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Abstract. Many network applications rely on stochastic QoS guarantees. With
respect to loss-related performance, the Effective Bandwidth/Capacity theory has
proved useful for calculating loss probabilities in queues with complex input-
and server-processes and for formulating simple admission control tests to en-
sure associated QoS guarantees. This success has motivated the application of
the theory for delay-related QoS too. However, up to now this application has
been justified only heuristically for queues with variable service rate. The the-
sis fills this gap by establishing rigorously that the Effective Bandwidth/Capacity
theory may be used for the asymptotically correct calculation and enforcement
of delay tail-probabilities in systems with variable rate servers too. Subsequently,
the thesis applies the general results to IEEE 802.11 WLANs, by representing
each IEEE 802.11 station as an On/Off server and employing the Effective Ca-
pacity function for this model. Comparison of analytical results with simulation
validates the effectiveness of the On/Off IEEE 802.11 model for loss- and delay-
related QoS. Finally, the thesis uses the Effective Capacity of an IEEE 802.11
station in yet another way, namely as a design tool. Indeed, the specific form of
the IEEE 802.11 Effective Capacity function highlights the role of certain param-
eters of the IEEE 802.11 backoff window distributions. These parameters, when
appropriately tailored, allow better delay-related (and loss-related) performance,
while maintaining the standard saturation throughput of IEEE 802.11 WLANs.
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1 Introduction

Many demanding network applications rely on stochastic Quality of Service (QoS)
guarantees. With respect to loss-related performance, the asymptotic theory based on
the notions of Effective Bandwidth and Effective Capacity has proved successful for
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calculating low loss probabilities in queueing systems with complex time-varying in-
put and server processes and for formulating simple admission control tests to enforce
associated QoS guarantees (see, e.g., [12, 4, 5]).

This success has motivated the application of the theory to the calculation and en-
forcement of delay-related QoS too. However, up to now this application has only been
justified on the basis of heuristic arguments when the queue is served at a variable rate
(see, e.g., [1, 14]). The thesis fills this gap, by formally establishing that the Effective
Bandwidth/Capacity theory may be applied for asymptotically correct calculation and/
or enforcement of delay tail-probabilities in systems with variable rate servers too. In
particular, the heuristically suggested linkage between the exponential decay rates of
the buffer content and delay probability tails through the server’s Effective Capacity
function is formally shown to apply [7].

Due to the prevalence of wireless networking, systems with time-varying servers are
becoming all the more important. Indeed, a wireless station can be regarded as a time-
varying data server, due to rate fluctuations at the physical or at the medium access
control layer. In this context, the thesis proceeds with an application of the general
results to IEEE 802.11 WLANs. In doing so, the thesis first establishes that an IEEE
802.11 mobile station can be regarded as a Semi-Markovian data server of the On/Off
type, with known distributions for the On and Off periods, and subsequently derives the
Effective Capacity function of this On/Off server [8]. The general results can then be
used for computing buffer overflow and delay violation probabilities in WLANs, and
for employing simple traffic control policies to enforce related QoS guarantees.

Finally, the thesis illustrates the usage of the Effective Capacity function of the IEEE
802.11 stations as a design tool: Towards this end, the form of the said function high-
lights certain parameters of the backoff window distributions, which, if appropriately
tailored, may lead to higher Effective Capacity values, hence to better delay-related (or
loss-related) performance.

The rest of this thesis summary is organized as follows: Section 2 firstly reviews pre-
existing Eff. Bandwidth/Capacity results about buffer content tail-probabilities and then
justifies the applicability of Eff. Bandwidth/Capacity theory in connection with delay
tail-probabilities. Section 3 briefly presents the analytical model used to characterize
the IEEE 802.11 Distributed Coordination Function (DCF) as an On/Off server. This
model is used to derive the Eff. Capacity of the IEEE 802.11 protocol. Subsequently, it
discusses computational and algorithmic issues related to the application of the general
theory of Section 2 with the particular Eff. Capacity function of this On/Off model.
Section 4 describes how the Eff. Capacity function of IEEE 802.11 stations may be
used for an informed choice of parameters for the backoff window distributions, towards
better performance. Section 5 provides validation of the IEEE 802.11 model, through
comparison of the analytical results with simulations. Finally, the thesis summary is
concluded in Section 6.

