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Abstract. A Pervasive Computing system has to deal with the contex-
tual information (context), which characterizes the current situation of
the involved entities (e.g., users, mobile devices). There are different sci-
entific fields studying the various problems that may arise, depending on
the aspect from which they are observed. This thesis studies issues related
to the capability of a pervasive system on adapting its behavior to the in-
volved entities context / situation. Specifically, the interaction between
the user and such system has to be less intruding as long as the latter
recognizes the current user situation and adapts its functions accordingly.
Hence, the human intervention is kept to a minimum since such system is
designed to bother the user as little as possible. The thesis focuses on con-
text knowledge representation and management as well as on algorithmic
issues related to contextual information dissemination. Such issues com-
prise the concept of Context Awareness. Problems that have been studied
include context representation, interpretation, sensing, discovery and in-
ference along with the capacity of a system to reason about context and
perform certain (pre)defined tasks in advance. Through approximate rea-
soning (Fuzzy Sets Theory), bio-mimetic dissemination algorithms (Epi-
demical Spreading) and the appropriate derived algorithms the aforemen-
tioned problems have been modeled and studied. Consequently, in this
thesis, the semantic enhancement of context, context fusion / inference,
context adaptation, collaborative context awareness and context discovery
issues have been clearly shown.

Key words: Pervasive computing, context awareness, approximate rea-
soning, epidemical algorithms.

1 Dissertation Summary

1.1 Context and Situation Awareness

In the recent years we have witnessed rapid progress in the pervasive computing
paradigm. Pervasive computing is emerging as the future computing paradigm
in which infrastructure and services are seamlessly available anywhere and any-
time. This paradigm is the result of recent research and technological advances
! Dissertation Advisor: Eystathios Hadjiefthymiades, Associate Professor
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in wireless and sensors networks, distributed systems, mobile computing, auto-
nomic and context-aware computing. In order to render a Context-Aware Ap-
plication (CAA) intelligent enough to support contemporary users everywhere
/ anytime and materialize the so-called ambient intelligence, information on the
present context of the user has to be captured and processed appropriately. Con-
text may refer to the user’s position, physical properties (e.g., temperature) or
other general parameters (e.g., the specific devices that the user carries). The
efficient management of contextual information requires detailed and thorough
modeling along with specific processing and inference capabilities.

Diverse pieces of context can appear (e.g., user is in her office, walking out-
door, driving a car) in which different user activities can be performed (e.g.,
attending a meeting, taking a break). A well-known definition of context is re-
ferred in [1], [9]: context is any information that can be used to characterize the
situation of an entity. An entity is a person, place or object that is considered
relevant to the integration between a user and an application, including the user
and the application themselves [10]. Context - Awareness (CA) is the ability of
a computing device to sense, interpret, and interact with aspects of a user’s en-
vironment. A context-aware application (CAA) has to be able to determine that
the user is involved in different situations at different times.

Situation - Awareness (SA) is considered as the particular kind of CA, where
situation is viewed as logically aggregated pieces of context as proposed in [2],
[3], [4] . SA is not restricted on location awareness, which means that a mere
determination of a geographical location and knowledge about that location is
only provided. The combination of sensor data with spatial knowledge leads to a
detailed representation of the environment, i.e., the current user situation. Situ-
ations are based on user activities in specific locations. The interaction between
the user and the mobile device would be made easier and less intruding, if the
latter recognized the current user situation and adapted its functions accord-
ingly. The human intervention must be kept to a minimum since a CAA should
be designed to bother the user as little as possible. Devices that know more
about the user context are able to function efficiently and transparently adapt
to the current user situation, leading to the idea of the invisible computer. The
device autonomously learns and automatically suggests what actions the user
prefers in designated situations. This is a challenge, since a device should react
intelligently to everyday social situations [5].

