
Development of computational methods for
biomedical data analysis in software and

hardware

Dimitris G. Bariamis?

Dept. of Informatics and Telecommunications, University of Athens

Abstract. The topic of this thesis is the development of novel methods
of biomedical data analysis in software and hardware. A novel system
has been developed for the extraction of second-order statistic texture
features from images and video in software and hardware. Additionally,
a novel FPGA-based architecture for the calculation of the logarithm
function has been developed, which achieves fast operation, high accu-
racy and low resource utilization. Finally, a novel method for automatic
microarray image gridding has been developed, based on the maximiza-
tion of the margin between consecutive rows or columns of microarray
spots.

1 Feature extraction system

Texture is an innate property of the natural objects and it is widely used for
video content description. The utility of texture feature extraction from video
extends to a wide range of advanced modern applications, such as segmentation
of objects in image sequences, object recognition and tracking of moving objects.

The Gray Level Cooccurrence Matrix (GLCM) features [1] describe the tex-
tural image content by encoding the second order statistical properties of tex-
ture. These features have been successfully utilized in a number of applications
including medical, remote sensing and industrial visual inspection applications.

GLCMs encode the gray level spatial dependence based on the estimation of
the 2nd order joint-conditional probability density function, which is computed
by counting all pairs of pixels of a video frame block at distance d having gray
levels i and j at a given direction θ. The cooccurrence matrix can be regarded
symmetric if the distribution between opposite directions is ignored, so the usual
values of the angular displacement are 0◦, 45◦, 90◦ and 135◦. We have considered
four GLCM features [1], namely angular second moment (f1), correlation (f2),
inverse difference moment (f3) and entropy (f4), which have been shown to
provide high discrimination accuracy.

In the following equations, pij is the ijth entry of the cooccurrence matrix,
µx, µy, σx, and σy are the means and standard deviations of the marginal prob-
abilities Px(i) and Py(j) obtained by summing up the rows or the columns of
matrix pij respectively.
? Dissertation advisor: Dimitris Maroulis, Associate Professor

f1 =
∑∑

p2
ij f2 =

∑∑
i · j · pij − µx · µy

σx · σy

f3 =
∑∑ 1

1 + (i− j)2
· pij f4 = −

∑∑
pij · log pij

(1)

The above calculations require floating point operations that would result
in high FPGA area utilization and low operating frequencies. To implement
the calculation of the features efficiently in hardware, we have reformulated the
equations by extracting the following five expressions (V1 to V5), where cij is
the ijth entry of the unnormalized cooccurrence matrix, Cx(k) is obtained by
summing up the rows of matrix cij and L1[i− j] is a small lookup table. In these
equations, the operations needed to calculate V1 to V5 are performed exclusively
in hardware using integer or fixed point arithmetic.

V1 =
∑∑

c2ij V2 =
∑∑

i · j · cij

V3 =
∑∑

cij · L1[i− j]

V4 =
∑∑

cij · log2 cij V5 =
∑

C2
x(k)

(2)

1.1 Hardware implementation

The hardware implementation is based on a Xilinx XCV2000E-6 FPGA, pro-
grammed in VHDL. The architecture of the implemented hardware is illustrated
in Fig. 1. The software iteratively feeds the FPGA board with four video frame
blocks per iteration. The FPGA reads each block’s pixels, calculates the GLCM
of each block and their respective feature vectors for the four directions and a
distance of one pixel, and stores them into memory bank 1 and 2.

The architecture consists of several units. The control unit coordinates the
functions of the other units and handles the communication with the host,
whereas the memory controllers handle the transactions between the FPGA
and the memory banks. The circular buffers implements a buffering scheme that
reads the pixels of the four blocks sequentially at a rate of four pixels per clock
cycle and produces pairs of gray level intensities (i, j) for each block and direction
considered, at a rate of 20 pixels per cycle.

A GLCM calculation unit (GCU) is used for the calculation of the GLCM of
a single block for a particular direction. It consists of an n-way set associative
array [2] with a capacity of Nc cells and the auxiliary circuitry needed for the
calculation of the GLCM. Set associative arrays can be used for efficient storage
and retrieval of sparse matrices, with a throughput of one operation per cycle.
The set associative array uniquely maps an input pair of 6-bit gray-level inten-
sities (i, j) to an address of the Nc-cell data array, which is implemented using
FPGA Block RAMs.

The FPGA architecture consists of:

& A control unit
& Three memory controllers (for memory banks 0, 1 and

2)
& A circular buffers unit
& Sixteen GLCM calculation units (GCUs)
& Four vector calculation units (VCUs)

3.1 Control Unit

The control unit coordinates the FPGA functions by
generating synchronization signals that coordinate the
memory controllers, the circular buffers unit, the GLCM
calculation units (GCUs) and the vector calculation units
(VCUs). It also handles the communication with the host,
by exchanging control and status bytes and by requesting or
giving up the ownership of the memory banks.

3.2 Memory Controllers

Three memory controllers handle the transactions between
the FPGA and the asynchronous memory banks. Each
controller is assigned to a specific memory bank, providing
a 32-bits synchronous interface through which the data can
be accessed for read/write operations.

3.3 Circular Buffers Unit

The pixels of each input block are read from memory bank
0 sequentially. During the calculation of the four GLCMs,

each pixel in the block is visited five times: First, the pixel
is regarded to be the center of a 3×3-pixel neighborhood,
and after a number of sequential reads the same pixel
becomes non-central in four other 3×3-pixel neighbor-
hoods at 0°, 45°, 90° and 135° directions from the central
pixel of each neighborhood. It is noted that the dimension
of the neighborhood is 3×3 because the distance between
the neighboring pixels for the calculation of the GLCM is
d=1. Moreover, only four out of the eight possible
neighborhoods are taken into account due to the symmetry
of the GLCM. In order to avoid multiple reads of the same
pixels, a circular buffers unit has been implemented,
reducing the external bandwidth requirements of the
proposed architecture.

Figure 2 illustrates a part of the input block. The squares
in the grid represent the pixels in the block. The pixels
marked with diagonal lines are stored in the circular buffer.
The circular buffer outputs five pixels, namely the central
pixel of the 3×3 neighborhood (black background) and its
four neighboring pixels for the four directions (gray
background). These 5 pixels are forwarded to the GCUs.
As shown in Fig. 2, in every clock cycle (A, B and C
snapshots) the last pixel is removed from the circular buffer,
the neighborhood is slided by 1 pixel to the right and a new
pixel is inserted into the buffer. The circular buffer contains
the pixels marked with diagonal lines in every consecutive
snapshot.

The circular buffers unit contains four circular buffers,
one for each input block of W × W dimensions. Each buffer
consists of W+3 6-bit cells, as shown in Fig. 2. Through the
use of buffering, the external read bandwidth is 4 pixels per

Memory Bank 0

Is
o

la
to

r
C

ir
cu

it

Is
o

la
to

r
C

ir
cu

it

GCU GCU GCU GCU VCU

GCU GCU GCU GCU VCU

Memory Bank 1

Memory Bank 2

Memory Bank 3

GCU GCU GCU GCU VCU

GCU GCU GCU GCU VCU

Memory

Controller

Memory

Controller

Memory

Controller

Memory

Arbiter

Control Unit
Control / Status

Bytes

Request / Grant

Bits

PCI bus

FPGA

Circular

Buffers

Unit
Memory Bank 0

Is
o

la
to

r
C

ir
cu

it

Is
o

la
to

r
C

ir
cu

it

GCU GCU GCU GCU VCUGCU GCU GCU GCU VCU

GCU GCU GCU GCU VCUGCU GCU GCU GCU VCU

Memory Bank 1

Memory Bank 2

Memory Bank 3

GCU GCU GCU GCU VCUGCU GCU GCU GCU VCU

GCU GCU GCU GCU VCUGCU GCU GCU GCU VCU

Memory

Controller

Memory

Controller

Memory

Controller

Memory

Arbiter

Control Unit
Control / Status

Bytes

Request / Grant

Bits

PCI bus

FPGA

Circular

Buffers

Unit

Circular

Buffers

Unit

Figure 1 The hardware architecture.

422 D. Maroulis et al.

Fig. 1. Overview of the hardware architecture

Each vector calculation unit (VCU) receives a GLCM generated by a GCU
and produces a vector V = [V1, V2, V3, V4, V5], which is stored to the mem-
ory banks through the memory controllers. The calculation of V1 to V5 is im-
plemented in five independent pipelined circuits, which include a number of
computation stages and a final accumulation stage. These stages involve table
lookup, logic or arithmetic operations such as multiplication, addition and sub-
traction. The logarithm function is approximated using an efficient piecewise
linear method, described in depth in section 2.

