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Abstract. This work investigates how channel parameter estimation er-
rors affect the performance of telecommunication systems. The telecom-
munication channel is (usually) modeled as a linear filter which is com-
prised of a fixed number of coefficients. In this sense, the term “channel
parameters” is used to denote either the total number of these coefficients
or the exact value of each one of them. Numerous algorithms/procedures
in the telecommunication literature assume exact knowledge of these pa-
rameters and subsequently build upon this knowledge to carry out a spe-
cific telecommunication task. In real world conditions, however, nothing
is known a priori and all such quantities must be estimated by means
of a suitable procedure. Nevertheless, any estimation procedure is sub-
ject to errors, which can cause severe degradation of the overall system
performance. The present study unfolds along two main axes: The perfor-
mance analysis (in terms of equalization quality) of a blind second order
statistics (SOS) equalization algorithm when channel order (i.e. num-
ber of channel coefficients) is unknown and the performance analysis (in
terms of sum-rate degradation) of the uplink of a multiuser multiantenna
system, when the exact values of channel coefficients for each user are
unknown. Using rigorous mathematical analysis based on perturbation
theory results together with simulation evidence, conditions and conclu-
sions are derived as to the instances where estimation errors lead (or do
not lead) to a significant system performance deterioration.

1 Introduction

A common trait of many telecommunication-related algorithms/procedures is
the assumption that various aspects of the telecommunication system are known
a priori. This (assumed) knowledge is the cornerstone upon which the algorithm
builds to complete the task it was designed for. In a practical scenario, though,
nothing is known a priori and all required knowledge must be gathered through
estimation. However, estimation is by nature prone to errors that make the
ground upon which the algorithms operate more or less shaky. Thus, the ability
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to quantify the effect of such errors on overall system performance is an issue of
paramount practical importance.

Performance analyses made to this end aim to unveil those algorithms whose
output will degrade by “just a little” in the presence of “small” estimation errors.
These algorithms will be called robust. On the other hand, non-robust algorithms
will collapse even in the presence of “small” estimation errors. Although both
types of algorithms are theoretically sound, only the robust ones are expected
to be of any practical use.

In the field of telecommunications, assumptions about knowledge of chan-
nel parameters are common. In an abstract formulation, the telecommunication
channel is frequently modeled as an FIR (Finite Impulse Response) filter with
a fixed number of coefficients. Thus the term channel parameters either denotes
the coefficients’ total number or the exact value of each coefficient, the specific
meaning being determined from context. Knowledge of channel parameters is ex-
ploited by equalization algorithms to construct equalizers, i.e. devices that strive
to compensate the ubiquitous telecommunication impairment of Intersymbol In-
terference (ISI). In addition, channel coefficient knowledge is necessary when the
calculation of capacity is required, i.e. the maximum rate at which information
can be transmitted through a given system.

In order to precisely quantify the deterioration in performance due to esti-
mation errors, extensive use of perturbation theory results has been made in the
framework of the present study. Broadly speaking, the topic of perturbation the-
ory is the study of the variations of a function as its arguments get perturbed,
i.e. changed by a “little” (the exact meaning of “little” is largely case depen-
dent). This is a very general definition that encompasses numerous problems.
For example if A−1 is the inverse of matrix A and is seen as a function of the
elements of A, then it is the duty of perturbation theory to determine how A−1

changes when A is perturbed by E. In other words if Ã = A+E how close would
Ã−1 and A−1 be?

The application of perturbation theory in assessing the effect of estimation
errors in telecommunication systems is a two step process: First an ideal case
is conceived. The ideal case is simply the case where exact knowledge of every
required parameter is assumed. This is clearly non-realistic and hence the name
ideal. The algorithm at hand copes well with its prescribed task in the ideal case.
The second step consists of taking into account the estimation inaccuracies. This
case is naturally named “realistic”. Algorithms may face serious problems due to
the inaccuracies in the realistic case. The role of perturbation theory is to relate
the realistic with the ideal case and assess how close to each other are, under the
assumption that the magnitude of the perturbation (i.e. the estimation errors)
is “small” (like earlier, the exact meaning of “small” is case dependent). The
outcome of this effort should reveal whether the algorithm at hand is robust or
not, as previously discussed.

