Pareto optimality. A point is Pareto optimal, if it is impossible 
to find a point, other than the Pareto optimum, which yields strictly superior utility for 
all users simultaneously, as stated formally below. 

    Definition 1 (Pareto optimality): The point u ∈ U, where U is the set of achiev-
able utilities, is said to be Pareto optimal if for each u′ ∈ U, u′ ≥ u, then u′ = u.  

 
The NE power allocation of the SIR-constrained power control game is, typically, 

not Pareto optimal [9]. Hence, a more efficient mechanism, than the non-cooperative 
game, is needed. 

                                                            
3 As shown in [9] there is a unique NE in the power control game. 



5   SIR-Constrained Arbitrated Power Control  

In this section, we study a centralized power control scheme aiming at achieving more 
efficient system performance, compared to the non-cooperative game setting. Our 
goal is to provide Pareto optimal solutions (see Definition 1). To select one Pareto 
optimal point, we propose the bargaining solution introduced by Nash [3]. 

5.1   The Nash Bargaining Solution 

Here, we provide a brief overview of the NBS and the corresponding formulations. 
User i, apart from his utility function ui defined over Γ, has also a utility ui

0, which 
corresponds to the maximum utility that he can achieve without cooperation (status 
quo utility), i.e., the NE utility. The arbitrated solution should always yield superior 
utility to ui

0 for user i to cooperate. Hence, here, ui
0 = ui(p*), where p* is the NE power 

allocation vector. We will refer to u0 = (u1
0, …, uN

0 ) as the status quo of the game, or 
disagreement point. Below we define the NBS. 

    Definition 2: A mapping F: G → ℜN, where G denotes the set of achievable util-
ity with respect to the disagreement point u0, is said to be a NBS, if the following 
hold: 

1) F(U, u0) ∈U0, where U0 is the set of achievable utilities that are superior to 
the status quo. 

2) F(U, u0) is Pareto optimal. 
3) F satisfies the linearity axiom: if φ: ℜN → ℜN, φ(u) = u΄ with u΄j = ajuj + bj, aj 

> 0, j = 1, …, N, then F(φ(u), φ(u0)) = φ(F(u, u0)). 
4) F satisfies the irrelevant alternatives axiom: if V ⊂ U, (V, u0) ∈ G and F(U, 

u0) ∈ V, then F(U, u0) = F(V, u0). 
5) F satisfies the symmetry axiom: if i) u ∈ U, ii) u0

i = u0
j, and iii) if (u1, …, ui, 

…, uj, …, uN) ∈ U, then (u1, …, uj, …, ui, …, uN) ∈ U, it follows that F(U, 
u0)i = F(U, u0)j for i, j ∈ {1, …, N}. 

 
The first and second items are the axioms regarding the superiority of the solution 

to the status quo of the game and the requirement for Pareto optimality, respectively. 
Items (3), (4), and (5) are often referred to as axioms of fairness.  

The solution of Nash, which satisfies all of the above axioms, is achieved at the 
point where the product of surplus utilities beyond the status quo is maximized, sub-
ject to the constraint that the utility of each user must be superior to his status quo 
utility. For the power control problem studied in this paper, the discussed point is the 
solution of the following problem. 
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5.2   Properties of the Nash Bargaining Solution 

Here, we study the properties of the optimization problem that leads to the NBS of the 
power control game. Specifically, we prove that the studied problem has a unique 
solution, which is essential for applying a gradient-based numerical method for the 
determination of the solution.  

Consider a linear utility transformation φ: ℜN → ℜN, where φ(u) = v, vi =(1/hi)ui, 
∀ i ∈ I. It is easy to see that the transformed utility functions vi are of the form 

( )M
i

i
ie

Mq
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where qi =hipi. With this transformation, which does not affect the solution, we con-
sider only received power at the BS. In this way, the BS may solve for the received 
powers of the users (without having to be aware of the path loss of every user), and, 
then, communicate such (target) powers to the users, which, in turn, shall adjust their 
transmission power, according to their estimated path loss.  Specifically, the BS needs 
to solve the following optimization problem: 
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Note that the utility function vi(.) of user i is quasiconcave over the set Γ. 
    Lemma 1: The utility function vi: Γ → ℜ, for user i ∈ I, is quasiconcave. 
    Proof: See [9].  ■ 
An important issue in the study of an optimization problem is also the structure of 

the constraint set. The constraint set Q0 composed of the power allocations that result 
in (i) acceptable SIR, and (ii) utilities that are superior to the status quo and is convex. 

    Lemma 2: The set of power allocations Q0 that are Pareto dominant to the status 
quo power allocation is convex. 

    Proof: See [9].  ■  
Another important issue is the form of the objective function. The objective func-

tion f(q) of problem (P) is quasiconcave and problem (P) has a unique solution. 
    Theorem 1: The objective function f(q) of problem (P) is quasiconcave over the 

set Q0. Moreover, problem (P) has a unique solution. 
    Proof: See [9].  ■ 
From the above, we, thus, conclude that we may use a gradient-based approach to 

determine numerically the pursued (unique) solution of problem (P). 