1.2 Results

The performance of the proposed system was experimentally evaluated using
standard test video clips, encoded in both CIF and QCIF formats. A high pro-
cessing rate can only be achieved when all vectors V of a video frame sequence
are calculated in hardware, which depends on the proper selection of the GCU
parameters Nc and n. Small blocks (W = 8) can be handled entirely in hardware
by set associative arrays of n ≥ 8 with Nc = 256. Larger blocks (W = 16) require
set-associative arrays of n ≥ 16 and Nc = 512. Therefore, the configurations of
the proposed system with (Nc, n) = (256, 8) and (512, 16) were implemented and
evaluated.

The implementation results per configuration are presented in Table 1. The
performance of the respective configurations in frames per second (fps) is pre-
sented in Table 2. The second table also includes the results of a Xilinx XC2V4000-
4 FPGA, demonstrating the performance increase achieved by using a next gen-
eration FPGA. The software performance was measured on two workstations
based on a 1GHz Athlon and on an Athlon XP 2800+ processor.

Table 1. Implementation results for Xilinx XCV2000E-6 FPGA

Nc n Slices Area Frequency BlockRAMs

256 8 11625 60% 43.95 MHz 24

512 16 16158 84% 35.75 MHz 40

Table 2. Performance in frames per second

Video W
XCV2000E-6 FPGA XC2V4000-4 FPGA Software

n = 8 n = 16 n = 8 n = 16 Athlon Athlon XP
Nc = 256 Nc = 512 Nc = 256 Nc = 512 1 GHz 2800+

CIF
8 74.44 35.89 115.64 56.46 5.3 8.57
16 - 133.01 - 209.24 21.2 32.38

QCIF
8 297.75 143.58 462.57 225.88 21.30 36.03
16 - 532.02 - 836.95 84.80 131.21

These results illustrate that the proposed FPGA-based system outperforms
general-purpose processors for GLCM feature extraction from video frame blocks.
Even though general purpose processors have a significant frequency advantage,
the parallel FPGA implementations result in higher overall performance. It is
also worth noting that the VirtexE FPGA (XCV2000E-6) retains its perfor-
mance advantage compared to the AthlonXP processor, even though the latter
was released four years later.

2 Logarithm calculation

The utility of the logarithm in computer science spans a broad spectrum of ap-
plications, many of which require a vast number of logarithmic operations per
second, while also requiring high accuracy. Hardware architectures that have
been proposed for the approximation of the base-2 logarithm include power se-
ries and polynomial methods, high-radix algorithms, lookup tables, the CORDIC
(Coordinate Rotation Digital Computer) algorithm [3] and linear approximation
methods [4–8]. Most commonly, CORDIC has been the algorithm of choice for
logarithm approximation in state of the art processing units. The piecewise lin-
ear approximation methods are based on Mitchell’s method [4] and aim at crude,
however fast approximation of the logarithm. The logarithm function is approx-
imated by two [5], four [6, 7] or six [8] consecutive linear segments.

2.1 Generalized piecewise linear approximation

Combining both computational efficiency and approximation accuracy, we de-
veloped a generalized piecewise linear approximation of the base-2 logarithm in
a fast and area-efficient way. This approach provides the versatility of using an

arbitrary number of segments, rather than a small fixed number of segments used
in the state of the art architectures. The achieved approximation accuracy de-
pends on the number of segments used, which also affects the size of a ROM that
is used for storing the parameters that control the computation. These param-
eters can be adapted to any data set, further enhancing the achieved accuracy.
The implementation of the ROM using an FPGA BlockRAM allows the param-
eters to be updated without reconfiguration of the FPGA core, thus providing
the advantage of data set adaptability.

The generalized piecewise linear approximation approach involves three steps:

1. The integral part of the logarithm, li(x) = blog2(x)c, is determined by the
position of the Most Significant Bit (MSB) of the input number x.

2. The fractional part of the logarithm, i.e. lf (x) = log2(x)− li(x), is estimated
by linear approximation between the points (2n, n) and (2n+1, n+ 1), of the
function log2(x). The approximated fractional part is

lf (x) =
x− 2li(x)

2li(x)+1 − 2li(x)
=

x

2li(x)
− 1 (3)

3. In the third step, a new approximation l′f (x) of the fractional part of the
logarithm is derived as a piecewise linear function of lf (x), between the
points (2n, n) and (2n+1, n+ 1) using s linear segments of equal length. The
segment seg(x) to which x belongs is determined by the fractional part of
its logarithm: seg(x) = bs · lf (x)c. The new fractional part l′f (x) is:

l′f (x) = lf (x) +
(
cseg(x)+1 − cseg(x)

)
· (s · lf (x)− seg(x)) + cseg(x) (4)

The optimal parameters ci can be determined upon the data set used in a par-
ticular application by minimizing the approximation error E (Eq. 5), which
represents the weighted sum of the relative differences between the actual and
approximated values of the logarithm. The weight p(x) used for the calculation
is the Probability Mass Function (PMF) of the data set.

E =
∑

x

p(x) ·

∣∣∣∣∣
(
li(x) + l′f (x)

)
− log2(x)

log2(x)

∣∣∣∣∣ (5)

The generalized logarithm approximation architecture is implemented as a
fully pipelined circuit, in order to achieve a throughput of one result per clock
cycle. It consists of 6 pipeline stages and one dual-ported ROM. The ROM stores
the parameters ci in a b-bit wide fixed point representation and is implemented
on a dual-ported BlockRAM.

2.2 Results

Experiments were conducted to evaluate the performance of the proposed archi-
tecture with different datasets. There are several applications where the PMF of
the input number x is not uniform, such as the analysis of medical or biological

Table 3. Error E for piecewise lin-
ear methods for data with a uniform
PMF

Method Segments Error E

Mitchell [4] 1 3.992·10−3

SanGregory et al. [5] 2 1.888·10−3

Combet et al. [6] 4 1.106·10−3

Hall et al. [7] 4 1.650·10−4

Abed et al. [8]
2 1.106·10−3

3 6.748·10−4

6 2.277·10−4

Proposed method

2 6.539·10−4

16 6.826·10−6

128 1.001·10−7

1024 1.829·10−9

Table 4. Comparative implementation re-
sults for data with a uniform PMF

Method E s b Slices
Frequency

MHz

Hall et al. [7] 1.65·10−4 4 - 202 322.79

Proposed method

3.55·10−4 4 2 249 401.78

3.02·10−5 8 8 254 318.02

6.83·10−6 16 16 295 302.57

4.08·10−7 64 16 285 302.57

8.95·10−8 512 16 293 302.57

1.83·10−9 1024 24 329 288.27

CORDIC

1.36·10−4 - - 445 358.42

5.35·10−7 - - 1363 329.83

2.07·10−9 - - 2587 310.89

data. We have considered two such data sets, namely the logarithmic normaliza-
tion of the intensities of more than nine million microarray spots (Data Set 1)
and the estimation of the entropy of grey level co-occurrence matrices, involving
more than one billion logarithm calculations (Data Set 2). We have also consid-
ered several synthetic data sets based on the Gauss-Kuzmin, the uniform and a
number of normal distributions. The optimal set of the parameters ci for these
PMFs was calculated and the parameters were then loaded into the ROM of the
architecture.

The architecture was implemented on a Xilinx Virtex-5 FPGA (LX110T-3)
and was tested for several different configurations, with the number of linear
segments s ranging between 2 and 1024 and b ranging from 2 to 24 bits.

Table 3 shows the error E of the proposed method when adapted to data
with a uniform PMF. When using eight or more segments, the proposed method
significantly outperforms the other methods for all data sets evaluated. Table 4
shows the most characteristic of the implemented configurations of the proposed
architecture and the CORDIC core, sorted by the obtained approximation error
when used on the uniform PMF data set. It also includes the implementation
results for the simple linear approach proposed by Hall et al. [7], which has a
low slice utilization but can only achieve an approximation error in the order of
10−4.

It is worth noting that the approximation error for the proposed architec-
ture when adapted to Data Set 2 is up to 200 times smaller that the uniform
PMF data set, illustrating the significant gains in accuracy due to the data set
adaptability. Moreover, the proposed architecture can be implemented in signif-

icantly fewer slices than the CORDIC core for the same approximation error,
while operating at a similar frequency. The proposed architecture only requires
329 slices when E = 1.83 · 10−9, compared to 2587 slices for the CORDIC core
for a slightly higher error of E = 2.07 · 10−9.