Based on the arsenal of pertubation theory, the first part of the study focuses
on the equalization of SIMO (Single Input Multiple Output) systems. SIMO
systems are modeled as parallel channels (also known as subchannels) that are



driven by a common input and arise in cases where receivers oversample the
channel output at a rate that is an integer multiple of the transmission symbol
rate (also known as baud rate) and/or are equiped with multiple receive antennas.
The role of the equalizer is to appropriately process the outputs of the parallel
channels in order to estimate in the best possible way their common input. The
equalizers originally proposed in [1] are investigated. These equalizers have the
following properties:

– They minimize the mean square error (MMSE) between transmitted and
estimated symbols.

– The equalizers are constructed without relying on the help of training se-
quences. Thus, they belong in the so called blind equalization regime.

– Their construction is based solely on channel output second order statistics
(SOS), i.e. correlation, covariance matrices.

The equalizer construction method described in [1] assumes a priori knowledge
of channel order, i.e. it requires that the number of taps (coefficients) of each
subchannel be known in advance. Of course in a real world environment such
knowledge can only be acquired through estimation. In the case of microwave
links, subchannels are comprised of a few “large” taps while all others are much
smaller. In such a context, channel order estimation can be tricky. This study
thoroughly assesses the effect of the estimated channel order on equalization qual-
ity. The analysis along with its results and conclusions is reviewed in section 2.

The second leg of the study focuses on capacity issues of telecommunication
systems. In particular the uplink of a wireless, multiuser, multiantenna system
is examined. The scenario assumes many users who want to communicate simul-
taneously with a common base station (also known as uplink communication).
Both the base station and users are equipped with multiple antennas as it has
been proven in [2] that this choice leads to systems with increased capacity. The
use of multiple antennas raises the issue of optimal transmission signal design.
The transmitted signals must be designed in such a way that the sum-rate (i.e.
the collective rate of all users) is maximized, therefore achieving system capacity.

The necessary condition of optimality is described in [3]. Under the assump-
tions that channels of all users change slowly (slow fades) so that they can be
considered fixed for the duration of a transmission block, are i.i.d. distributed
and the number of users is much greater than the number of antennas at the
base station then almost all users should employ beamforming to achieve system
capacity.

Beamforming is a simple transmission technique by which the transmitted
signal is of the form x[n] = s[n]×w, where s[n] denotes the transmitted symbol at
discrete time instant n and w is a weight vector, whose i-th component pertains
to the i-th transmission antenna. Vector w is known as beam vector.

If all users employ beamforming (instead of almost all) then it can be ob-
served by simulation ([3]) that the sum-rate at the uplink approximates system
capacity. This is the kick-off point of this study. Each user makes use of a differ-
ent beam vector, whose computation is based on the knowledge of the respective



channel. As thoroughly explained earlier this knowledge can only arise from es-
timation procedures. This study aims at (and succeeds in) computing the mean
sum-rate reduction due to estimation errors in the channels of users as a function
of channel estimation error covariance matrix. Due to the short nature of the
present paper, this second leg of the dissertation will not be further analyzed.

2 Blind, second order statistics (SOS) equalization

2.1 Channel model and basics

Let a discrete time system consist of p parallel, linear, FIR filters (subchannels),
each one of order M (i.e. M + 1 taps long) driven by a common input. At
the output of each subchannel white noise of equal power is added. This is a
generic SIMO model1. Let s(n) denote the scalar common input to the system
at discrete time n and x(n) the p-component vector denoting the output at
the same instant. The input-output relation is given by the convolution: x(n) =∑M

i=0
his(n−i), where hi is the p-component vector grouping the i-th coefficient

of each subchannel. By stacking the L + 1 most recent outputs, vector XL(n) =
[x(n)T · · ·x(n − L)T ]T can be constructed. This vector is compactly expressed
as:

XL(n) = T L(HM )sL+M (n) + wL(n), (1)

by defining the p(L+1)×(L+M+1) generalized Sylvester matrix (aka “filtering
matrix”)

T L(HM ) =




h0 · · · · · · hM

. . .
. . .

h0 · · · · · · hM


 ,

vector sL+M (n) = [s(n) · · · s(n−L−M)]T and vector wL(n) = [w(n)T · · ·w(n−
L)T ]T , where w(n) is the p-element vector grouping the noise samples at time
instant n. Vector HM = [h(0)T · · ·h(M)T ]T groups the taps of all subchannels.

A (linear) equalizer is a set of p linear, FIR filters of order L each, connected
serially to the SIMO system. As a result, the constituent filters of the equalizer
are arranged in a MISO (Multiple Input Single Output) setting. All p filter out-
puts in the set are added to yield the single equalized output z(n). z(n) should
approximate the input s(n) (or a delayed version thereof) in some sense. The
mode where equalizer coefficients are chosen so that E{‖z(n)− s(n − i)‖2

2} is
minimized is known as minimum mean square equalization (MMSE) equaliza-
tion. If equalizer coefficients are properly placed in vector gL,i then the equalized
output z(n) can be expressed as z(n) = gH

L,i XL(n). The desired gL,i can be com-
puted by solving the Wiener-Hopf equation:

E{XL(n)XH
L (n)} gL,i = E{XL(n) s∗n−i} (2)

1 All model variables are assumed complex.



The left-hand side (LHS) of (2) depends only on system output and can therefore
be computed blindly, i.e. without using training sequences. The right-hand side
(RHS), however, depends on the input through sn−i and its computation would
traditionally mandate the use of such sequences. In [1] however, a novel method
is introduced that computes E{XL(n) s∗n−i} in a blind fashion using SOS of
the output. The method essentially amounts to manipulating autocorrelation
matrices of the output in such a way that a certain matrix, symbolized as ∆Di,
is computed. It is then shown that ∆Di = HiH

H
i , so Hi can be retrieved2 by

EVD on ∆Di.
An important remark at this point is that all SOS-based equalization methods

require that T L(HM ) be left invertible, a condition that is synonymous with the
equalizability of the system. This demand gives rise to the so called zero-forcing
conditions : if p(L+1) ≥ L+M +1 (i.e. T L(HM ) is “tall”) and the subchannels
do not have common zeros then T L(HM ) has full column rank, which guarantees
its left invertibility. The first component of the zero-forcing conditions implies
a minimum order L for the equalizers, namely L ≥ M/(p − 1) − 1 (in the 2-
subchannel case, L ≥ M − 1). This threshold on equalizer length depends on
subchannel order and number. Therefore inaccurate knowledge of the subchannel
order M directly affects equalizer order L and this may lead to significant system
performance degradation.

2.2 The case of two long subchannels without noise

Striving to highlight the dependence of equalization quality on accurate sub-
channel order knowledge, the study focuses on the noiseless case. Additive white
noise naturally inhibits restoration of the transmitted sequence. In the absence
of noise, the solution of (2) gives rise to equalizers that exactly restore the input
(or a delayed version of it). By further assuming a white input sequence, it holds
that3 E{XL(n)XH

L (n)} = TL(HM ) T H
L (HM ) and E{XL(n) s∗n−i} = TL(HM )(:

, i + 1)
4
= Ĥi. In other words Ĥi is the (i + 1)-st column of the filtering matrix

TL(HM ), i = 0, . . . L + M . Thus, equation (2) is written as:

(
TL(HM ) T H

L (HM )
)
gL,i = Ĥi (3)

Moreover, the study focuses on the 2-subchannel case.
In the context of microwave radio links, subchannels are usually comprised

of many taps only few of which are “large” (and most often contiguous), while
all others are much smaller. In such a scenario an M -th order subchannel may

2 Actually Hi can be determined within a sign ambiguity but this is the best that
can be hoped for any SOS-based blind equalization algorithm. This ambiguity, how-
ever, is a triviality of the implementation and will not be taken into account in the
subsequent analysis.

