
BPEL scenario execution: QoS-based dynamic adaptation
and exception resolution

Christos Kareliotis
1

National and Kapodistrian University of Athens
Department of Informatics and Telecommunication

ckar@di.uoa.gr

Abstract. BPEL/WSBPEL is the main approach for combining individual web
services into integrated business processes. A BPEL/ WSBPEL scenario allows
for specifying which services will be invoked, their sequence, the control flow
and how data will be exchanged between them. BPEL however does not include
mechanisms for considering the invoked services’ Quality of Service (QoS)
parameters and thus BPEL scenarios cannot customize their execution to the
individual user’s needs or adapt to the highly dynamic environment of the
WEB, where new services may be deployed, old ones withdrawn or existing
ones change their QoS parameters. Moreover, infrastructure failures in the
distributed environment of the web introduce an additional source of failures
that must be considered in the context of QoS-aware service execution. In this
thesis, it is proposed a framework for addressing the issues identified above; the
framework allows the users to specify the QoS parameters that they require and
it undertakes the task of locating and invoking suitable services. In this
dissertation two strategies for selecting the most suitable service are considered:
(a) a greedy strategy and (b) a partner link-level strategy. The proposed
framework intercepts and resolves faults occurring during service invocation,
respecting the QoS restrictions specified by the consumer. The latter also
intercepts and resolves faults occurring during service invocation, respecting
the QoS restrictions specified by the consumer. Finally, methods for tackling
with syntactic differences between functionally equivalent services, broadening
thus the pool of available services for each adaptation are considered. Finally,
performance metrics for the proposed framework are presented, which validate
its applicability to operational environments and present performance metrics
for the proposed framework.

1 Introduction

Web services have emerged as a new standard, having as main focus to allow applica-
tions over the Internet to communicate with each other, which are independent of
execution platform, programming language and implementation details. The web
service paradigm has been adopted by research community and industry alike, how-
ever a number of challenges still lie ahead for fully covering the needs of both service

1 Dissertation Advisor: Panayiotis Georgiadis, Professor

providers and consumers. [1] identifies a number of open issues in the current SOA
state-of-the-art, spanning across four major categories namely service foundations
(service oriented middleware backbone that realizes the runtime SOA infrastructure),
service composition, service management and monitoring as well as service design
and development. For service governance, in particular, [1] lists “service governance”
as a major research challenge, stating that the potential composition of services into
business processes across organizational boundaries can function properly and effi-
ciently only if the services are effectively governed for compliance with QoS and
policy requirements. Services must meet the functional and QoS objectives within the
context of the business unit and the enterprises within which they operate.

In this context, development procedures as well as composition and execution
mechanisms need to take into account the QoS dimension of web services in order to
formulate successful business processes that will satisfy users’ (either business or
individuals) expectations. Regarding service composition into business processes, the
predominant approach used nowadays is the formulation of BPEL/WSBPEL
scenarios [2], in which the BPEL designer specifies the business process logic; this
includes invocation of selected web services, control flow constructs and data flow
arrangements in the form of result gathering and parameter passing, while provisions
for exception handling (such as service unavailability or business logic faults) also
exist.

BPEL scenarios, however, do not include facilities either for specifying QoS
parameters for services, or for dynamically selecting the web service to be called at
runtime, therefore the BPEL scenario designer must select the concrete service
implementation to be invoked in the context of the business process while creating the
scenario, by examining the QoS parameters of functionally-equivalent services. This
alternative, however, is not a viable one since (a) the same BPEL scenario may be
used by different users with diverging or even contradictory requirements and (b)
even if the “best choice” is made at some time point there is no guarantee that this
choice will continue to be optimal in the future. Moreover, in the presence of failures,
it would be desirable for the system to be able to locate and use “second best” choices
automatically, provided that they deliver the required functionality and satisfy QoS
restrictions.

2 Summary

2.1 Motivation and Challenges

The main objective of web service technology and related research [3] is to provide
the means for enterprises to do business with each other and provide joint services to
their customers under specified Quality of Service (QoS) levels. The collaboration of
web services, possibly provided by different companies, in order to create composite
and potentially highly complex business process, elevates the need of a Business
Process Management (BPM) [4], [5]. Trying to model real world business processes
with BPEL scenarios a series of challenging issues may emerge. Specifically:

1. processes may be long-running, in the order of hours, days or even longer. Such
issues commonly arise in cases where human intervention is required for the
completion of all or some of the services that comprise the process.