3 Microarray gridding

The goal of a microarray experiment is the quantification of the expression of
the genes in a test sample compared to that of a reference sample. Such an ex-
periment involves a lab process that produces a high resolution greyscale digital
image, which consists of a matrix of blocks. Each block contains a number of rows
and columns of spots. The grey level intensity of each spot indicates the expres-
sion level of the respective gene. The gene expression levels are extracted from
microarray images in three steps, namely gridding, segmentation and intensity
extraction. Gridding involves the construction of a grid covering the microarray
image so that it isolates each spot into a distinct cell enabling the localization of
each spot. Being the first step in the microarray image processing, the process
of gridding has a significant impact on the following steps, and consequently on
the accuracy of a microarray experiment.

A gridding algorithm should be able to automatically grid images that in-
clude spots of various shapes, sizes and intensities, while being robust to noise
and artefacts introduced at a microarray preparation stage, as well as rotation
due to misplacements. The automatic operation prevents any user intervention
from affecting the microarray experiment, while also enabling higher processing
throughput by analyzing large amounts of microarray images. Only a few state
of the art methods have been proposed as providing fully automatic gridding,
but they have specific drawbacks, such as a requirement for prior knowledge
about the microarray image, specific image alignment or abundance of highly
expressed spots. The most accurate of these methods [9] provides a near optimal
gridding based on a genetic optimization process, however these optimization
processes require long processing times to converge.

3.1 Maximum margin gridding method

A novel method for automatic cDNA microarray gridding has been developed
based on a computationally efficient optimization approach. It is based on the
maximization of the margin between the consecutive rows and columns of the
microarray spots, which is implemented by training a linear maximum margin
classifier with an automatically detected subset of spots on the microarray image.
It is named Maximum Margin Microarray Gridding (M3G) and consists of the
following steps:

Rotation estimation The microarray image (Fig. 2a) is analyzed by the Radon
transform, which is applied to estimate the image rotation angle. In the trans-
formed image illustrated in Fig. 2b, the rotation angle θ of the microarray

M3G: Maximum Margin Microarray Gridding
!

!

!

!

"#$%&!

! !
'#(! ')(! '*(! '$(!

!

!
! !

'+(! ',(! '-(! '.(!

/0-!12!34+56!%,!4.+!57%5%6+$!8+4.%$9!'#(!:&5;4!80*7%#77#<!08#-+=!')(!"+6;>4!%,!4.+!"#$%&!47#&6,%78!'*(!?7+@57%*+66+$!08#-+=!'$(!

A+4+*4+$!65%46=!'+(!3+>+*4+$!65%46=!',(!A064#&*+!+6408#40%&!)+4B++&!7%B6!%,!65%46=!'-(!A+4+780(%&!%,!-70$!>0&+!#&$!'.(!C70$$+$!

80*7%#77#<!08#-+!

!

!" #$%&'()*)+&,%-'

D.+! 65%4! $+4+*40%&! 64+5! $06*;66+$! 0&! 4.+! 57+E0%;6! 5#7#-7#5.! 06! ,%>>%B+$!)<! #! 65%4! 6+>+*40%&! 57%*+66=! B.0*.! #086! 4%! 4.+!

7+8%E#>!%,! ,#>6+!65%46! 0&47%$;*+$!)<!&%06+!#&$!#74+,#*462! :&! 4.+!65%4!6+>+*40%&!64+5=! 4.+!#65+*4! 7#40%6!%,! 4.+! 7+*4#&->+6! 4.#4!

07;86*70)+!4.+!65%4!+$-+!50F+>6!#7+!,0764!+E#>;#4+$2!G%&60$+70&-!4.#4!4.+!0$+#>!65%4!6.#5+!06!*07*;>#7=!4.+!7+*4#&->+6!6.%;>$!

&%4!$+E0#4+!8;*.! ,7%8!)+0&-!6H;#7+=! 6%! 4.#4!+#*.! 7+*4#&->+!*%&4#0&6!%&><!%&+!80*7%#77#<!65%42!D.+7+,%7+=! 4.+! 7#40%!%,! 4.+!

60$+6! %,! +#*.! 7+*4#&->+!8;64!)+! *>%6+! 4%! ;&04<2! D.+&=! #! >%B+7!)%;&$! (.,-! #&$! #&! ;55+7!)%;&$! (./0! %,! 4.+! 65%4! 60I+6! #7+!

#>;>#4+$!6%!#6!4%!8#F080I+!4.+!6080>#704<!%,!4.+!65%4!60I+!$06470);40%&!4%!4.+!&%78#>!$06470);40%&2!D.+!65%46!4.#4!.#E+!60I+6!

%;4!%,!4.+!*#>*;>#4+$!)%;&$6!#7+!*%&60$+7+$!,#>6+!#&$!$06*#7$+$2!!

:&!%7$+7! 4%!H;#&40,<! 4.+! 6080>#704<!%,! 4.+!$06470);40%&!%,! 4.+!65%4!60I+6! 4%! 4.+!&%78#>!$06470);40%&=! 04!.#6! 4%!)+! 4#J+&! 0&4%!

#**%;&4!4.#4!4.+!65%4!60I+6!*#&!%&><!)+!5%6040E+=!0&!*%&47#64!4%!4.+!&%78#>!$06470);40%&!1'0K!="(!'LH2!M(!4.#4!#>6%!65#&6!0&4%!4.+!

&+-#40E+62!D.+!*%85#706%&!6.%;>$!4.+7+,%7+!)+!8#$+!4%!#!&%78#>!$06470);40%&!,%7!B.0*.!4.+!&+-#40E+!E#>;+6!#7+!+F5>0*04><!6+4!

4%!I+7%2!3;*.!#!$06470);40%&!1.'0K!2"(!'LH2!N(!*#&!)+!$+70E+$!)<!&;>>0,<0&-!4.+!57%)#)0>04<!%,!1'0K!="(!,%7!0OP!#&$!6*#>0&-!04!

#**%7$0&-><! 6%! 4.#4! 4.+! 4%4#>! 57%)#)0>04<! 7+8#0&6! +H;#>! 4%! ;&04<2! D.+! *%77+65%&$0&-! *;8;>#40E+! $06470);40%&6!3'0K!2"(! #&$!

!

!

!

!

"#$%&!

! !
'#(! ')(! '*(! '$(!

!

!
! !

'+(! ',(! '-(! '.(!

/0-!12!34+56!%,!4.+!57%5%6+$!8+4.%$9!'#(!:&5;4!80*7%#77#<!08#-+=!')(!"+6;>4!%,!4.+!"#$%&!47#&6,%78!'*(!?7+@57%*+66+$!08#-+=!'$(!

A+4+*4+$!65%46=!'+(!3+>+*4+$!65%46=!',(!A064#&*+!+6408#40%&!)+4B++&!7%B6!%,!65%46=!'-(!A+4+780(%&!%,!-70$!>0&+!#&$!'.(!C70$$+$!

80*7%#77#<!08#-+!

!

!" #$%&'()*)+&,%-'

D.+! 65%4! $+4+*40%&! 64+5! $06*;66+$! 0&! 4.+! 57+E0%;6! 5#7#-7#5.! 06! ,%>>%B+$!)<! #! 65%4! 6+>+*40%&! 57%*+66=! B.0*.! #086! 4%! 4.+!

7+8%E#>!%,! ,#>6+!65%46! 0&47%$;*+$!)<!&%06+!#&$!#74+,#*462! :&! 4.+!65%4!6+>+*40%&!64+5=! 4.+!#65+*4! 7#40%6!%,! 4.+! 7+*4#&->+6! 4.#4!

07;86*70)+!4.+!65%4!+$-+!50F+>6!#7+!,0764!+E#>;#4+$2!G%&60$+70&-!4.#4!4.+!0$+#>!65%4!6.#5+!06!*07*;>#7=!4.+!7+*4#&->+6!6.%;>$!

&%4!$+E0#4+!8;*.! ,7%8!)+0&-!6H;#7+=! 6%! 4.#4!+#*.! 7+*4#&->+!*%&4#0&6!%&><!%&+!80*7%#77#<!65%42!D.+7+,%7+=! 4.+! 7#40%!%,! 4.+!