2 Effective Bandwidth and Effective Capacity Theory

Effective Bandwidth and Effective Capacity theory offers a linkage between input load,
system capacity and QoS requirements and it was developed by a great number of con-



tributions from various researchers. The theory was originally developed for queueing
systems with constant server capacity.

When the server’s capacity is time-varying independently from the input, the theory
can be generalized, by defining an Effective Capacity function to capture the server’s
burstiness. Although this generalization has been studied for some years (see, e.g., [5,
6]) it did not attract much attention until recently [13, 14, 1] when the importance of
wireless systems grew considerably. This is because most such systems feature a vari-
able service rate and Effective Capacity is ideal for modeling such settings.

For a quick review of the Eff. Bandwidth/Capacity theory, consider at first a single-
server queue, fed by a traffic stream that produces an amount of data V (t) within a
time-window (−t, 0] and let c be the constant service rate. According to the Eff. Band-
width theory, provided that V (t) has stationary increments and satisfies some additional
mild technical conditions (see, e.g., [7]), the probability that the queue size Q exceeds
a certain threshold b has at all times an exponential upper bound of rate θ > 0. Specifi-
cally, the tail of the queue-length distribution satisfies

aV (θ) < c ⇒ lim
b→∞

b−1 log Pr{Q > b} ≤ −θ,

where
aV (s) �

1

s
lim
t→∞

1

t
log E

�
esV (t)

�
, s ∈ R, (1)

determines the Effective Bandwidth function.
Now consider a single-server queue with time-varying capacity, where the capacity

fluctuations are independent from the input. Let the input traffic be as previously and de-
note by C(t) the amount of data that can be processed within the time-window (−t, 0].
Assuming the same technical conditions for the input and output processes (in par-
ticular stationary increments), the probability that the queue size Q exceeds a certain
threshold b has at all times an exponential upper bound of rate θ > 0, viz.,

aV (θ) < aC(−θ) ⇒ lim
b→∞

b−1 log Pr{Q > b} ≤ −θ, (2)

where aV (θ) stands for the Effective Bandwidth function in (1) and

aC(s) �
1

s
lim
t→∞

1

t
log E

�
esC(t)

�
, s ∈ R, (3)

determines the Effective Capacity function.
Given that strict monotonicity holds for at least one of the Eff. Bandwidth and Eff.

Capacity functions,

aV (θ) ≤ aC(−θ) ⇔ lim
b→∞

b−1 log Pr{Q > b} ≤ −θ. (4)

Equivalence (4) always holds in the context of IEEE 802.11 WLAN, since the IEEE 802.11
Eff. Capacity is always a strictly increasing function.

Assume now that the queue has a finite size q, and that we want to provide stochas-
tic QoS by limiting the overflow probability to a value ≤ e−�. By using the tail per-
centile Pr{Q > q} of the respective infinite queue as a proxy for the overflow proba-
bility, (2) implies that (asymptotically) θ = �/q and the input traffic must satisfy

aV (�/q) < aC(−�/q).



This inequality directly suggests an Admission Control (AC) scheme by bounding the
input traffic.

Finally, let θ∗ � sup{θ ∈ R | aV (θ) ≤ aC(−θ)}. If there exist θo > 0 such that
aV (θo) < aC(−θo) then the asymptotic exponential decay rate of the tail-probabilities
of Q equals to θ∗ [7], i.e.,

lim
b→∞

b−1 log Pr{Q > b} = −θ∗. (5)

The conceptual simplicity of the Eff. Bandwidth/Capacity theory makes it an at-
tractive choice for coping with delay-related QoS as well. For First-Come-First-Served
(FCFS) queueing systems with a constant service rate c this is directly possible, because
delay probabilities of the form Pr{D > d} are equal to the queue length probabilities
Pr{Q > cd}. However, this simple equivalence does not hold when the service rate is
time-varying.