2. BPEL scenarios may try to model stable and established processes that remain
relatively unchanged. Examples of such processes are those that represent
interactions with Government-based services, spanning the range of G2x and x2G
acronyms

3. as the complexity of the process and the number of cooperating services needed
increase, so does the volatility of these services. New services implementing the
same process may appear, existing ones may be decommissioned or the BPEL
designer may not be aware of all the services that can be utilized at the time of the
designing phase

4. quality requirements for the process may change during the lifetime of the BPEL
scenario. This may be due to different needs of end-users (a real-world counterpart
of this case is one person sending a package using courier mail to minimize
delivery time, whereas another person may use ordinary surface mail to pay less),
or alterations in organizational policy.

2.2 Problem Identification and Objective

In cases such as the above, the static nature of BPEL scenarios and their handling
of BPEL engines fail to accommodate for the dynamic nature of real world processes.
To cope with these situations, the BPEL scenario would have to be redesigned and re-
deployed possibly forcing existing transactions to fail or be re-started. For
accommodating different needs of end-users, the alternative approach of maintaining
different versions of the BPEL scenarios could be also taken, with each version being
targeted to a specific user category (e.g. “express delivery” vs. “economic delivery”);
this arrangement, however, would increase development and maintenance costs and
would weaken the overall system manageability.

To tackle these issues, this dissertation proposes an approach that is relying on
dynamic service selection mechanism based on functional and non-functional
(quality) criteria for selecting the most suitable service per scenario invocation.
Furthermore, this mechanism provides for non-existent or invalidated services
allowing them to be replaced with existent and valid ones, choosing the optimal
candidate per service invocation based on current criteria. The criteria can be different
on each run and can provide for diverse needs depending on the invoker.

So, the basic features and innovations this dissertation introduced were:

• the concept of replacement candidate for web services was formalized considering
criteria related to the specific BPEL scenario execution, instead of the generic
functionality or behavior of the service. Replacement candidates are used for hot-
swapping failed services within a BPEL transaction, allowing thus the BPEL
scenario to complete its execution. The formalization introduced allows including
more services in the “replacement candidate” pool and therefore formulating
execution paths with better qualitative characteristics.

• the notion of service selection affinity was introduced, which allowed for
maintaining the transactional characteristics of BPEL scenarios in the presence of
adaptation

• an approach to bridging the syntactic differences between functionally equivalent
services was proposed, which greatly enhances the maintainability of the
equivalent services repository, trading off a degradation in performance, which has
been quantified to be quite small.

• a method for distinguishing between system faults and business logic faults was
proposed; this distinction is important since faults in the former category can be
resolved by automatically invoking a replacement candidate for the failed service,
while this is not possible for faults in the second category.

• a framework that enables the automatic resolution of system faults and the dynamic
adaptation of BPEL scenario execution according to QoS criteria was proposed.
The framework is independent of the particular BPEL execution engine used, and
methods have been proposed for setting the QoS criteria granularity (for all
scenarios executing in the system; for the scenario as a whole; for each individual
service within a scenario). This framework includes provisions for maintaining the
transactional characteristics of BPEL scenario execution, making use of the service
selection affinity notion.

• the feasibility of the above was proved through a complete system implementation
and quantification of its performance.

• the issue of BPEL scenario adaptation in the context of secure web services
invocation was identified, and a system architecture for a system that supports such
an adaptation was drafted.

2.3 Related Work

In this section some related work is adduced in the following research directions:
QoS management in web services composition:
In [6] a framework is presented named AgFlow [7] as middleware platform that

enables the quality-driven composition of Web services. In AgFlow, the QoS of Web
services is evaluated by means of an extensible multidimensional QoS model. It
presents two selection policies: the local optimization of individual tasks and a global
planning. The first is similar to the one proposed in this thesis and it uses the Simple
Additive Weighting [8] technique to select the optimal service for a given task. The
proposed approach differentiate from this since we deal with already defined
composition scenario and doesn’t propose a re-planning solution method in order to
change the task execution order, or replace a set of task with another set. It uses a
proxy-like service that is invoked for each individual task in the business scenario in
order to discover the optimal services for each one of them based on a specific
consumer’s quality policy at execution time.