3 It is assumed that the expected values E{·} are known with infinite precision. Since
the goal of the study is to investigate the dependence of equalization quality on
subchannel order estimation errors, all other quantities (such as the aforementioned
expected values) are assumed to be known perfectly.



be incorrectly estimated to be of order L+1 where L+1 < M . Zero-forcing con-
ditions dictate the use of equalizers whose order is at least M − 1. However, due
to the erroneous estimation and in an effort to respect zero-forcing conditions,
equalizers of minimum order L will be used in practice. As a consequence, the
zero forcing conditions are unintentionally violated and it is interesting to know
what happens when an L-th order equalizer is applied to M -th order subchan-
nels, where L < M − 1.

2.3 A useful partition and the definitions of ideal and realistic cases

As a first step towards analysis the following partition, first proposed by A. P.
Liavas, is introduced:

HM = Hz
L+1 + Dz

L+1

where
Hz

L+1 = [0T · · ·0T

︸ ︷︷ ︸
m1

hT
m1

· · ·hT
m2︸ ︷︷ ︸

L+2

0T · · ·0T

︸ ︷︷ ︸
M−m2

]T

Dz
L+1 = [hT

0 · · ·hT
m1−1︸ ︷︷ ︸

m1

0T · · ·0T

︸ ︷︷ ︸
L+2

hT
m2+1 · · ·h

T
M︸ ︷︷ ︸

M−m2

]T

and 0 ≤ m1 < m2

4
= m1 + L + 1 ≤ M . Here Hz

L+1 groups the L + 2 consecutive
block-terms of HM having the largest energy, while replacing all the rest by
zeros. Hz

L+1 is called the “(L+1)-st order zero-padded significant part” of HM

and Dz
L+1, the complement of Hz

L+1, is referred to as “the unmodeled tails”.

Vector HL+1 = [hT
m1

· · ·hT
m2

]T is defined to exclusively contain the significant
part. Without loss of generality it is assumed that ‖HM‖2 = 1 and ‖Dz

L+1‖2 = ε
where ε � 1.

The ideal case. Let the subchannels be described by HL+1 and the equalizers
be of order L. This is the ideal case! The zero-forcing conditions are not violated
in this scenario. In fact the minimum length equalizers allowed by the zero-forcing
conditions are used. The equalizers for various delays are found by solving:

(
TL(HL+1) T

H
L (HL+1)

)
gL,i = Hi (4)

where Hi
4
= TL(HL+1)(:, i + 1), i = 0, . . . 2L + 1, i.e. Hi is the (i + 1)-st column

of the filtering matrix TL(HL+1).

The realistic case. The true subchannel vector HM is taken into account in
this case, while the equalizers are still of order L. As mentioned earlier, since
L < M − 1, the zero-forcing conditions are violated. The equalizers for varying
delay values are found by solving:

(
TL(HM ) T H

L (HM )
)
g̃L,i = H̃i (5)



The tilde over H̃i implies it is the perturbed version of Hi. The perturbation
is due to the presence of the unmodeled tails. The algorithm initially computes

matrix ∆̃Di (using SOS of the output) that is the perturbed version of ∆Di (see

section 2.1). While ∆Di is a rank-1 matrix, ∆̃Di is not, due to the presence of

the tails. H̃i is computed by applying EVD on ∆̃Di and computing the largest

eigenvector of ∆̃Di (i.e. the one corresponding to the largest eigenvalue).

The perturbation analysis The goal is to find a formula that relates Hi to
H̃i. Omitting the technicalities, it suffices to mention this formula is proved to
be:

E(Hi)
4
= H̃i − Hi =

1

λi

P⊥

i E(∆Di)Hi +
1

2 λ2
i

(
HH

i E(∆Di)Hi

)
Hi. (6)

where λi is the only non-zero eigenvalue of ∆Di and P⊥

i is the orthogonal com-
plement of the space spanned by Hi.