The efficient extraction, fusion [13] and determination of relevant pieces of
context from diverse sources are a key issue in SA. SA is an abstraction that exists
within our minds, describing phenomena that we observe in humans performing
work in a rich and usually dynamic environment. The problem of handling possi-
bly imperfect observations from multiple sources includes the problems of infor-
mation fusion and multiple sensor data fusion. However, such vague information
may lead to inexact context reasoning [7], [11]. Specifically, vague context implies
vague situation estimation and, thus, approximate reasoning over situations and
actions. Approximate reasoning is a critical process in situational computing be-
cause of (i) the lack of computational resources, (ii) the need for time-critical
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decision-making, and (iii) the possible lack of relevant training data. The differ-
ent kinds of imperfection can be handled through the frameworks of the Fuzzy
Set Theory and the Possibility Theory. However, the Fuzzy Logic (FL) –an al-
gebra on Fuzzy Sets– is appropriate for real-time decision-making allowing a
degree of uncertainty at the context estimation and decision making phase. FL
principles express human expert knowledge and facilitate the automated inter-
pretation of the estimation results. Allowing a degree of fuzziness not only at
the user situation estimation aspect but also at decision making (e.g., triggering
of actuation rules) makes a CAA more robust, flexible and capable of handling
user reactions.

1.2 Collaborative Context Awareness

In our everyday life, we frequently experience cases where persons group together
(e.g., in museums, university classes). Typically, such persons share (at least tem-
porarily) common interests and preferences (e.g., group of persons interested in
the same exhibition or painting). Group members experience similar situations
and many of their mobile computing devices (nodes) sense and process identical
contextual information. The described setting, which is not so rare, introduces
the need for treating CA in a collaborative manner. Collaboration denotes the
synergy between the nodes of group members (neighbors) for sensing, interpret-
ing and sharing contextual information (e.g., node A misses a certain contextual
input which is captured and sent by node B, node C interprets contextual input
that is disseminated by node D).

Important definitions related to collaborative context awareness are the fol-
lowing: Collaborative Context-Awareness (CCA) implies the understanding of
the context of others that, consequently, provides a more enhanced context for
an individual as proposed in [14], [8]. Collaboration among nodes improves con-
text quality by providing a primary context approximation for further refinement
at each node. Collaborative context is the context acquired through (proximity)
networking between sensors and higher-level devices and can be used to increase
the common understanding about the surroundings, improve context availability
and context reliability (through the acquisition of additional / supplementary
context from neighbors). A Collaborative Context-Aware System (CCAS) com-
prises a group of nodes capable of sensing, fusing, inferring and intercommu-
nicating in order to achieve common or similar context. The CCA framework
yields robust CA applications, i.e., immune to transient sensor failures or con-
textual information disturbances. Moreover, significant economies of scale can
be achieved, i.e., not all nodes need to carry the same, overlapping set of sen-
sors or expensive, fault resistant components. Missing or erroneous contextual
data is substituted by other nodes, thus, leading to truly dependable applica-
tions. Overall, the benefits stemming from the introduction of CCA remind us
the Belgian motto L’ union fait la force, denoting that, unity makes strength.
A CCA application relies on information dissemination algorithms for context
sharing. In this article, we propose a scheme for disseminating and, collabora-
tively, determining context and inferred context within a CCAS. The proposed
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scheme derives from an epidemiological model. We found great similarities be-
tween the epidemiological model and the internals of a CCAS, mostly in the
abstractions of virus spreading, virus severity, virus interdependencies and pos-
sible trasmutations [12].

1.3 Prior Work

The idea of learning a system to adapt to future user intentions and reactions,
and deal with imprecise knoweldge and decision making in SA is quite novel. Sev-
eral situation models describe context by a set of roles / relations in a low-level
ontology [6] and infer the invovled situation of an entity. However, such models
do not adopt a learning scheme in order to adapt to the reactions of a user, do not
take into consideration imprecise sensor readings and do not perform adaptation
according to the user’s feedback. Moreover, dealing with a CCAS, several ap-
proaches have been proposed to model and simulate mono-epidemical spreading
in networks. In [15] the authors analyze a Markov process-based framework that
characterizes the spreading of epidemics through the SIS model and the impact
of the underlying topology on propagation.However, the concept of transmuta-
tion of an epidemic is not considered since there is no semantic processing (i.e.,
context inference and reasoning). The authors in [16] investigate the threshold of
a mono-epidemical propagation exploiting the eigenvalue of the adjacency ma-
trix of the network. Our model generalizes the model in [16] investigating the
behavior of each epidemic, thus, in case of a mono-epidemical propagation our
results coincide with those in [16]. To the best of our knowledge, there is no
other application of epidemiological models to CCAS. Our model goes beyond
a simple epidemiological model and introduces the abstraction of stronger and
transmuted epidemics. The prior work however has not incorporated the concept
of aggravation and transmutation.