The thesis (see the relevant results in [7]) formally establishes that the Eff. Band-
width/Capacity theory may be applied for the asymptotically correct calculation and
enforcement of delay tail-probabilities in the general setting with variable service rate.
Specifically,

aV (θ) < aC(−θ) ⇒ lim
d→∞

d−1 log Pr{D > d} ≤ −θaC(−θ). (6)

As with the queue content, we now consider admission control for ensuring delay-
related QoS guarantees. Let uC(s) � limt→∞ t−1 log E

�
esC(t)

�
, s ∈ R, be the asymp-

totic cumulant generator of C(t). By the definition of the Eff. Capacity function in (3),

aC(s) = uC(s)/s, s ∈ R. (7)

In order to ensure that the decay rate of the delay tail-probabilities is bounded below by
some ξ = θaC(−θ) = −uC(−θ) > 0, the admission control aV (θ) < aC(−θ) in (6)
must be tested for

θ(ξ) = −u−1
C (−ξ). (8)

The value of the parameter ξ to employ in the tests is determined in a way analo-
gous to the one used for loss-related QoS requirements. This time the QoS specification
dictates that the delay should not exceed some given threshold τ with probability higher
than e−�. Provided that both τ and � are large maintaining a finite ratio, the QoS spec-
ification leads to −�/τ ≥ τ−1 log Pr{D > τ} ≈ limd→∞ d−1 log Pr{D > d}, so
ξ = �/τ should be used in the admission control tests.

Finally, the thesis establishes the linkage between the decay rate θ∗ of the buffer
content tail-probabilities and the decay rate ξ∗ of the delay tail-probabilities through
the server’s Effective Capacity function, viz.,

ξ∗ = θ∗aC(−θ∗).

3 Effective Capacity of IEEE 802.11 WLAN

A simple, but accurate analytical model for the saturation throughput computation of
the IEEE 802.11 protocol was provided in [2]. The analysis focuses on the saturation



condition, where every station has always a packet to send. The analysis also assumes
that the number of stations n under contention is known and constant and the probability
of a collision seen by a packet being transmitted on the channel, named conditional
collision probability p, is constant and independent from the number of retransmission
suffered. In order to compute the station’s throughput, its behaviour is studied through
a Markov chain model. This model yields the probability that a station transmits in a
random time-slot, referred to as transmission probability τ .

In [3], a more general model, permitting the usage of arbitrary backoff window
distributions, is proposed, generalizing and supplementing [2]. This model takes into
account more details of the IEEE 802.11 protocol. By employing the more general
analysis of [3] and assuming an infinitive number of retries, one obtains

τ =

�
1 + (1− p)

�
W 0

1−B0
− 1 +

m−1�

i=1

piW i +
pmWm

1− p

��−1

(9)

where W i, i = 0, . . . ,m is the mean backoff window at the ith stage, m is the back-
off stage beyond which the upper window margin does not grow anymore and B0 is
the probability that a backoff window drawn at the 0th stage is zero. The expression
W 0/(1−B0) − 1 is a modified mean backoff window at 0th stage, when the nonzero
backoff window drawn is examined after being initially decremented by one, for syn-
chronization purposes.

Assuming that the Markov chains of the mobile stations are independent, one also
obtains that

1− p = (1− τ)n−1, (10)

because a packet will not suffer a collision exactly when all other stations do not attempt
to transmit when the station emitting the packet does so. Equations (9) and (10) can be
solved uniquely for p and τ .

As already noted, the preceding analysis assumes that all stations are saturated.
This thesis employs the values of p and τ obtained from (9) and (10), to calculate the
Eff. Capacity of an IEEE 802.11 station, effectively assuming that all other stations are
saturated. This approximation is on the safe side (i.e., ‘conservative’) since assuming
the other stations saturated corresponds to the worst case, and has the merit that in this
way the Eff. Capacity of a station can be computed without regard to input traffic details.
As will be discussed later, the saturation assumption can be waived and the model be
applicable to all network load settings.