60$+6! %,! +#*.! 7+*4#&->+!8;64!)+! *>%6+! 4%! ;&04<2! D.+&=! #! >%B+7!)%;&$! (.,-! #&$! #&! ;55+7!)%;&$! (./0! %,! 4.+! 65%4! 60I+6! #7+!

#>;>#4+$!6%!#6!4%!8#F080I+!4.+!6080>#704<!%,!4.+!65%4!60I+!$06470);40%&!4%!4.+!&%78#>!$06470);40%&2!D.+!65%46!4.#4!.#E+!60I+6!

%;4!%,!4.+!*#>*;>#4+$!)%;&$6!#7+!*%&60$+7+$!,#>6+!#&$!$06*#7$+$2!!

:&!%7$+7! 4%!H;#&40,<! 4.+! 6080>#704<!%,! 4.+!$06470);40%&!%,! 4.+!65%4!60I+6! 4%! 4.+!&%78#>!$06470);40%&=! 04!.#6! 4%!)+! 4#J+&! 0&4%!

#**%;&4!4.#4!4.+!65%4!60I+6!*#&!%&><!)+!5%6040E+=!0&!*%&47#64!4%!4.+!&%78#>!$06470);40%&!1'0K!="(!'LH2!M(!4.#4!#>6%!65#&6!0&4%!4.+!

&+-#40E+62!D.+!*%85#706%&!6.%;>$!4.+7+,%7+!)+!8#$+!4%!#!&%78#>!$06470);40%&!,%7!B.0*.!4.+!&+-#40E+!E#>;+6!#7+!+F5>0*04><!6+4!

4%!I+7%2!3;*.!#!$06470);40%&!1.'0K!2"(!'LH2!N(!*#&!)+!$+70E+$!)<!&;>>0,<0&-!4.+!57%)#)0>04<!%,!1'0K!="(!,%7!0OP!#&$!6*#>0&-!04!

#**%7$0&-><! 6%! 4.#4! 4.+! 4%4#>! 57%)#)0>04<! 7+8#0&6! +H;#>! 4%! ;&04<2! D.+! *%77+65%&$0&-! *;8;>#40E+! $06470);40%&6!3'0K!2"(! #&$!

!

!

!

!

"#$%&!

! !
'#(! ')(! '*(! '$(!

!

!
! !

'+(! ',(! '-(! '.(!

/0-!12!34+56!%,!4.+!57%5%6+$!8+4.%$9!'#(!:&5;4!80*7%#77#<!08#-+=!')(!"+6;>4!%,!4.+!"#$%&!47#&6,%78!'*(!?7+@57%*+66+$!08#-+=!'$(!

A+4+*4+$!65%46=!'+(!3+>+*4+$!65%46=!',(!A064#&*+!+6408#40%&!)+4B++&!7%B6!%,!65%46=!'-(!A+4+780(%&!%,!-70$!>0&+!#&$!'.(!C70$$+$!

80*7%#77#<!08#-+!

!

!" #$%&'()*)+&,%-'

D.+! 65%4! $+4+*40%&! 64+5! $06*;66+$! 0&! 4.+! 57+E0%;6! 5#7#-7#5.! 06! ,%>>%B+$!)<! #! 65%4! 6+>+*40%&! 57%*+66=! B.0*.! #086! 4%! 4.+!

7+8%E#>!%,! ,#>6+!65%46! 0&47%$;*+$!)<!&%06+!#&$!#74+,#*462! :&! 4.+!65%4!6+>+*40%&!64+5=! 4.+!#65+*4! 7#40%6!%,! 4.+! 7+*4#&->+6! 4.#4!

07;86*70)+!4.+!65%4!+$-+!50F+>6!#7+!,0764!+E#>;#4+$2!G%&60$+70&-!4.#4!4.+!0$+#>!65%4!6.#5+!06!*07*;>#7=!4.+!7+*4#&->+6!6.%;>$!

&%4!$+E0#4+!8;*.! ,7%8!)+0&-!6H;#7+=! 6%! 4.#4!+#*.! 7+*4#&->+!*%&4#0&6!%&><!%&+!80*7%#77#<!65%42!D.+7+,%7+=! 4.+! 7#40%!%,! 4.+!

60$+6! %,! +#*.! 7+*4#&->+!8;64!)+! *>%6+! 4%! ;&04<2! D.+&=! #! >%B+7!)%;&$! (.,-! #&$! #&! ;55+7!)%;&$! (./0! %,! 4.+! 65%4! 60I+6! #7+!

#>;>#4+$!6%!#6!4%!8#F080I+!4.+!6080>#704<!%,!4.+!65%4!60I+!$06470);40%&!4%!4.+!&%78#>!$06470);40%&2!D.+!65%46!4.#4!.#E+!60I+6!

%;4!%,!4.+!*#>*;>#4+$!)%;&$6!#7+!*%&60$+7+$!,#>6+!#&$!$06*#7$+$2!!

:&!%7$+7! 4%!H;#&40,<! 4.+! 6080>#704<!%,! 4.+!$06470);40%&!%,! 4.+!65%4!60I+6! 4%! 4.+!&%78#>!$06470);40%&=! 04!.#6! 4%!)+! 4#J+&! 0&4%!

#**%;&4!4.#4!4.+!65%4!60I+6!*#&!%&><!)+!5%6040E+=!0&!*%&47#64!4%!4.+!&%78#>!$06470);40%&!1'0K!="(!'LH2!M(!4.#4!#>6%!65#&6!0&4%!4.+!

&+-#40E+62!D.+!*%85#706%&!6.%;>$!4.+7+,%7+!)+!8#$+!4%!#!&%78#>!$06470);40%&!,%7!B.0*.!4.+!&+-#40E+!E#>;+6!#7+!+F5>0*04><!6+4!

4%!I+7%2!3;*.!#!$06470);40%&!1.'0K!2"(!'LH2!N(!*#&!)+!$+70E+$!)<!&;>>0,<0&-!4.+!57%)#)0>04<!%,!1'0K!="(!,%7!0OP!#&$!6*#>0&-!04!

#**%7$0&-><! 6%! 4.#4! 4.+! 4%4#>! 57%)#)0>04<! 7+8#0&6! +H;#>! 4%! ;&04<2! D.+! *%77+65%&$0&-! *;8;>#40E+! $06470);40%&6!3'0K!2"(! #&$!

(a) (b) (c) (d) (e)

!

!

!

!

"#$%&!

! !
'#(! ')(! '*(! '$(!

!

!
! !

'+(! ',(! '-(! '.(!

/0-!12!34+56!%,!4.+!57%5%6+$!8+4.%$9!'#(!:&5;4!80*7%#77#<!08#-+=!')(!"+6;>4!%,!4.+!"#$%&!47#&6,%78!'*(!?7+@57%*+66+$!08#-+=!'$(!

A+4+*4+$!65%46=!'+(!3+>+*4+$!65%46=!',(!A064#&*+!+6408#40%&!)+4B++&!7%B6!%,!65%46=!'-(!A+4+780(%&!%,!-70$!>0&+!#&$!'.(!C70$$+$!

80*7%#77#<!08#-+!

!

!" #$%&'()*)+&,%-'

D.+! 65%4! $+4+*40%&! 64+5! $06*;66+$! 0&! 4.+! 57+E0%;6! 5#7#-7#5.! 06! ,%>>%B+$!)<! #! 65%4! 6+>+*40%&! 57%*+66=! B.0*.! #086! 4%! 4.+!

7+8%E#>!%,! ,#>6+!65%46! 0&47%$;*+$!)<!&%06+!#&$!#74+,#*462! :&! 4.+!65%4!6+>+*40%&!64+5=! 4.+!#65+*4! 7#40%6!%,! 4.+! 7+*4#&->+6! 4.#4!

07;86*70)+!4.+!65%4!+$-+!50F+>6!#7+!,0764!+E#>;#4+$2!G%&60$+70&-!4.#4!4.+!0$+#>!65%4!6.#5+!06!*07*;>#7=!4.+!7+*4#&->+6!6.%;>$!

&%4!$+E0#4+!8;*.! ,7%8!)+0&-!6H;#7+=! 6%! 4.#4!+#*.! 7+*4#&->+!*%&4#0&6!%&><!%&+!80*7%#77#<!65%42!D.+7+,%7+=! 4.+! 7#40%!%,! 4.+!

60$+6! %,! +#*.! 7+*4#&->+!8;64!)+! *>%6+! 4%! ;&04<2! D.+&=! #! >%B+7!)%;&$! (.,-! #&$! #&! ;55+7!)%;&$! (./0! %,! 4.+! 65%4! 60I+6! #7+!