2.4 Perturbation analysis as an intermediate step in relating blind

to non-blind equalizers

Although the generic framework set forth in the introduction prescribes that
perturbation analysis results directly lead to conlcusions, the particular problem
calls for an additional step that, nevertheless, proves to be very insightful as it
relates blind to non-blind equalizers. As can be seen by inspection of (3) (non-
blind case) and (5) (blind-case) any differences in the computed equalizers are

due to the different RHS of the respective equations i.e. Ĥi, H̃i. In addition, the
behaviour of non-blind equalizers is already known by the study in [4]. Thus, if
blind equalizers are associated with their non-blind counterparts their behaviour
in terms of equalization quality can be naturally predicted.

To this end, the combined response, i.e. the cascade of channel+equalizer is
computed. In the blind case this is given by:

c̃L+M+1,i = g̃H
L,i TL(HM ) = H̃

H

i

(
T H

L (HM )
)]

. (7)

while in the non-blind case by:

ĉL+M+1,i = ĝH
L,i TL(HM ) = Ĥ

H

i

(
T H

L (HM )
)]

(8)

where i = 0, . . . 2L+1 and ] denotes Moore-Penrose pseudoinversion. As a means
to achieve the desired association the norm of the difference of the combined
responses is calculated i.e. the quantity:

‖c̃L+M+1,i − ĉL+M+1,i‖2 =
∥∥∥
(
H̃

H

i − Ĥ
H

i

) (
T H

L (HM )
)]

∥∥∥
2

. (9)

Since H̃i = Hi + E(Hi) from (6), perturbation analysis results are actively
exploited in the calculations. The conclusions drawn fall into either of two classes
depending on subchannel shape.



2.5 Conclusions for subchannels with no leading tails

If subchannels are such that their impulse response begins with “large” taps (i.e.
begins with an actual significant part of order L∗+1) then it can be proved that:

‖c̃L+M+1,i − ĉL+M+1,i‖2 = O(ε2)
1

σmin

, i = 0, . . . , 2L + 1. (10)

where σmin is the minimum non-zero singular value of TL(HM ). (Recalling the
definitions in subsection 2.3, ε is the size of the tails). Of particular interest is the
case of effective overmodeling. This term denotes the case where the estimated
significant part4 order L+1 is greater than the actual significant part order L∗+1,
i.e. L+1 > L∗+1. In this situation, it can be proven that σmin is an O(ε) quantity
thereby causing the magnitude of the difference to be ‖c̃L+M+1,i − ĉL+M+1,i‖2 =
O(ε), i = 0, . . . , 2L + 1. In turn, this fact implies that the combined responses
of blind and non-blind algorithms are close to each other, hence, they behave
similarly. From the findings of [4], it is known that good equalization performance
is expected for non-blind equalizers corresponding to delay values i = 0, . . . , L+
(L∗ +1) whereas for delay values i = L+(L∗+1)+1, . . . , 2L+1 their behaviour
is generally poor. As a consequence, this performance pattern is also shared by
the corresponding blind equalizers.

The exact order case, i.e. the case where L∗ + 1 = L + 1, is differ-
entiated by the order of magnitude of σmin, which is now O(1). As a result
‖c̃L+M+1,i − ĉL+M+1,i‖2 = O(ε2), ∀i = 0, . . . , 2L + 1. Consequently, blind and
non-blind equalizers share again the same performance pattern. From the find-
ings of [4], it is known that non-blind equalizers perform well for every i =
0, . . . , 2L + 1. Thus, blind equalizers strictly adhere to the good behaviour of
their non-blind counterparts.