In [9] a web service proxy is introduced in order to perform a dynamic binding of
related web services under specified user’s constraints. The selection of equivalent
services is not only filtered by constraints but also it is measured the quality score for
each equivalent service depending on a quality vector and a set of quality weights. In
[10] the importance of qualify-able QoS aspect related to the issue of web services

composition and monitoring is illustrated. It describes an algorithm capable of
capturing and reflecting the state of web services involved in the integration process.

In exception management web services composition:
In this research work [11] a policy-driven approach is introduced to exception

management. An exception handling policy language is designed, which defines
deviation situations and the associated exception handlers. The proposed approach
complements the above solution by discovering an optimal alternate service task to
perform the alternative action mentioned. A remarkable research in this area has been
and the one introduced in [12]. It’s presenting a component called BPBot (Business
Process roBOT). A business process is executed by a collection of BPBots that are
dynamically organized as a hierarchical structure. The proposed solution is not re-
planning an execution path, but it discovers functionally and qualitatively equivalent
services to perform the determined business tasks without changing the task execution
sequence. Moreover, during this dissertation the author published relative papers
([20], [21], [22], [23], [24]) considering service BPEL scenario adaptation in the
context of exception resolution and security issues in exception handling in [25].

Semantic Web Services:
In the past few years, the issue of exception resolution in composite web services

has drawn the researchers’ attention. A noteworthy approach to exception handling is
the one undertaken by METEOR-S project [13], [14] in cooperation with WSMX
(Web Services Execution Environment) [15]. WSMX contains the discovery
component, which undertakes the role of locating the services that fulfill a specific
user request. This task is based on the WSMO conceptual framework for discovery
[16]. WSMO includes a Selection component that applies different techniques ranging
from simple "always the first" to multi-criteria selection of variants (e.g., web services
non-functional properties as reliability, security, etc.) and interactions with the service
requestor. Both in the METEOR-S and other approaches, functional and non-
functional properties are represented using shared ontologies, typically expressed
using DAML+OIL [17] and the latter OWL-S. Such annotations enable the
semantically based discovery of relevant web services and can contribute towards the
goal of locating services with “same skills” [18] in order to replace a failed service in
the process flow. The main difference of the research illustrated with the one
referenced above is that selection of replacements to services that have failed within
an execution plan is made dynamically, instead of using pre-determined exception
resolution scenarios. Replacement service selection is based on both functional
equivalence (performed through semantic matching) and qualitative replaceability
(considering non-functional attributes). Furthermore, qualitative replaceability criteria
may be defined by the composite service invoker, to more accurately specify which
replacement service is the most suitable one in the context of the current execution.

2.4 Brief Description

Service Quality Vectors
In order to enable the selection of the “most suitable” operation according to some

QoS specification, the QoS attributes of the operations should be represented in an
unambiguous and system-processable format, while additionally means for expressing
QoS-related operation selection criteria should be afforded. For brevity, in the

following we will consider only the QoS parameters cost, security, performance,
response time and availability, adopting the definitions in [19]. For each such source,
mappings between the domains employed by the source and numeric values are used.

Table 1. Mapping of QoS values

 QoS provider 1 QoS provider 2 Value

Cost 10 € 11 € 1

Security 6 (out of 10) 62 (out of 100) 3

Performance High throughput 99% 5

Response time 0.0001 ms Real-time 1

Availability High > 95% 4

In the approach illustrated here three vectors that define the QoS criteria for

process invocation are considered; in other words it is defined a QoS specification as
a triple (MAX, MIN, W), where MAX, MIN and W are quality vectors (defined
below). The quality vector for the QoS attributes considered in this work can be
defined as:

Table 2. Quality Vector

MAX = (costmax, secmax, perfmax, respmax, availmax)
MIN = (costmin, secmin, perfmin, respmin, availmin)
W = (costw, secw, perfw, respw, availw)

ASOB-Framework
Figure 2 illustrates the overall architecture of our approach to dynamic policy-

driven execution of a business scenario QoS-aware and policy-adhering exception
management techniques. The component undertaking this responsibility is the
Alternative Service Operation Bind (ASOB).