Due to the CSMA/CA access algorithm, the system can be modeled as a Semi-
Markov server model featuring four states [8], as depicted in Fig. 1. State bc corre-
sponds to the backoff procedure when the backoff counter is nonzero. State ov models
overhead time before and after the transmission. It can be proved that the overhead time
before and after transmission is possible to be merged in one state. State tr corresponds
to the transmission (active) period and State dc models the idle slot needed for the ini-
tial decrement of the backoff window so that other stations realize that a successful
transmission is over.

Overheads and transmissions always occur in pairs thus transitions from State ov to
State tr occur with probability one. After the transmission is over, State ov is visited



 

Fig. 1. Semi-Markov chain for IEEE 802.11 MAC.

again with probability B0 (probability that backoff counter at the 0th stage is zero) so
the station transmits a packet successfully, one more time. With probability 1 − B0

the station enters the backoff procedure (State bc) after the backoff counter has been
decremented by one (State dc). The service rate in Stage tr is equal to the nominal bit
rate r̂ of the IEEE 802.11 channel, while in all other states the service rate is zero.

Sojourn time distributions in every state are characterized by the respective mo-
ment generators. The moment generator of the sojourn time in State tr (i.e., payload
transmission time) is

γtr(ω) � E
�
eP/r̂

�
,

where P denotes the payload size. Note that for constant payload size the transmission
time is deterministic. The moment generators of time distributions for States ov and dc
are given by

γov(ω) � eωtov , γdc(ω) � eωtslot , (11)

where

tov �
�
RTS + CTS + PHYhdr +ACK

�
/rsignal +MAChdr/r̂ + 3SIFS +DIFS,

and
tcoll � RTS/rsignal + EIFS + tslot

are the deterministic overhead time of the transmission and the collision duration,
respectively. The quantities rsignal, tslot, RTS, CTS, SIFS, DIFS, EIFS, ACK,
MAChdr, PHYhdr denote respectively the transmission rate used for signaling oper-
ations, the slot time of the system, the RTS packet size, the CTS packet size, the SIFS
time, the DIFS time, the EIFS time, the ACK packet size, the MAC header and the
PHY header. The values of all these parameters are determined by the IEEE 802.11
standard [11].

Finally, the backoff time distribution is characterized by the moment generator

γbc(ω) =
g0
�
γs(ω)

�
−B0

γs(ω)(1−B0)

�
m−1�

l=0

�
(1− p)plelωtcoll

l�

j=1

gj
�
γs(ω)

��

+
(1− p)(peωtcoll)m

�m
j=1 gj

�
γs(ω)

�

1− pgm
�
γs(ω)

�
eωtcoll

�
,

(12)

where gi(z) stands for the probability generator function of the backoff window distri-
bution associated with the ith stage (beyond stage m, the backoff windows maintain the



same probability generator gm(z)) and γs(θ) denotes the moment generator of the time
needed for the reduction by one of the backoff counter.

γs(ω) = Pcolle
ωtcoll + Pemptye

ωtslot + Psucc
(1−B0)γtr(ω)

1−B0γtr(ω)
eωtslot , (13)

where

Psucc = (n−1)τ(1−τ)n−2, Pempty = (1−τ)n−1, Pcoll = 1−Psucc−Pempty, (14)

are the probabilities of a successful transmission, an empty slot and a collision respec-
tively, observed by a station backing-off (which observes n− 1 other stations).