2.6 Conclusions for subchannels with leading tails

If subchannel impulse responses are so shaped that begin with the tails, it can
be proved that:

‖c̃L+M+1,i − ĉL+M+1,i‖2 = O(ε)
1

σmin

, i = 0, . . . , 2L + 1. (11)

where σmin is the minimum non-zero singular value of TL(HM ). It is easily seen
that (11) is differentiated by (10) of the previous section by the “O(·)” term
which now equals to O(ε) instead of O(ε2). The order of magnitude of σmin

remains unaltered, being O(ε) in the effective overmodeling case and O(1)
in the exact order case.

As a consequence, ‖c̃L+M+1,i − ĉL+M+1,i‖2 = O(1), ∀i = 0, . . . , 2L + 1 in
the effective overmodeling case. In other words, the compared combined

4 Recalling the discussion in subsection 2.2, a “1-1” relationship between estimated
significant part order and equalizer order is implied. In particular, a significant part
of estimated order L + 1 calls for the use of an L-the order equalizer.



responses may differ by a lot at worst. They may be closer to each other for
certain delays but, in general, they diverge. Consequently, even when non-blind
equalizers perform well, blind equalizers will be poor in performance.

In the exact order case, on the other hand, it holds that ‖c̃L+M+1,i −
ĉL+M+1,i‖2 = O(ε), meaning blind equalizers share the same performance pat-
tern as their non-blind counterparts. Turning again to the findings of [4], it is
deduced that non-blind equalizers perform well for every delay i = 0, . . . 2L + 1.
As a result, blind equalizers follow perforce the same pattern and perform well.

2.7 Simulations

To illustrate the difference in algorithm behaviour depending on subchannel
shape and reinforce what has been stated in the conclusion subsections, two
simulation-based graphs are presented. They both pertain to 2-subchannel SIMO
systems, each subchannel having a total (i.e. encompassing small and large taps
alike) order of 33 . Subchannel taps are generated i.i.d. from a uniform distri-
bution. Each subchannel has an actual significant part of order L∗ + 1 = 3. The
subchannels related to the experiment of fig. 1 begin with the actual significant
part, whereas those associated with fig. 2 begin with 7 small taps. Another 23
small taps follow the actual significant part in this case. It is to be stressed that
the same taps were used to synthetically generate the subchannels in both cases.
Only the ordering of taps is different to account for different subchannel shapes.
In both cases the scenario of effective overmodeling is examined, where the
estimated significant part order is assumed to be L + 1 = 7. Together with com-
bined response differences, the open eye measure (OEM) is used as a standalone
measure for equalization quality. The open eye measure for a vector c is defined
as: OEM(c) = (

∑
i |ci| − maxi |ci|) / maxi |ci|. The lower the OEM, the better

the equalization quality. In order to assist comprehension values ε/σmin, ε2/σmin

are also represented as horizontal dotted lines. As can be seen by inspection of
fig. 2, effective overmodeling is catastrophic when subchannels possess leading
tails. In this case, no equalizers can be found that exhibit good equalization
performance. On the contrary, in the absence of leading tails, good equalizers
can be found for delays i = 0, . . . , L + (L∗ + 1) = 0, . . . , 9, even in the effective
overmodeling scenario.

3 Epilogue

This short paper outlined key elements of A. D. Beikos’ PhD dissertation. The
dissertation topic is the analytical assessment of the effect of channel estimation
errors on telecommunication systems quality. Errors in estimating channel or-
der and channel coefficients are considered. The analysis builds upon results of
perturbation theory. The case studies are drawn from the SIMO channel equal-
ization and the multiuser system capacity arena.
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Fig. 1. Indicative results when subchannels possess no leading tails.

0 2 4 6 8 10 12 14
10

−2

10
−1

10
0

10
1

    Overmodeling. L* + 1 =3,   L + 1 =7

|| 
c B

lin
d−

 c
N

on
_B

lin
d|| 2

Blind LS Delays 0−−>2L+1

0 2 4 6 8 10 12 14
10

−1

10
0

10
1

Blind LS OEMs

O
E

M

Blind LS Delays 0−−>2L+1

Fig. 2. Indicative results when subchannels possess leading tails.
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