#>;>#4+$!6%!#6!4%!8#F080I+!4.+!6080>#704<!%,!4.+!65%4!60I+!$06470);40%&!4%!4.+!&%78#>!$06470);40%&2!D.+!65%46!4.#4!.#E+!60I+6!

%;4!%,!4.+!*#>*;>#4+$!)%;&$6!#7+!*%&60$+7+$!,#>6+!#&$!$06*#7$+$2!!

:&!%7$+7! 4%!H;#&40,<! 4.+! 6080>#704<!%,! 4.+!$06470);40%&!%,! 4.+!65%4!60I+6! 4%! 4.+!&%78#>!$06470);40%&=! 04!.#6! 4%!)+! 4#J+&! 0&4%!

#**%;&4!4.#4!4.+!65%4!60I+6!*#&!%&><!)+!5%6040E+=!0&!*%&47#64!4%!4.+!&%78#>!$06470);40%&!1'0K!="(!'LH2!M(!4.#4!#>6%!65#&6!0&4%!4.+!

&+-#40E+62!D.+!*%85#706%&!6.%;>$!4.+7+,%7+!)+!8#$+!4%!#!&%78#>!$06470);40%&!,%7!B.0*.!4.+!&+-#40E+!E#>;+6!#7+!+F5>0*04><!6+4!

4%!I+7%2!3;*.!#!$06470);40%&!1.'0K!2"(!'LH2!N(!*#&!)+!$+70E+$!)<!&;>>0,<0&-!4.+!57%)#)0>04<!%,!1'0K!="(!,%7!0OP!#&$!6*#>0&-!04!

#**%7$0&-><! 6%! 4.#4! 4.+! 4%4#>! 57%)#)0>04<! 7+8#0&6! +H;#>! 4%! ;&04<2! D.+! *%77+65%&$0&-! *;8;>#40E+! $06470);40%&6!3'0K!2"(! #&$!

!

!

!

!

"#$%&!

! !
'#(! ')(! '*(! '$(!

!

!
! !

'+(! ',(! '-(! '.(!

/0-!12!34+56!%,!4.+!57%5%6+$!8+4.%$9!'#(!:&5;4!80*7%#77#<!08#-+=!')(!"+6;>4!%,!4.+!"#$%&!47#&6,%78!'*(!?7+@57%*+66+$!08#-+=!'$(!

A+4+*4+$!65%46=!'+(!3+>+*4+$!65%46=!',(!A064#&*+!+6408#40%&!)+4B++&!7%B6!%,!65%46=!'-(!A+4+780(%&!%,!-70$!>0&+!#&$!'.(!C70$$+$!

80*7%#77#<!08#-+!

!

!" #$%&'()*)+&,%-'

D.+! 65%4! $+4+*40%&! 64+5! $06*;66+$! 0&! 4.+! 57+E0%;6! 5#7#-7#5.! 06! ,%>>%B+$!)<! #! 65%4! 6+>+*40%&! 57%*+66=! B.0*.! #086! 4%! 4.+!

7+8%E#>!%,! ,#>6+!65%46! 0&47%$;*+$!)<!&%06+!#&$!#74+,#*462! :&! 4.+!65%4!6+>+*40%&!64+5=! 4.+!#65+*4! 7#40%6!%,! 4.+! 7+*4#&->+6! 4.#4!

07;86*70)+!4.+!65%4!+$-+!50F+>6!#7+!,0764!+E#>;#4+$2!G%&60$+70&-!4.#4!4.+!0$+#>!65%4!6.#5+!06!*07*;>#7=!4.+!7+*4#&->+6!6.%;>$!

&%4!$+E0#4+!8;*.! ,7%8!)+0&-!6H;#7+=! 6%! 4.#4!+#*.! 7+*4#&->+!*%&4#0&6!%&><!%&+!80*7%#77#<!65%42!D.+7+,%7+=! 4.+! 7#40%!%,! 4.+!

60$+6! %,! +#*.! 7+*4#&->+!8;64!)+! *>%6+! 4%! ;&04<2! D.+&=! #! >%B+7!)%;&$! (.,-! #&$! #&! ;55+7!)%;&$! (./0! %,! 4.+! 65%4! 60I+6! #7+!

#>;>#4+$!6%!#6!4%!8#F080I+!4.+!6080>#704<!%,!4.+!65%4!60I+!$06470);40%&!4%!4.+!&%78#>!$06470);40%&2!D.+!65%46!4.#4!.#E+!60I+6!

%;4!%,!4.+!*#>*;>#4+$!)%;&$6!#7+!*%&60$+7+$!,#>6+!#&$!$06*#7$+$2!!

:&!%7$+7! 4%!H;#&40,<! 4.+! 6080>#704<!%,! 4.+!$06470);40%&!%,! 4.+!65%4!60I+6! 4%! 4.+!&%78#>!$06470);40%&=! 04!.#6! 4%!)+! 4#J+&! 0&4%!

#**%;&4!4.#4!4.+!65%4!60I+6!*#&!%&><!)+!5%6040E+=!0&!*%&47#64!4%!4.+!&%78#>!$06470);40%&!1'0K!="(!'LH2!M(!4.#4!#>6%!65#&6!0&4%!4.+!

&+-#40E+62!D.+!*%85#706%&!6.%;>$!4.+7+,%7+!)+!8#$+!4%!#!&%78#>!$06470);40%&!,%7!B.0*.!4.+!&+-#40E+!E#>;+6!#7+!+F5>0*04><!6+4!

4%!I+7%2!3;*.!#!$06470);40%&!1.'0K!2"(!'LH2!N(!*#&!)+!$+70E+$!)<!&;>>0,<0&-!4.+!57%)#)0>04<!%,!1'0K!="(!,%7!0OP!#&$!6*#>0&-!04!

#**%7$0&-><! 6%! 4.#4! 4.+! 4%4#>! 57%)#)0>04<! 7+8#0&6! +H;#>! 4%! ;&04<2! D.+! *%77+65%&$0&-! *;8;>#40E+! $06470);40%&6!3'0K!2"(! #&$!

!

!

!

!

"#$%&!

! !
'#(! ')(! '*(! '$(!

!

!
! !

'+(! ',(! '-(! '.(!

/0-!12!34+56!%,!4.+!57%5%6+$!8+4.%$9!'#(!:&5;4!80*7%#77#<!08#-+=!')(!"+6;>4!%,!4.+!"#$%&!47#&6,%78!'*(!?7+@57%*+66+$!08#-+=!'$(!

A+4+*4+$!65%46=!'+(!3+>+*4+$!65%46=!',(!A064#&*+!+6408#40%&!)+4B++&!7%B6!%,!65%46=!'-(!A+4+780(%&!%,!-70$!>0&+!#&$!'.(!C70$$+$!

80*7%#77#<!08#-+!

!

!" #$%&'()*)+&,%-'

D.+! 65%4! $+4+*40%&! 64+5! $06*;66+$! 0&! 4.+! 57+E0%;6! 5#7#-7#5.! 06! ,%>>%B+$!)<! #! 65%4! 6+>+*40%&! 57%*+66=! B.0*.! #086! 4%! 4.+!

7+8%E#>!%,! ,#>6+!65%46! 0&47%$;*+$!)<!&%06+!#&$!#74+,#*462! :&! 4.+!65%4!6+>+*40%&!64+5=! 4.+!#65+*4! 7#40%6!%,! 4.+! 7+*4#&->+6! 4.#4!

07;86*70)+!4.+!65%4!+$-+!50F+>6!#7+!,0764!+E#>;#4+$2!G%&60$+70&-!4.#4!4.+!0$+#>!65%4!6.#5+!06!*07*;>#7=!4.+!7+*4#&->+6!6.%;>$!

&%4!$+E0#4+!8;*.! ,7%8!)+0&-!6H;#7+=! 6%! 4.#4!+#*.! 7+*4#&->+!*%&4#0&6!%&><!%&+!80*7%#77#<!65%42!D.+7+,%7+=! 4.+! 7#40%!%,! 4.+!

60$+6! %,! +#*.! 7+*4#&->+!8;64!)+! *>%6+! 4%! ;&04<2! D.+&=! #! >%B+7!)%;&$! (.,-! #&$! #&! ;55+7!)%;&$! (./0! %,! 4.+! 65%4! 60I+6! #7+!