Note that the generator function gi(z) depends on the distribution of the backoff
window at the ith stage. By definition, g0(0) = B0 and g�i(1) = W i. For the uniform
backoff window distribution, described in the standard,

gi(z) �
wi−1�

l=0

1

wi
zl =

1

wi

zwi − 1

z − 1
, wi = 2min{i,m}w0, i ≥ 0, (15)

where w0 − 1 is the maximum value of the backoff counter at the backoff stage zero.
Given the model just described, a straightforward extension of the Eff. Bandwidth

theory for Semi-Markovian models [9] yields the Eff. Capacity function. In fact, it is
possible to show that, in terms of the Eff. Capacity, the model is equivalent with an
On/Off server model [8] with an On period characterized by the moment generator

γon(ω) = γtr(ω) = E
�
eωP/r̂

�
(16)

and an Off period whose moment generator is equal to

γoff(ω) = γov(ω)
�
B0 + (1−B0)γbc(ω)γdc(ω)

�
(17)

where γon(·), γov(·), γbc(·), γdc(·) as in (16), (11), and (12).
Using this alternative On/Off representation the Eff. Capacity function is given

by (7) where uC(s) is the unique negative solution of

f
�
s, uC(s)

�
= 0, f(s, u) � log γon(r̂s− u) + log γoff(−u) = 0. (18)

The formulation of (9) assumes saturation condition. The dependence of γoff(·)
on the saturation assumption is only through the conditional collision probability p,
used in (12) and the probabilities Psucc, Pempty and Pcoll employed by (13). Under non-
saturation condition these parameters retain their meaning, but take different values.
Thus, if each mobile station assesses these probabilities by direct measurement, rather
than computing them through (9), (10) and (14), the model works well in all settings,
lightly loaded ones included.

For the construction of a loss-related traffic control mechanism is not necessary to
numerically solve (18). Using the admission control condition aV (θ) ≤ aC(−θ), θ ≥ 0



and the monotonicity of the related functions, we can prove that in order to accept a
traffic stream the following inequality must be satisfied:

log γon
�
−r̂θ� + θ�aV (θ

�)
�
+ log γoff

�
θ�aV (θ

�)
�
≤ 0,

where θ� = �/q, according to (2). This condition simplifies greatly the computational
aspects of the loss-related AC scheme.

Calculations for the delay-related AC test are also simple. According to the results
of Section 2, given the QoS specification ξ, one must first determine θ(ξ) in (8) and
then check if the left-hand side inequality in (6) holds. Since uC

�
−θ(ξ)

�
= −ξ, (18)

suggests that θ(ξ) is the unique solution in θ of f(−θ,−ξ), thus

θ(ξ) = ξ/r̂ − (log γon)
−1

�
− log γoff(ξ)

�
/r̂. (19)

This requires only a single evaluation of the function γoff(·) at the argument ξ, keep-
ing the computational complexity low. Moreover, when the payload of the transmitted
packets has a constant value P , (16) yields (log γon)−1(x) = r̂x/P , so (19) simplifies
further to the closed form solution θ(ξ) = ξ/r̂ + log γoff(ξ)/P . Note that, as long the
conditions1 in the WLAN remain unchanged, a single evaluation of θ(ξ) suffices to
enable an arbitrary number of admission control tests (6), each of them being invoked
whenever the mobile station is about to engage a new traffic flow.

4 Tuning the backoff window distributions for improved Effective
Capacity

We now investigate appropriate choices of the backoff window distributions employed
by the IEEE 802.11 MAC protocol, so as to obtain an Eff. Capacity function greater than
the one corresponding to the standard distributions. A greater Eff. Capacity function
signifies improved performance.

The mean rate of the On/Off model for an IEEE 802.11 mobile station is

r̄C � u�
C(0) = aC(0) =

r̂E [Ton]

E [Ton] + E [Toff]
. (20)

In view of (20), one might attempt to obtain a greater Eff. Capacity by reducing E [Toff].
As seen in the thesis, this corresponds to reducing the mean window sizes E [Wi] at all
backoff stages i ≥ 0. However, when the saturation-based variant of the model is used,
(9) indicates that a reduction of the mean window sizes affects the transmission proba-
bility τ and the conditional collision probability p, increases contention on the shared
channel and may ultimately negate the intended effect, due to the impact of p on γoff(·)
through (12) and (13). The same phenomenon occurs also under non-saturated envi-
ronments and affects the measured values of p, Psucc, Pempty and Pcoll employed by the
other variant of the model. Similarly, increasing the probability B0 of sampling a null

1 Number of active stations in the WLAN and (if the measurement-assisted variant of the model
is used), loading conditions at other stations.



window at stage zero decreases γoff(·) through (17), but also results in repeated suc-
cessful transmissions in other competing stations, indirectly increasing γoff(·) through
the third term in (13) and (12).