2 Results and Discussion

Due to space limitations, in this section we only present a bio-mimetic approach
of disseminating contextual information in a CCAS. Context refers to the current
values of specific parameters that represent a node’s activity (e.g., walking),
event (attending a lecture), environmental information (e.g., illumination) in a
specific place and time. Inferred context is the additional information that can be
deduced from the current sensed / determined context. In a CCAS, the epidemic
represents a piece of context (e.g., illumination measurement) or inferred context
(e.g., attendance of lecture) that is valid for a certain period of time and/or
within a specific location (e.g., for a certain number of hops). A group of nodes
can share and exchange context, thus, forming the collaborative context for that
group. Nodes incapable of inferring (new) context can acquire such knowledge
once context transmutation takes place: if a collaborating node in a group has the
ability to infer context then it can disseminate it into the group, thus, augmenting
the current common knowledge, i.e., the collaborative context for that group.
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This reciprocity guarantees a modus operandi for a network of autonomous nodes
working under the model for collaboratively sensing, determining, sharing and,
inferring context.

Epidemiological models assume that individuals go through a series of states
at a certain set of rates. In the Susceptible-Infected -Susceptible (SIS) epidemio-
logical model, infectious individuals are those that have contracted the epidemic
and can infect the remaining susceptible ones. After a period of time, infected
nodes may recover from the epidemic and then transit to the Susceptible state.
In that state, they can get infected again, thus, in the limit, any individual con-
stantly switches between the two states: Susceptible – Infected. Therefore, the
SIS model assumes that, a node in the Infected state cannot be re-infected by
another stronger epidemic. We extend the SIS model at that point, i.e., an in-
fected node can be re-infected with an epidemic through transmutation resulting
to the aggravation of the node’s condition; the node is more infectious and it
may infect neighboring nodes with context or inferred context (see Figure 1). On
the other hand, the cure of an infectious node refers to the improvement of its
condition. The abstraction of cure indicates that context is no longer valid (e.g.,
contextual information is either obsolete or beyond the scope of the CAA appli-
cation). We call the extended biomimetic model Susceptible – a-Infected – Sus-
ceptible (SaIS), where a stands for aggravation. The SaIS model is, essentially,

I I SSI

ISI

infection curecure
time

time

full cure infection aggravation partial cure full cure

I’
I

re-infection

Fig. 1. The state transitions of the SIS and the proposed SaIS model. A possible
transmutation of an epidemic may result in the aggravation of the condition of a certain
node.

an epidemic algorithm but unlike previous schemes for broadcast (e.g., Flood-
ing), the model deals with numerous dependent pieces of context, referred to as
multi-epidemical propagation. Each piece of context is regarded as a different
epidemic and transmuted epidemics may spread in the network simultaneously.
The strongest epidemic has the potential to infect a large portion of susceptible
nodes, contrary to weaker epidemics, which infect a small portion of the group.
The proposed model is scalable w.r.t. the possible number of transmutations. In
the long run, portions of the population are infected with epidemical transmu-
tations. It should be noted that, in the SaIS model transmutations are assumed
to circulate in the network. This is totally different from the fact that several
independent epidemics (i.e., with no semantic relations among them) co-exist
in a network, as shown in the selective epidemical information dissemination.
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The semantic relations among epidemics are exploited by the involved nodes to
substitute, or complete, or infer new context.

2.1 Context Representation

The representation of context in each node poses a significant challenge. Model-
ing context is complicated due to the fact that different nodes value differently
their pieces of contextual information. Especially, in a CCAS, different types of
context might appear, for instance, the context of each node in a group (indi-
vidual context), the context of the group itself (collaborative context) and the
context of the task. Specifically, the context determined by a sender node might
be differently viewed / interpreted by the recipient node. This means that, the
collaborative context φ, which is collaboratively deduced by a group of nodes,
does not necessarily imply that all nodes of that group assume individually iden-
tical context. Instead, the context p for every node can be at least as specific as
φ notated as p ! φ. This reaffirms the selectivity attribute of the SaIS model, in
which, each node obtains the precise information it requires. Nevertheless, each
node can, further, locally refine contextual information independently of other
nodes. A hierarchical knowledge representation scheme is adopted for context.
The dependency φ ! p is interpreted according to the CCA application, for in-
stance, (i) φ refers to more recently determined (up-to-date) context than p, (ii)
φ represents more specific / detailed context than p, thus, one deduces p from φ,
or (iii) φ is of better quality context w.r.t a certain indicator (quality indicator,
accurate measurement) than p. In this article, we focus on the generalization /
specialization relation in order to illustrate the concept of context aggravation
and transmutation.