BPEL Scenario
with QoS
assignments

Web Services
Platform

WS-BPEL Orchestrator

(2)

Consumer

(3)

BPEL scenario
invocation +
Parameters

Alternate Service Operation Binding

(4)
Web service
 invocation

(service spec,
parameters) +

QoS specs

(12)
Results or

Exception or
policy exception

(13)
Results or

failure

Service
repository

(e.g. Meteor-S)

Alternate services
locator

(6)
Query equivalent

services

(7)
List of

equivalent
services +

QOS

Service binder &
invoker

WS-1 WS-n...WS-2
Web Service

Implementations

(9) Filtered list of services,
parameters

(10) Invocation (11) Results or system-related
exception or business logic exception

ASOB-aware
BPEL scenario

(1)

ASOB
preprocessor

Consumer
session memory

 (5) Query existing
binding

XSLT
repository

up
da

te

Filtering and
ranking module

(8) List of equiv. operations +
parameters +QoS specs

Fig. 1. Overall System Architecture

The BPEL scenario (SC) as crafted by the BPEL designer is processed by the

ASOB preprocessor, which produces an ASOB-aware BPEL scenario (SCASOB) as
output, so that for each service, the ASOB middleware calculates an overall score
which takes into account all the operations of the service that are listed in the BPEL
scenario and the respective QoS weights that the client has specified at the pre-
procession phase.

 ∑ ∑
∈ ∈

=
Opsop tatttr

attrwopWSWS opQoSattrSc
sec,...},{cos

,)(* (1)

Depending on the score of each service, in case of a failure, ASOB replaces the
failed one with the service that owns the highest score Sc. The interested reader will
find in more depth the main processing of the ASOB framework at the main
dissertation text.

3 Results and Discussion

The contribution of the ASOB framework to the field is as follows:

1. it allows the BPEL scenario designer to specify the desired QoS parameters for
each service. These parameters are specified through standard BPEL variables,
thus the designer may examine scenario input parameters for setting them, tuning
thus the adaptation of the particular BPEL scenario execution to the desires and
needs of the scenario consumer.

2. it does not require any modification to the BPEL syntax or semantics.
3. it takes the execution flow specified by the designer as granted, and optimizes

service selection within this flow, contrary to service composition approaches
which define this flow dynamically. This is an important aspect in cases where
execution flow is carefully crafted by the designer to reflect particularities of the
business process, specialized exception handlers are used, etc.

4. it incorporates exception handling as an integral part of the adaptation process,
allowing for switching to the “next best” solution when the originally selected
candidate is unavailable.

5. it does not use pre-determined alternative paths, but selects services dynamically
from a suitable registry.

6. It employs XSLT transformations through which the middleware bridges the
syntactic differences between the service originally specified in the BPEL
scenario and other services that are semantically equivalent but syntactically
different. This arrangement offers to the middleware a wider range of choices, for
the stage of deciding which service provider best matches the QoS specifications
given in the BPEL scenario.

7. it considers service selection affinity, enabling the conducting of multi-operation
transactions with providers.

8. it introduces the notion of the service replacement candidate, which relaxes the
requirements for service equivalence. Service replacement candidates are
computed for the context of a particular BPEL scenario and takes into account
only the operations used in the scenario and not all operations offered by the
services. This arrangement enables the middleware to avoid cases where some
operation that is not used in a scenario breaks the equivalence of two services, and
thus disallows the consideration of some alternates.

9. it elaborates on the management of consumer session memory, which supports the
maintenance of service selection affinity.

10. it provides full details for the algorithms used by the middleware to process web
service invocations.

11. it includes a partner link-level strategy for deciding which is the service provider
that best matches the QoS profile specified in the BPEL scenario; the partner link-
level strategy can significantly improve the service provider selection when a
BPEL scenario uses multiple operations from the same service provider, while it
may also prevent some cases where the greedy strategy is unable to find any
appropriate execution path for servicing the scenario.

Algorithms in pseudo-code can be found in the main text of this dissertation.

3.1 Performance Evaluation and Results

Figure 2 illustrates the ASOB internal process time for single web service operation
invocations, against the overall service repository (SR) size and the number of
equivalent services present in the repository. The overhead increment, on the other
hand, when the number of alternate services increases is considerable, mainly
affecting the sorting of the candidate operation list (typically of complexity O(n *
log(n)).

0

20

40

60

80

100

120

140

10
00

0
20

00
0
30

00
0
40

00
0
50

00
0
60

00
0
70

00
0
80

00
0
90

00
0

10
00

00

11
00

00

12
00

00

13
00

00

14
00

00

15
00

00

db-size in recs

Ti
m

e
in

 m
s

10 qws 1000 qws 2000 qws 3000 qws 4000 qws 5000 qws

Fig. 2. ASOB internal process time

Table 3. XSLT transformation overhead

concurrent ASOB invocations 20 40 60 80 100

time in msecs (average per transformation) 17.8 18.5 34.5 46.2 61.7

Table 3 shows the overhead incurred by applying XSLT transforms on request and

response SOAP messages, to resolve syntactical differences between operations that
are semantically but not syntactically equivalent

Figure 3 illustrates the number of operation invocations that can be served in a unit
of time against the number of concurrent invocations when (a) services are directly
invoked and (b) when invocations are made through the ASOB middleware.