#>;>#4+$!6%!#6!4%!8#F080I+!4.+!6080>#704<!%,!4.+!65%4!60I+!$06470);40%&!4%!4.+!&%78#>!$06470);40%&2!D.+!65%46!4.#4!.#E+!60I+6!

%;4!%,!4.+!*#>*;>#4+$!)%;&$6!#7+!*%&60$+7+$!,#>6+!#&$!$06*#7$+$2!!

:&!%7$+7! 4%!H;#&40,<! 4.+! 6080>#704<!%,! 4.+!$06470);40%&!%,! 4.+!65%4!60I+6! 4%! 4.+!&%78#>!$06470);40%&=! 04!.#6! 4%!)+! 4#J+&! 0&4%!

#**%;&4!4.#4!4.+!65%4!60I+6!*#&!%&><!)+!5%6040E+=!0&!*%&47#64!4%!4.+!&%78#>!$06470);40%&!1'0K!="(!'LH2!M(!4.#4!#>6%!65#&6!0&4%!4.+!

&+-#40E+62!D.+!*%85#706%&!6.%;>$!4.+7+,%7+!)+!8#$+!4%!#!&%78#>!$06470);40%&!,%7!B.0*.!4.+!&+-#40E+!E#>;+6!#7+!+F5>0*04><!6+4!

4%!I+7%2!3;*.!#!$06470);40%&!1.'0K!2"(!'LH2!N(!*#&!)+!$+70E+$!)<!&;>>0,<0&-!4.+!57%)#)0>04<!%,!1'0K!="(!,%7!0OP!#&$!6*#>0&-!04!

#**%7$0&-><! 6%! 4.#4! 4.+! 4%4#>! 57%)#)0>04<! 7+8#0&6! +H;#>! 4%! ;&04<2! D.+! *%77+65%&$0&-! *;8;>#40E+! $06470);40%&6!3'0K!2"(! #&$!

!

!

!

!

"#$%&!

! !
'#(! ')(! '*(! '$(!

!

!
! !

'+(! ',(! '-(! '.(!

/0-!12!34+56!%,!4.+!57%5%6+$!8+4.%$9!'#(!:&5;4!80*7%#77#<!08#-+=!')(!"+6;>4!%,!4.+!"#$%&!47#&6,%78!'*(!?7+@57%*+66+$!08#-+=!'$(!

A+4+*4+$!65%46=!'+(!3+>+*4+$!65%46=!',(!A064#&*+!+6408#40%&!)+4B++&!7%B6!%,!65%46=!'-(!A+4+780(%&!%,!-70$!>0&+!#&$!'.(!C70$$+$!

80*7%#77#<!08#-+!

!

!" #$%&'()*)+&,%-'

D.+! 65%4! $+4+*40%&! 64+5! $06*;66+$! 0&! 4.+! 57+E0%;6! 5#7#-7#5.! 06! ,%>>%B+$!)<! #! 65%4! 6+>+*40%&! 57%*+66=! B.0*.! #086! 4%! 4.+!

7+8%E#>!%,! ,#>6+!65%46! 0&47%$;*+$!)<!&%06+!#&$!#74+,#*462! :&! 4.+!65%4!6+>+*40%&!64+5=! 4.+!#65+*4! 7#40%6!%,! 4.+! 7+*4#&->+6! 4.#4!

07;86*70)+!4.+!65%4!+$-+!50F+>6!#7+!,0764!+E#>;#4+$2!G%&60$+70&-!4.#4!4.+!0$+#>!65%4!6.#5+!06!*07*;>#7=!4.+!7+*4#&->+6!6.%;>$!

&%4!$+E0#4+!8;*.! ,7%8!)+0&-!6H;#7+=! 6%! 4.#4!+#*.! 7+*4#&->+!*%&4#0&6!%&><!%&+!80*7%#77#<!65%42!D.+7+,%7+=! 4.+! 7#40%!%,! 4.+!

60$+6! %,! +#*.! 7+*4#&->+!8;64!)+! *>%6+! 4%! ;&04<2! D.+&=! #! >%B+7!)%;&$! (.,-! #&$! #&! ;55+7!)%;&$! (./0! %,! 4.+! 65%4! 60I+6! #7+!

#>;>#4+$!6%!#6!4%!8#F080I+!4.+!6080>#704<!%,!4.+!65%4!60I+!$06470);40%&!4%!4.+!&%78#>!$06470);40%&2!D.+!65%46!4.#4!.#E+!60I+6!

%;4!%,!4.+!*#>*;>#4+$!)%;&$6!#7+!*%&60$+7+$!,#>6+!#&$!$06*#7$+$2!!

:&!%7$+7! 4%!H;#&40,<! 4.+! 6080>#704<!%,! 4.+!$06470);40%&!%,! 4.+!65%4!60I+6! 4%! 4.+!&%78#>!$06470);40%&=! 04!.#6! 4%!)+! 4#J+&! 0&4%!

#**%;&4!4.#4!4.+!65%4!60I+6!*#&!%&><!)+!5%6040E+=!0&!*%&47#64!4%!4.+!&%78#>!$06470);40%&!1'0K!="(!'LH2!M(!4.#4!#>6%!65#&6!0&4%!4.+!

&+-#40E+62!D.+!*%85#706%&!6.%;>$!4.+7+,%7+!)+!8#$+!4%!#!&%78#>!$06470);40%&!,%7!B.0*.!4.+!&+-#40E+!E#>;+6!#7+!+F5>0*04><!6+4!

4%!I+7%2!3;*.!#!$06470);40%&!1.'0K!2"(!'LH2!N(!*#&!)+!$+70E+$!)<!&;>>0,<0&-!4.+!57%)#)0>04<!%,!1'0K!="(!,%7!0OP!#&$!6*#>0&-!04!

#**%7$0&-><! 6%! 4.#4! 4.+! 4%4#>! 57%)#)0>04<! 7+8#0&6! +H;#>! 4%! ;&04<2! D.+! *%77+65%&$0&-! *;8;>#40E+! $06470);40%&6!3'0K!2"(! #&$!

(f) (g) (h) (i)

Fig. 1. Steps of the proposed method: (a) input microarray image, (b) result of the Radon transform (c) counter-rotated input image, (d) binarized image, (e)
detected spots, (f) selected spots, (g) distance estimation between rows of spots, (h) determination of grid line and (i) gridded microarray image

the total probability remains equal to unity. The corresponding cumulative
distributions C(x; µ, σ) and Cm(x; µ, σ) are expressed by Eqs. 4 and 5
respectively.

N(x; µ, σ) =
1

σ
√

2π
e
− (x−µ)2

2σ2 (2)

Nm(x; µ, σ) =

8
<
:

0 x < 0
N(x; µ, σ)

1− C(x; µ, σ)
x ≤ 0

(3)

C(x; µ, σ) =
1

2

„
1 + erf

„
x− µ

σ
√

2

««
(4)

Cm(x; µ, σ) =

8
<
:

0 x < 0
C(x; µ, σ)− C(0; µ, σ)

1− C(x; µ, σ)
x ≤ 0

(5)

A measure of dissimilarity E between the discrete probability distribution
of the spot sizes and the continuous probability distribution Nm(x; µ, σ) can
be established based on their respective cumulative distribution functions.
The cumulative histogram of the spot sizes Ch(x) is defined as a function of
the histogram h(x) as shown in Eq. 6. The dissimilarity E is defined as the
total area between Ch(x) and Cm(x; µ, σ) as shown in Eq. 7.

Ch(x) =

xX

i=0

h(i) (6)

E =

+∞Z

0

|Ch(x)− Cm(x; µ, σ)|dx (7)

The optimal bounds smin and smax are calculated so as to minimize the
dissimilarity E defined above. By selecting the spots with sizes within the
range defined by these bounds, the resulting cumulative spot size distribution
closely resembles the normal distribution, as illustrated in the example of
Fig. 2. In this case, any spot that is smaller than smin=6.4 pixels or larger
than smax=17.1 pixels is considered false and discarded. It is evident that
the cumulative histogram of the selected spots almost coincides with the

cumulative normal distribution (Fig. 2d), whereas the original cumulative
distribution (Fig. 2c) differs substantially from the respective cumulative
normal distribution.