For the reasons just described, in the following analysis it is assumed that any
changes in the backoff window distributions leave the mean window sizes and B0 in-
variant, thus also maintain the same value of the mean server rate r̄C . In order to ex-
amine the effect of higher order properties of the backoff window distributions, we use
a Taylor series expansion of uC(θ) around θ = 0 and remember that uC(0) = 0, to
obtain

aC(θ) = uC(θ)/θ = u�
C(0) +

u��
C(0)θ

2
+O(θ2),

for small values of the parameter θ. Employing (18), differentiating twice, setting θ = 0
and remembering that (log γi)�(0) = E [Ti] and (log γi)��(0) = Var [Ti] (i = on, off)
leads to

u��
C(0) =

Var [Ton] (r̂ − r̄C)2 +Var [Toff] r̄2C
E [Ton] + E [Toff]

. (21)

Greater values of the Eff. Capacity function for negative arguments correspond to
smaller values of u��

C(0). Quantities in (21) relating to the On period do not depend on
the backoff window distributions.

The mean value of the Off period can be obtained by differentiating (17) at ω = 0.
One gets

E [Toff] = tov + (1−B0)(tslot + E [Tbc]), (22)

where Tbc is the time spent in backoff mode, with moment generator as in (12) and
mean equal to

E [Tbc] =
p

1− p
tcoll + E [Ts]

�E [Wo]

1−B0
− 1 +

∞�

l=1

plE [Wl]
�
. (23)

E [Ts] = γ�
s(0) is the mean of the time needed for the reduction by one of the IEEE 802.11

backoff counter. Equations (22) and (23) verify the earlier claim stating that, when the
mean backoff window sizes and the probability B0 remain invariant, the mean dura-
tion of the Off period and, by (20), r̄C also remain invariant. Thus, in view of (21), the
only way of reducing the value of u��

C(0) is through a smaller value of Var [Toff]. By
differentiating twice (17) at ω = 0 and collecting terms,

E
�
T 2

off
�
= B0t

2
over + (1−B0)

�
(tover + tslot + E [Tbc])

2 +Var [Tbc]
�
,

so, using also (22),

Var [Toff] = E
�
T 2

off
�
− E [Toff]

2 = (1−B0)
�
B0(tslot + E [Tbc])

2 +Var [Tbc]
�

and reducing Var [Toff] can only be achieved by reducing Var [Tbc]. It is shown in the
thesis that a reduction of Var [Tbc] may occur only through smaller variances for the
backoff window sizes.

We now describe a specific way of adjusting the backoff window distributions, in
order to reduce the variance in all backoff stages by a uniform percentage: The range



of the standard uniform distributions in (15) is narrowed from [0, wi − 1] to
�
(wi −

1)/2− 1/2− δi, (wi − 1)/2+ 1/2+ δi
�
. The same mean value is maintained, equal to

(wi − 1)/2. The parameter δi (a positive integer) is chosen so that the variance of the
modified distribution is a fraction α < 1 of the standard distribution’s variance, so

4(δi + 1)2 − 1

12
= Var [Wi,modified] = αVar [Wi,standard] = α

w2
i − 1

12
,

which yields δi = 1
2

�
α(w2

i − 1) + 1−1, i ≥ 1. This result is rounded to the nearest
integral value.

Extra arrangements must be made for the modification at the 0th backoff stage,
because at this stage, besides the mean, one must also preserve B0, the probability of
sampling a null backoff window.