Let P(n) be the finite set, P(n) = {p1(n), . . . , pk(n)}, of k contextual pa-
rameters pi(n), i = 1, . . . , k of level n ≥ 0, which assume values oi in the domain
Dompi . A contextual parameter pi(n) is instantiated at time t if, at time t, a
value oi ∈ Dompi is assigned to pi(n), that is pi(n) = oi. Context of n-level is the
set p(n) = {o1, . . . , ok} of instantiated contextual parameters at time t. The set
of contextual parameters belonging to P(0) (0-level) represents non-inferred con-
text, called ground context; context that cannot be deduced by other parameters
belonging to P(0) (e.g., sensor readings, P(0) = {position, time, illumination}).
Consider the contexts p(n) and p(m), n $= m. Then, context completion of
p(n) with p(m) at time t is the update rule of the instantiated context p(n):
p(n∗) ← p(n) ∪ {o ∈ {p(n) ∪ p(m) \ p(n) ∩ p(m)}} with n∗ = max(n, m). As
long as the p(n∗) context is completed with additional contextual values, the
CCA application might be able to infer additional context. Consider the N -ary
relation f from a subset of the Cartesian product f ⊆ P(n1) × · · · × P(nN ).
If the f relation is a logical synthesis of instantiated contextual parameters at
time t then inferred context p(m) ∈ P(m) of m-level, m > 0, is the implica-
tion → of the conjunctive parameters pi(ni) ∈ P(ni), i = 1, . . . , N, ni < m.
The relation f = (p1(n1), . . . , pN (nN )) can be represented as the antecedent-
part of the implication → and the inferred context p(m) as the consequent-part.
The antecedent-part refers to the proposition pi(ni) = oi or simply pi = oi,
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oi ∈ Dompi . The implication → concludes p(m) of a higher level set with
m = max(ni) + 1, i = 1, . . . , N , that is,

(p1 = o1) ∧ . . . ∧ (pN = oN ) → p(m) (1)

The p(m) is the classification of the pattern {p1 = o1, . . . , pN = oN}, where the
elements pi = oi can be formed by context completion. Evidently, the higher the
value of m is the more information is conveyed by context. Details on a more
complex context inference can be found in [2], [3].

2.2 Context Reasoning

Consider the inferred contexts p(n) ∈ P(n) and q(m) ∈ P(m) of levels n < m,
and let A(p(n)) and A(q(m)), and op

i ∈ Dompi and oq
i ∈ Domqi , be the set of

antecedents and the values of p(n) and q(m) at time t, respectively. Then, in-
ferred context can be hierarchically structured forming transitive generalization
relations ! where the semantic interpretation is defined as the following equiva-
lence: A(p(n)) ⊆ A(q(m)) ∧ (op

i = oq
i ) ↔ q(m) ! p(n) with i = 1, . . . , |A(p(n))|.

Although p = p(n) represents more generic inferred context than q = q(m),
the opposite implication does not always hold true. According to the example
in Section I, φ ! p; a person attending a lecture in room R3 implies also that,
this person is located in that room. That is, a node i carrying p can be infected
with φ leading to the transmutation of p to φ . If Φ(p) is the set of all pieces of
context that are more generic than p, that is, Φ(p) = {q|p ! q ∨ p = q}, then H
refers to the contextual taxonomy of pieces of context that are associated with
transitive !, that is, H = {p ! q|Φ(p) ∩ Φ(q) $= ∅ ∨ Φ(p) ⊇ Φ(q)}. A node i
can autonomoulsy reason about whether to accept incoming context sent by a
neighboring node j or not. Consider the hierarchy H = {φ ! q, q ! p, p ! ψ}
and the fact that node i is infected with p at time t. Then, node i: (a) is probable
to be infected with the stronger q at time t+1; context transmutation of p to q,
or (b) can infer p from q. In both cases, node i accepts context q and, thus, the
condition of node i is aggravated. If the non-occurrence of context p holds true
at time t, that is, ¬p → true, then the non-occurrence of context q is concluded,
i.e., ¬q → true1. This leads to the fact that, a node is partially recovered by any
epidemic φ ∈ H as long as φ ! q ! p and remains infectious with any epidemic
ψ ∈ H as long as q ! p ! ψ. In this case, the condition of node i is improved.
Finally, if Φ(φ) = ∅, node i fully recovers. During the (inferred) context propa-
gation across a group of nodes, it is assumed that, all the disseminated pieces of
context are valid (e.g., up-to-date) and the context propagation is constrained
to a certain number of hops (or to a certain geographical area), i.e., only the
nodes that are members of the same group can interoperate / collaborate.