2.2 Distance estimation between consecutive rows and
columns

The optimal distance between spot rows is calculated by segmenting the
input microarray image into horizontal stripes with a height of dr pixels,
as shown in Fig. 1g, which are then averaged. If dr is selected so that it
is equal to the distance between the rows, the spots of all rows will be in
the same relative positions in the horizontal stripes, therefore they will be
highly overlapping in the resulting average stripe. Thus, the average stripe
will contain well defined spot areas, as illustrated in Fig. 3a. If a suboptimal
value of dr is selected, the spots will reside in different relative positions
in the horizontal stripes and will thus blend with the background in the
average stripe (Fig. 3b). The optimal value of dr is selected by maximizing
the standard deviation of the pixel intensities of the average stripe. The
standard deviation can be used as an effective measure of spot overlap, since
high values of the standard deviation indicate distinct dark and bright areas,
whereas low values of the standard deviation indicate abundant grey areas.
Thus, the standard deviation should be maximized with respect to dr in order
to obtain the optimal value of dr . The optimal column width dc is likewise
estimated using vertical stripes.

A wide range of dr values is tested in order to find the optimal value,
ensuring successful estimation without any user intervention. The standard
deviation σdr of the average stripes is calculated for all values of dr within
that range, using a small real-valued step. From all the tested values of dr ,
those that result in local maxima of the standard deviation are selected. These
local maxima are most often located on multiples of the optimal dr , since
such an estimation also results in highly overlapping spots. Sometimes, other
local maxima may be present, depending on the rotation of the image. For
each of the selected dr values, the mean of the resulting standard deviation
σdr in its neighbourhood is calculated. The value of dr that results in the
highest value of the σdr /σdr ratio is selected as optimal.

3

Fig. 2. Steps of the maximum margin microarray gridding method

image is estimated by locating the column with the highest mean brightness,
which is denoted by the arrow. The image is subsequently counter-rotated
by angle θ as illustrated by Fig. 2c.

Preprocessing The image is linearly normalized and quantized to 256 gray
levels. The edges of the spots are detected by the application of the Sobel
operator [10] on the normalized image. A threshold is determined automat-
ically using the Otsu method [11] in order to binarize the image and isolate
the sharpest edges that correspond to spots, as illustrated in Fig. 2d.

Spot detection All groups of consecutive white pixels are considered as resid-
ing on the same spot edge, therefore they are located and represented by a
rectangle that circumscribes a pixel group (Fig. 2e).

Spot selection The spots are filtered based on their aspect ratio and their
size, in order to remove false spots introduced by noise and artefacts. More
specifically, the bounds smin and smax of the valid spot sizes are determined,
so as to maximize the resemblance of the spot size distribution to the normal
distribution. The spots that have sizes out of these bounds are considered
false and discarded, reducing the effect of noise, artifacts and multiple merged
spots on the subsequent steps. The selected spots are illustrated in Fig. 2f.

Distance estimation The optimal distance between spot rows is calculated
by segmenting the input microarray image into horizontal stripes with a
height of dr pixels (Fig. 2g), which are then averaged. If dr is selected so
that it is equal to the distance between the rows, the spots of all rows will
be in the same relative positions in the horizontal stripes, therefore they
will be highly overlapping in the resulting average stripe. Thus, the average
stripe will contain well defined spot areas, which result in a high standard
deviation of the pixel intensities. For a suboptimal value of dr, the spots
will not significantly overlap, resulting in a lower standard deviation. The
optimal value of dr is thus selected by maximizing the standard deviation.
The distance between columns dc is likewise determined.

Maximum margin gridding Each selected spot is represented by a vector x̄i

that consists of the coordinates of the spot centre. These vectors are assigned
into distinct rows and columns, based on the distances dr and dc. Each pair
of consecutive rows or columns of spots can now be separated by a single
separating line, as shown in Fig. 2h. The optimal separating line is positioned
so as to maximize the margin between the rows or columns of the spots. For
a pair of rows numbered k and k + 1, the vectors that belong to row k or
to any row above it are assigned a class label ci = +1 and the vectors that
belong to row k+1 or to any row below it are assigned a class label ci = −1.
These vectors x̄i, along with their respective class labels ci are provided as a
training set to a linear Support Vector Machine (SVM) classifier [12], which
produces the maximum margin grid line.
The soft-margin variant of the SVM is employed, in order to diminish the
effects of misdetected spots that result from artefacts or noise. A cost pa-
rameter C adjusts the effect of outliers, namely large values of C result in a
grid line that is mostly determined by any outliers, whereas for smaller val-
ues of C any outliers are virtually ignored. A small fraction of these outliers
might have a shape and size similar to valid spots and could therefore pass
through the selection step without being discarded. The soft-margin SVM
ensures that such outliers will not have an impact on the produced grid lines.
The resulting grid is determined by finding the optimal grid line for each
pair of consecutive rows and columns of spots, as shown in Fig. 2i.

3.2 Results

Data set and evaluation method The data set used for the evaluation of the
developed method consists of 54 cDNA microarray images, from the Stanford
Microarray Database [13]. The images are TIFF files with a resolution of 1900×
5500 pixels and 16-bit grey level depth. Each image includes 48 blocks of 870
spots each, resulting in a total of 2,255,040 spots in the data set. These images
have been produced for the study of the gene expression profiles of 54 specimens
of BCR-ABL-positive and -negative acute lymphoblastic leukemia [14]. This data
set is a superset of the one used by the genetic algorithm approach proposed in
[9] and is accompanied by ground truth annotations regarding the positions and
the sizes of the spots. In order to produce directly comparable results with the
aforementioned methods, the same statistical analysis is performed. Each spot
was evaluated as being perfectly, marginally or incorrectly gridded when the
percentage of its pixels contained within its grid cell is 100%, more than 80%,
or less than 80% respectively.

Comparative evaluation The evaluation results of M3G and [9] are shown
in Table 5. Out of more than two million spots present in the data set, 98.3%
of the spots were perfectly gridded, while only 1.5% and 0.2% were marginally
and incorrectly gridded respectively. These results show that M3G achieves a
percentage of marginally and incorrectly gridded spots that is more than three

Table 5. Comparative evaluation of the gridding methods

Method Perfect Marginal Incorrect

M3G 98.3% 1.5% 0.2%

Zacharia et al. [9] 94.6% 4.8% 0.6%
M3G: Maximum Margin Microarray Gridding

(a) (b) (c)

Fig. 9. Details of successful gridding for microarray images with bright artefacts

4 CONCLUSION
In this paper we presented M3G, a novel method for gridding
cDNA microarray images without user intervention, based on the
maximization of the margin between consecutive rows and columns
of spots. The proposed method involves several preprocessing steps,
including a Radon-based rotation estimation for the microarray
image, as well as spot detection and selection. The distance between
rows and columns of spots is then estimated and the positions
of the selected spots are used to train a set of linear soft-margin
Support Vector Machine classifiers. The use of soft-margin SVMs
allows high tolerance to outliers that result from artefacts and noise,
whereas the use of redundant vectors in the SVM training set and
the automatic determination of the operating parameters facilitate
a substantial increase in gridding accuracy. Overall, the proposed
method achieves successful automatic gridding of cDNA microarray
images in the presence of irregular spots, noise and artefacts, as well
as image rotation.

The experimental results on reference DNA microarray images
containing more than two million spots showed that the proposed
method outperforms the most accurate state of the art method,
providing the potential of achieving perfect gridding for the vast
majority of the spots.

ACKNOWLEDGEMENT
Funding: This work was realized under the framework of the
Reinforcement Program of Human Research Manpower (PENED
2003 03ED324), co-funded 25% by the General Secretariat for
Research and Technology, Greece, and 75% by the European Social
Fund.

REFERENCES
Angulo, J. and Serra, J. (2003). Automatic analysis of DNA microarray images using

mathematical morphology. Bioinformatics, 19(5), 553–562.
Antoniol, G. and Ceccarelli, M. (2007). Microarray image gridding with stochastic

search based approaches. Image Vision Comput., 25(2), 155–163.

Bariamis, D. G., Maroulis, D., and Iakovidis, D. K. (2008). Automatic DNA microarray
gridding based on support vector machines. In BIBE, pages 1–5. IEEE.

Biodiscovery Inc. (2007). Imagene. http://www.biodiscovery.com/imagene.asp.
Blekas, K., Galatsanos, N. P., Likas, A., and Lagaris, I. E. (2005). Mixture model

analysis of DNA microarray images. IEEE Trans. Med. Imaging, 24(7), 901–909.
Brändle, N., Bischof, H., and Lapp, H. (2003). Robust DNA microarray image analysis.