5.3   Determination of the Nash Bargaining Solution  

As a first step for solving problem (P), we define problem (P΄), which derives from 
(P), by taking the logarithmic transformation of its objective function: 
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Note that the objective function of problem (P΄), g = ln(f), is quasiconcave as a 
composition of the increasing logarithm function ln : ℜ+→ ℜ and the quasiconcave 
function f : ℜN → ℜ; thus, it has a unique maximum. Moreover, the global maximum 
q~  of the objective function f(.) (i.e., solution of problem (P)) is also the global maxi-
mum of the objective function g(.) (i.e., solution of problem (P΄)) [10], i.e., problems 
(P) and (P΄) are equivalent4.  

We propose an iterative algorithm for solving problem (P΄) based on the condi-
tional gradient method [11]. This method can be applied when the objective function 
(here g(.)) is continuously differentiable and the constraint set is nonempty, closed, 
and convex. In the considered problem, the constraint set Q0 is nonempty. Specifi-
cally, (i) set Γ is never empty, as guaranteed by the CAC mechanism, and (ii) set Q0 
(⊆ Γ) is not empty, i.e., a Pareto dominant power allocation to the NE can be typically 
found (see discussion in [9]). However, set Q0 may not be closed due to the strict 
utility inequalities that define it. Nevertheless, this does not affect the convergence of 
the proposed algorithm, as the method that we introduce guarantees that the point 
derived, after every iteration, stays always within the constraint set.  

The conditional gradient method starts with a feasible vector q(0) and generates a 
sequence of feasible vectors {q(n)} according to 

q(n+1) = q(n) + a(n)d(n), 
where a(n) is the stepsize, and d(n) is the (gradient-related) direction vector, at step n.  

The problem of determining a feasible ascent direction, given a feasible vector q(n), 
at step n, is to find a vector d(n), such that q(n) + ad(n) is feasible, for all a > 0 that are 
sufficiently small, and  

∇g(q(n))T·d(n) > 0.  
A straightforward way to generate a feasible direction d(n), from a point q(n), is to 

find the remotest point of the constraint set (Q0) along the gradient direction, i.e.,  
( ))()()( )(maxarg

0

nTn

Q

n g qwqq
w

−⋅∇=
∈

, 

and set  )()()( nnn qqd −=  [11]. Note that the determination of point )(nq  is quite 
simple, when the constraint set is defined by linear constraints. However, in our case, 
the constraint set Q0 includes nonlinear constraints as well (each user must receive 
strictly superior utility to the status quo utility).  

In order to cope with the nonlinearity of set Q0, we propose a two-phase feasible 
direction finding procedure. Firstly, we consider only the linear constraints, i.e., the 
SIR constraints that form the convex polyhedron Γ. Specifically, having reached a 
feasible vector q(n), we find )(nq , the remotest point of set Γ, along the gradient direc-

tion. If )(nq  is not feasible, i.e., there is at least one user that does not enjoy higher 
utility to the status quo, we take advantage of the fact that set Q0 is convex (Lemma 
2), and that Q0 ⊆ Γ, in order to find another feasible point )(nq ′ .  

                                                            
4 This transformation of (P) to (P΄) makes the numerical determination of the pursued solution 

easier, as it is more convenient to handle a sum, rather than a product of functions, e.g., when 
computing their derivative. 



Observe that, if q(n) ∈ Q0, but )(nq  ∉ Q0, one can find a point )(nq ′ on the line 

segment connecting points q(n) and )(nq  such that )(nq ′  ∈ Q0. Hence, the second 

phase of the direction finding procedure is to locate point )(nq ′ . Point )(nq ′  can be 
easily calculated through a bisection-based procedure [9]. The direction d(n) at step n 
is then )()()( nnn qqd −′= . Fig. 1 outlines the two-phase direction finding procedure, 
in a two-dimensional space, for presentation purposes. 
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Fig. 1. Two-Phase direction selection procedure. (a) Optimal direction subject to 
linear SIR constraints only, (b) The optimal direction subject to the linear constraints 
is not feasible (i.e., it lies outside set Q0), (c) the initial direction is scaled in order to 
become feasible. 
 

In the proposed iterative procedure, at each step, the stepsize is readjusted, based 
on the Armijo rule [11], in order to accelerate convergence. According to the dis-
cussed rule, the stepsize a(n) is chosen not only to produce a positive improvement in 
the objective function, but a sufficiently large improvement [9]. 

6   Numerical Results 

In this section, we provide results from the performance analysis of the proposed 
NBS-based power control scheme. Table 1 gives the values of the system parameters 
used throughout our analysis; these values have been adopted from [2], [4] and [12]. 
The SIR bounds of each user, γm,i and γM,i, are independent and uniformly distributed 
random variables in the interval [γmin, γthres] and [γthres, γmax], respectively; γthres ∈ [γmin, 
γmax] is a parameter. Here, we present results for the scenario, where γthres = 15. The 
random SIR bounds of the users are shown in Table 2. 