1 If, however, both p and q can be either true or false (bivalent) and p can only be
true if q is true then modus tollens stands, i.e., ((q → p) ∧ ¬p)→ ¬q
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2.3 Multi-epidemical Context Dissemination

The considered problem refers to the calculation of the predicted threshold of
disseminating each piece of context pk in a CCAS. We solve this problem based
on an eigenvalue approach. We use a directed graph G(V,E) to represent a
multi-epidemical network, where V is the set of nodes and E is the set of edges.
The state of node i at time instant t is denoted by xi(t). This state assumes
K + 1 values which are represented by the K + 1-dimensional vectors pk =
[0, . . . , 0, 1, 0, . . . 0]" where all values are zero except the kth component (k =
0, 1, . . . ,K) which takes the value 1. A state of value pk denotes that the node
is in infectious status with epidemic pk of level k. Therefore, the most specific
information that is disseminated across a network refers to inferred context pK

of level K. A node with the most susceptible status is in a state p0 whereas a
node with the most infectious status is in a state pK . As node i can be infected
only by its neighbors, the state xi(t) is statistically dependent on the status
of its neighbors and xi(t − 1). Since the status of a neighbor also depends on
its own neighbors, the status of all nodes is statistically dependent in space
and time. Let the vector x(t) denote the status of all nodes at time t, that is
x(t) = [x1(t), x2(t), . . . , xM (t)]" where M is the number of nodes in the network.
It is clear that x(t) is a spatiotemporal process. The infection and recovery rates
βji and δlk, respectively, are very important in the epidemiological epistemic
domain. The infection rate βji denotes the birth rate of an epidemic from node
j ∈ Vi ⊂ V . Given the status of the neighbors of node i at time t and the fact
that node i may be infectious at level k, at the next time instant t + 1 node i
will be infectious at a higher level l with probability

Qkl = (1−
∑

m<k

δkm) ·



1−
∏

j∈Vi

(1− βji)xT
j (t)·pl





·
∏

j∈Vi

(1− βji)xT
j (t)·

P
m>l pm (2)

The second product, i.e.,
∏

j∈Vi
(1− βji)xT

j (t)·
P

m>l pm , expresses the probability
that all the nodes j ∈ Vi with an infection level greater than l will not infect node
i. The expression (1−

∑
m<k δkm)·

(
1−

∏
j∈Vi

(1− βji)xT
j (t)·pl

)
is the probability

that one or more nodes will infect node i at infection level l and node i will
not recover. By considering a Markov chain of unit time transition periods, the
transition probabilities that express the temporal dependence of states of node
i are: Full cure case:

P{xi(t + 1) = p0 |xi(t) = pk} = δk0 (3)

Partial cure - condition improvement case:

P{xi(t + 1) = pk |xi(t) = pl} = δlk, 1 ≤ k < l (4)

Infection - condition aggravation at a higher level k < l:

P{xi(t + 1) = pl |XVi(t) = xVi(t), xi(t) = pk} = Qkl (5)
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where, the random vector XVi(t) denotes the status of all neighbors of node i,
i.e., XVi(t) = [xj(t), j ∈ Vi] and xVi(t) is a realization of XVi(t). The epidemical
threshold for an epidemic pk or its transmutation denotes whether an outbreak
of pk occurs (pandemic) or not. Therefore, the SaIS model assumes that, the
node cannot become less prone after experiencing any type of infection, i.e.,
the infection rate remains constant. To this end we consider the Markov chain
consisting of M × (K + 1) states, where M is the number of network nodes and
K is the number of different epidemics. The states of this Markov chain are
denoted by Si,k, which means that node i is infected by epidemic pk. To simplify
our notation we use P k

i,t to denote the probability that node i is infected by pk

at time t, that is P k
i,t = P{xi(t) = pk}. Therefore, P k

i,t is the probability that the
Markov chain is in state Si,k at time instant t. Writing the balance equations
for states Si,k, 1 ≤ k ≤ K, we obtain

P k
i,t+1 =

∑

m<k

∑

xVi (t)

Qmk

∏

j∈Vi

P{xj(t)} · Pm
i,t

+
∑

xVi (t)