Machine Vision and Applications, 15(1), 11–28.
Chang, C.-C. and Lin, C.-J. (2001). LIBSVM: a library for support vector machines.

http://www.csie.ntu.edu.tw/ cjlin/libsvm.
Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3),

273–297.
Eisen, M. B. (2002). Scanalyze. http://rana.lbl.gov/EisenSoftware.htm.
Fan, R.-E., Chen, P.-H., and Lin, C.-J. (2005). Working set selection using second

order information for training support vector machines. J. Mach. Learn. Res., 6,
1889–1918.

Giannakeas, N. and Fotiadis, D. I. (2009). An automated method for gridding and
clustering-based segmentation of cDNA microarray images. Computerized Medical
Imaging and Graphics, 33(1), 40–49.

Gonzalez, R. C. and Woods, R. E. (2006). Digital Image Processing. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 3rd edition.

Hartelius, K. and Carstensen, J. M. (2003). Bayesian grid matching. IEEE Trans.
Pattern Anal. Mach. Intell., 25(2), 162–173.

Hegde, P., Qi, R., Abernathy, K., Gay, C., Dharap, S., Gaspard, R., Hughes, J. E.,
Snesrud, E., Lee, N., and Quackenbush, J. (2000). A concise guide to cDNA
microarray analysis. Biotechniques, 29(3), 548–550.

Juric, D., Lacayo, N. J., Ramsey, M. C., Racevskis, J., Wiernik, P. H., Rowe, J. M.,
Goldstone, A. H., O’Dwyer, P. J., Paietta, E., and Sikic, B. I. (2007). Differential
gene expression patterns and interaction networks in bcr-abl-positive and -negative
adult acute lymphoblastic leukemias. J Clin Oncol, 25(11), 1341–1349.

Katzer, M., Kummert, F., and Sagerer, G. (2003). A markov random field model of
microarray gridding. In SAC, pages 72–77. ACM.

Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE
Transactions on Systems, Man and Cybernetics, 9(1), 62–66.

Platt, J. (1998). Sequential minimal optimization: A fast algorithm for training support
vector machines. Technical report, Microsoft, Inc.

Rueda, L. and Vidyadharan, V. (2006). A hill-climbing approach for automatic gridding
of cDNA microarray images. IEEE/ACM Trans. Comput. Biology Bioinform., 3(1),
72–83.

Stanford Microarray Database (2007). http://smd.stanford.edu/.
Theodoridis, S. and Koutroumbas, K. (2006). Pattern Recognition. Academic Press,

third edition edition.
Zacharia, E. and Maroulis, D. (2008). An original genetic approach to the fully

automatic gridding of microarray images. IEEE Trans. Med. Imaging, 27(6),
805–813.

7

Fig. 3. Details of successful gridding in images with bright artefacts

times smaller than the one achieved by the state of the art genetic algorithm
method. Additionally, M3G is nearly one order of magnitude faster than the
aforementioned genetic algorithm approach.

Figure 3 illustrates the gridding that results from the application of M3G
on three microarray images that include large and bright artefacts and includes
a detailed view of the area around each artefact. Even in the vicinity of the
artefacts, the gridding is not affected by their presence.

4 Conclusions

4.1 Feature extraction

A novel system capable of performing real-time texture analysis of video frames
has been developed. It is capable of calculating a total of 64 features compris-
ing of four 16-dimensional GLCM feature vectors from four video frame blocks
in parallel. The hardware is based on an FPGA and it is capable of perform-
ing fast integer and fixed point operations, which include the computation of
many GLCMs in parallel and the computation of GLCM features. An algorithm
for the approximation of the logarithm, which is required for the computation
of the entropy feature, has been included within the hardware architecture. A
buffering scheme ensures a high processing throughput, while maintaining low
memory bandwidth requirements. The software supports the hardware by man-
aging the video frame transfers from/to the hardware and by performing only
supplementary floating point operations.

The proposed system was tested on standard test video clips encoded in CIF
and QCIF formats, and demonstrated real-time performance for video texture
analysis. The evaluation procedure showed that the proposed system is capable
of performing GLCM feature computations much faster than software running
on modern workstations, thereby making it suitable for replacing software im-
plementations in systems requiring real time extraction of GLCM features from
video frames.

4.2 Logarithm calculation

A novel architecture for fast and area-efficient approximation of the base-2 loga-
rithm on FPGA devices has been developed. The novel features of this architec-
ture are the implementation of a generalized piecewise linear approximation of
the logarithm function using an arbitrary number of linear segments, the adapt-
ability to different data sets without requiring the reconfiguration of the FPGA
core and the exploitation of the available FPGA resources, such as BlockRAMs
and multipliers. It is thus an architecture that can be used in a variety of FPGA
designs as a generic component. It is also suitable for applications operating
with datasets of different probability mass functions, especially if timely critical
alterations of the datasets are involved.

Other logarithm approximation architectures implementing piecewise linear
approximation [5–8] use up to a maximum of 6 segments, whereas they cannot
be implemented using a larger number of segments, or adapted to the dataset
of each particular application. Compared with the CORDIC architecture, which
is used by state of the art processing systems for logarithm approximation, the
proposed architecture requires significantly less FPGA area to achieve the same
or higher accuracy. Moreover, it operates at a similar frequency to the CORDIC
core, while providing a throughput of one result per cycle. Thus, it can be embed-
ded into any FPGA-based application that requires fast and accurate logarithm
approximation.

4.3 Microarray gridding

A novel method has been presented for gridding cDNA microarray images with-
out user intervention, based on the maximization of the margin between consec-
utive rows and columns of spots. The proposed method involves several prepro-
cessing steps, including a Radon-based rotation estimation for the microarray
image, as well as spot detection and selection. The distance between rows and
columns of spots is then estimated and the positions of the selected spots are
used to train a set of linear soft-margin Support Vector Machine classifiers. The
proposed method achieves successful automatic gridding of cDNA microarray
images in the presence of irregular spots, noise and artefacts, as well as image
rotation. The experimental results on reference DNA microarray images contain-
ing more than two million spots showed that the proposed method outperforms
the most accurate state of the art method, providing the potential of achieving
perfect gridding for the vast majority of the spots.

Bibliography

[1] Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image
classification. IEEE Transactions on Systems, Man and Cybernetics 3(6)
(1973) 610–621

[2] Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative
Approach. Morgan Kaufmann (May 2002)

[3] Volder, J.E.: The CORDIC trigonometric computing technique. IRE Trans-
actions on Electronic Computers (8) (1959) 330–334

[4] Mitchell, Jr., J.N.: Computer multiplication and division using binary loga-
rithms. IRE Transactions on Electronic Computers 11 (Aug 1962) 512–517

[5] SanGregory, S., Siferd, R., Brother, C., Gallagher, D.: A fast, low-power
logarith approximation with CMOS VLSI implementation. In: Proceedings
of the Midwest Symposium on Circuits and Systems, IEEE (Aug 1999)

[6] Combet, M., Zonneveld, H., Verbeek, L.: Computation of the base two
logarithm of binary numbers. IEEE Transactions on Electronic Computers
14 (Dec 1965) 863–867

[7] Hall, E.L., Lynch, D.D., Dwyer, S.J.: Generation of products and quotients
using approximate binary logarithms for digital filtering applications. IEEE
Transactions on Computers 19(2) (1970) 97–105

[8] Abed, K.H., Siferd, R.E.: CMOS VLSI implementation of a low-power
logarithmic converter. IEEE Transactions on Computers 52(11) (2003)
1421–1433

[9] Zacharia, E., Maroulis, D.: An original genetic approach to the fully auto-
matic gridding of microarray images. IEEE Transactions on Medical Imag-
ing 27(6) (2008) 805–813

[10] Gonzalez, R.C., Woods, R.E.: Digital Image Processing. 3rd edn. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA (2006)

[11] Otsu, N.: A threshold selection method from gray-level histograms. IEEE
Transactions on Systems, Man and Cybernetics 9(1) (Jan 1979) 62–66

[12] Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3)
(1995) 273–297

[13] Stanford Microarray Database: (2007)
[14] Juric, D., Lacayo, N.J., Ramsey, M.C., Racevskis, J., Wiernik, P.H., Rowe,

J.M., Goldstone, A.H., O’Dwyer, P.J., Paietta, E., Sikic, B.I.: Differential
gene expression patterns and interaction networks in BCR-ABL-positive
and -negative adult acute lymphoblastic leukemias. Journal of Clinical On-
cology 25(11) (Apr 2007) 1341–1349