Table 1.  The list of parameters for the simulated single-cell CDMA system. 
M, total number of bits per frame 80 

L, number of information bits per frame 64 
W, spread spectrum bandwidth 3.84×106 Hz 

R, bit rate 30×103 b/s 
σ2, AWGN power at the receiver 2×10-13 W 

modulation technique non coherent FSK 
pmax, maximum power constraint 600 mW 

 



Table 2.  User SIR requirements in the simulations. 
User, i 1 2 3 4 5 6 7 8 9 10 
γm,i 4.67 5.72 14.26 10.83 14.81 6.67 6.40 8.38 6.51 1.42 

γM,i 28.27 26.01 33.73 45.63 45.99 36.95 44.68 43.26 48.66 48.38 

 
The metrics used for the evaluation of the proposed scheme are the following: (1) 

achieved utility, vi(q), (2) power with which users reach the BS, qi, (3) achieved SIR, 
γi, and (4) maximum achieved cell radius, di,max. Note that the utility vi(q) denotes the 
utility of user i, regardless of the associated path loss hi (see (7)). The maximum cell 
radius, di,max, is determined as the maximum distance from which the user may reach 
the BS transmitting with the power that corresponds to the NE or the NBS of the 
game. We assume a simple path loss model, i.e., hi = K1/di

4, where K1 = 0.097 [5], and 
di denotes the distance between user i and the BS. Given that a user may transmit with 
a power bounded by a maximum value pmax (see Table 1), the distance from which 
user i is capable of reaching the BS is also bounded, and given as follows: 

4 max1
max,

i
i q

pK
d = , (8) 

where qi is equal to qi
* or iq~  for the NE or the NBS point, respectively. 
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Fig. 2. Utility level at the NE and the 
NBS.  

Fig. 3. Received power at the NE and the 
NBS. 
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Fig. 4. SIR at the NE and the NBS. Fig. 5. Maximum cell radius at the NE and 

the NBS. 
 
Fig. 2 shows the achieved levels of utility of each user at the NE and NBS. Owing 

to the Pareto dominance of the NBS over the NE of the game, NBS utility values are 
expected to be larger than the NE ones. Indeed, we observe that the proposed NBS-
based scheme attains significantly larger utility values compared to the non-



cooperative scheme. Fig. 3 shows the values of the received power from each user at 
the BS for the NE and NBS. Observe that the received power at the NE is signifi-
cantly higher than the corresponding received power at the NBS. In other words, 
operating at the NBS point may yield significant energy savings. 

Fig. 4 shows the achieved SIR results. Note that the NBS SIR is inferior to the NE 
SIR. Note, however, that this deterioration is rather minor compared to the respective 
energy savings achieved due to the corresponding transmission power reduction (see 
Fig. 3). Fig. 5 shows the maximum cell radius results, where we observe a consider-
able increase in the maximum cell radius, at the NBS compared to the NE.  

Another important issue is the achieved performance versus the number of users. 
We assume that the number of users ranges between two and eleven (the capacity 
limit of the system described in Table 1), and that all users have identical SIR re-
quirements. We examine the same metrics as above (i.e., achieved utility, received 
user power at the BS, achieved SIR, and maximum cell radius). In Figures 6, 7, 8, and 
9, we observe that the NBS-based scheme outperforms the NE-based one for every 
user population. Also, observe that as the number of users increases and the system 
reaches its capacity limits, the performance improvements become more significant. 
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Fig. 6. Utility level at the NE and the 
NBS. 

Fig. 7. Received power at the NE and 
the NBS. 
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Fig. 8. SIR at the NE and the NBS. Fig. 9. Maximum cell radius at the NE 
and the NBS. 

7   Conclusions and Future Work 

In this dissertation, we have studied a set of resource management problems in wire-
less-mobile and distributed computer systems. The basic axis of the dissertation has 
been the methodology for the modeling and solution of the discussed problems, where 
competition and mutual interference is their common characteristic. Specifically, we 
have used Game Theory and other economically inspired methodologies for their 
mathematical modeling, which led in turn to clear optimization targets, regarding the 
operation of each of the studied systems. 



An indicative example is the CDMA power control problem, presented in the pre-
vious sections. We have formulated the problem as a non-cooperative game, and, 
then, used the NBS, which (contrary to the NE) provides Pareto optimal and fair (ac-
cording to the NBS fairness definition) outcomes. The NBS is the solution of an op-
timization problem, for the determination of which we have introduced a numerical 
algorithm. 

Future research directions may derive based on each different problem studied in 
the context of the dissertation. For instance, regarding the CDMA power control pre-
sented here, in the future, we would like to extend our NBS-based solution to multi-
cell environments. Moreover, it would be interesting to apply alternative cooperative 
solutions, apart from the NBS, as, for example, Shapley value and compare the bene-
fit stemming from each approach to the discussed problem. 
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