Qkk

∏

j∈Vi

P{xj(t)} · P k
i,t +

+
∑

m>k

δmkPm
i,t (6)

The first line expresses the transitions into state Si,k from neighboring infec-
tious nodes whose infection level is lower than k. The second line expresses
the transition from state Si,k to itself. In this case, no cure or infection at a
higher level should occur. The final sum expresses partial cure transitions from
a state of node i, Si,m, of higher infection level (m > k). To simplify the anal-
ysis we assume βji = β and we treat each case independently. We substitute
P 0

i,t = 1−
∑K

k=1 P k
i,t and neglect all terms that involve products of probabilities.

Using this approximation we obtain

P k
i,t+1 = β

∑

j∈Vi

P k
j,t + (1−

∑

l<k

δkl)P k
i,t +

∑

m>k

δmkPm
i,t (7)

Adopting the eigenvalue approach for solving such recursive equation we obtain
that the value θk = βP

l<k δkl
denotes the epidemical threshold of pk. Specifically,

pk diminishes with an inverse rate of the partial or full cure rates δk0, . . . , δk,k−1.
For the special case of a mono-epidemical spreading, i.e., K = 1, we obtain the
classical epidemical threshold for p1, that is, θ1 = β

δ [16]. Several conclusions
can be drawn. For instance, if the cure rates δkm depend on the state m, i.e.,
δkm = δm, or if the cure rates δkm depend on the transmutation level k − m,
i.e., δkm = δk−m then epidemic pk dies off if pm dies off. We state this result as
a corrolary in this thesis.
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3 Conclusions

In this thesis, we propose a model to reason about situational context and adapt
to user reactions. Such model considers multiple kinds of uncertainties as typ-
ically occurring in estimation and inference of situations. However, knowledge
related to situations cannot always lead to crisp classification due to its potential
vagueness. The uncertainties pervade both the knowledge of the types of situ-
ations and the observations of unknown situations to be detected / classified.
An ontological representation of situational context is also provided and approx-
imate reasoning is adopted not only for identifying context but also for triggering
actions based on the situation of the user and her past reactions / intentions.
The proposed approach copes with imprecise reasoning by taking into account
contextual similarity based on the degree of situational involvement and sys-
tem pervasiveness. All decision-making is performed in the framework of Fuzzy
Sets considering semantics (specialization, compatibility and disjoint properties)
and similarity. Moreover, in the thesis, we adopted a biomimetic model for con-
textual information dissemination across CCA applications. Inferred context is
handheld through a contextual hierarchy induced by generalization relations.
Making use of such relations, context might imply further new context resulting
in knowledge expansion across an ad-hoc network. The deduced knowledge can
be diffused among collaborating nodes leading to a CCAS. We introduce the
analogy between context and epidemic and extend the epidemiological model
SIS to the SaIS, in the sense that: an infectious node can be re-infected by
a stronger epidemic or infer new context thus aggravating its condition and
can disseminate such epidemic by introducing the concept of transmutation. A
stronger epidemic matches with an inferred context, denoting that each node can
be re-infected with a more detailed (or up-to-date, or of better quality) context
than that it has been recently infected. Hence, multiple semantically dependent
epidemics can circulate across the network. As a result, a node is able to au-
tonomously reason about whether to augment / infer additional knowledge or
not, thus, behave more intelligently. We have presented a spatio-temporal model
to study the dynamics of a multi-epidemical spreading. We study the impact
of the transmutation and show that the spatially independent model incorpo-
rates detailed topology information. We model the SaIS epidemical prevalence
through a Markov process. In the case of a mono-epidemical spreading (i.e., no
transmutation is permitted) we obtain the exact mathematical model studied
in [15]. In our generalized model, each epidemic assumes different spreading be-
havior and we show that such behavior may affect the spreading pattern of its
transmutations. We also investigate the epidemical decay through an eigenvalue-
based approach. We found the relations among the epidemical thresholds of
the transmuted epidemics and observed that an epidemic pk dies off once the
largest eigenvalue of the corresponding matrix of infection level k is less than
one. Such approach can be applied on arbitrary network graphs. In the case of
a mono-epidemical propagation, the resulted threshold derived from our model
is the classical epidemical threshold studied in [16]. Moreover, the behavior of
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the proposed multi-epidemical model is assessed through analysis and extensive
simulations on regular lattices and social networks.
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