Although that best results are achieved by selecting the smallest possible vari-
ances for all backoff stages, this is not an advisable strategy. The reason is that the
IEEE 802.11 model has been constructed on the assumption that the competing mo-
bile stations operate independently. Specifically, it is assumed that the collision of an
observed station with one or more competing stations does not affect the probability
with which this station will collide at the end of the next backoff stage. However, if
deterministic backoff windows are used, when two or more stations collide at the end
of some backoff stage i ≥ 0, they will draw the same backoff window at the stage i+1
and collision at the end of all stages from that point onwards will be certain. It follows
that the backoff window distributions should retain a sufficient degree of randomness.

5 Validation of the IEEE 802.11 model for tail-related QoS

The Eff. Capacity model has been validated against ns-2 [10] simulation results, under
various forms of traffic load and number of competing terminals. For details, see [7, 8].
Here we limit ourselves in two results, in the interest of further highlighting the concepts
already discussed. In both of the results the system parameter values correspond to
Frequency Hopping Spread Spectrum (FHSS) PHY layer [11]. Also, in all cases, the
payload size (see (16)) was chosen constant and equal to P = 8184 bits.

Fig. 2 illustrates the accuracy of the Eff. Capacity, by comparing curves of the func-
tion (dashed, dotted and solid lines), computed with the use of the saturation-based
model, against simulation results (marks).

In the simulation runs used for producing Fig. 2, the values of the Eff. Capacity func-
tion were indirectly measured, by feeding a “tagged” IEEE 802.11 station with traffic
of known profile, sampling the probability with which the station’s buffer exceeded a
given threshold and exploiting the linkage (see (5)) between the Eff. Bandwidth, the
Eff. Capacity and the probability tail just mentioned. All terminals, besides the tagged
one, were operating under saturation conditions. The match between theory and simu-
lations validates the model and indicates its suitability for estimating tail-probabilities
or, equivalently, for taking AC decisions in IEEE 802.11 WLANs.

Fig. 3 depicts curves of the queue tail-probabilities versus the tail threshold (in
semilog scale) for a network with 10 stations, of which 9 are saturated. The queue of the
unsaturated station has been observed under two kinds of traffic load, CBR and Poisson,
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Fig. 2. Curves of aC(−θ) vs. θ, for different values of the number of stations n.

both featuring the same mean rate of 79.84 kbps. The slope θ∗ of the queue tail for
the model-derived curve in each loading case was determined according to the theory
(see (5)). As shown in the figure, the simulation-derived queue tails decay exponentially
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Fig. 3. Modeling and simulation results of queue tail-probabilities for 10 stations, one unsatu-
rated, for two types of load.

and the decay rates agree well with the analytical results.

6 Conclusions

The thesis provided the formal justification for the use of the Eff. Bandwidth/Capacity
theory in delay-related performance contexts. Specifically, it was established rigorously
that the theory is capable of providing an asymptotically tight approximation to delay
tail-probabilities. The thesis also formalized the association of the asymptotic expo-
nential decay rate of the queue content probabilities with its counterpart for the delay



probabilities, through the server’s Eff. Capacity function. The asymptotic approxima-
tion to the delay tail-probabilities was complemented by associated admission control
schemes that are useful for providing delay-related QoS guarantees. The general results
were applied to the important setting of IEEE 802.11 WLANs, by modeling each IEEE
802.11 station as an On/Off server and then using the Eff. Capacity function correspond-
ing to this model. Computational and algorithmic details relating to the application of
the general theory with the particular Eff. Capacity function of this On/Off model were
also discussed. Comparison of the analytical results with simulation validated the ef-
fectiveness of the On/Off IEEE 802.11 model in providing tail-related QoS guarantees.
Finally, the particular form of the Eff. Capacity function of an IEEE 802.11 station
suggested an appropriate modification of the backoff window distributions for reduced
variance, without affecting the mean backoff window sizes. This modifications results
in a greater Eff. Capacity function, hence better performance.
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