Invocation Throughput

0

10

20

30

40

50

1 10 20 30 40 50 60 70 80 90 100
concurrent invocations

ex
ec

ut
io

ns
/s

ec

direct invocations ASOB-mediated invocations, no XSLT
ASOB-mediated invocations, with XSLT

Fig. 3. Invocation throughput

BPEL Execution Time

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000
14000
15000

0 10 20 30 40 50 60 70 80 90 100
concurrent BPEL executions

Ti
m

e
(in

 m
se

cs
)

BPEL execution ASOB-mediated BPEL execution, no XSLT ASOB-mediated BPEL execution + XSLT

Fig. 4. BPEL scenario execution time

Figure 4 illustrates the BPEL execution time of a BPEL scenario containing two
web service invocations against the number of concurrent executions. The increment
is very small (4%-9% without XSLT transformations, 8-16% with XSLT
transformations).

Figure 5 depicts the BPEL scenario execution throughput against the number of
concurrent executions. The behavior is consistent with the previous diagrams.

BPEL execution throughput

4

5

6

7

8

9

10

10 20 30 40 50 60 70 80 90 100
concurrent BPEL executions

ex
ec

ut
io

ns
/s

ec

No ASOB ASOB-mediated, no XSLT ASOB-mediated with XSLT

Fig. 5. ASOB-mediated vs. direct invocation BPEL scenario execution throughput

4 Conclusions

Building processes that are able to cope with the dynamics of real world requirements
has always been a challenging endeavor. The adoption of BPEL in the design and
execution phases of business processes has already obtained gains in speed and
reliability, but has not been able insofar to successfully address issues arising form the
dynamic nature of the processes themselves, the diversity in user requirements and the
inherent instability of distributed environments, which leads to a number of system
faults.

The framework presented in this dissertation addresses these shortcomings by
employing a dynamic service selection mechanism based on QoS criteria for a BPEL
process; these criteria are defined by the BPEL scenario designer and can be set to
reflect the end-user requirements. Service attributes are stored in a repository that
stores the services’ functional and non-functional (qualitative) characteristics.
Updating the repository suffices to reflect changes in the real world (service
introductions or withdrawals, changing of services’ QoS aspects etc). An exception
resolution mechanism for faults owing to systemic reasons is also included, easing
thus the work of the BPEL designer.

The strategy employed by the presented framework for binding a partner link to a
specific service provider can follow either (a) a greedy strategy, according to which
the QoS aspects of only the first operation invoked for a particular partner link are
examined to determine the binding or (b) a partner link-level strategy, which reviews
all invocations collectively, avoiding suboptimal bindings and cases where the greedy
strategy leads to inability to successfully conclude the BPEL scenario.

Open issues in this field includes a detailed evaluation of the partner link-level
strategy regarding (a) its performance, i.e. the time needed to determine the optimal
binding for a partner link and (b) the quality of the execution plans it produces.
Execution plan quality is a twofold aspect involving (i) the degree to which the
bindings performed by the middleware correspond to the QoS specifications listed in
the BPEL scenario and (ii) the number of cases where the partner link-level strategy
bindings lead to successful execution of the BPEL scenario, contrary to the bindings
of the greedy algorithm. Moreover, it could be investigates the collection and
exploitation of statistics regarding the number of invocations for each particular
operation in the context of a specific BPEL scenario, so as to use a more elaborate
weight assignment in the phase of calculating the suitability scores of different
bindings.

References
1. M. P. Papazoglou, P. Traverso, Leymann, Service-Oriented Computing: State of the Art

and Research Challenges. IEEE Computer (40) 11, Nov. 2007, pp. 38-45.
2. M. Juric, Business Process Execution Language for Web Services BPEL and BPEL4WS

(2nd Edition), Packt Publishing, 2006, ISBN-10: 1904811817.
3. Newcomer, E., Lomow, G.: Understanding SOA with Web Services, Addison-Wesley,

(2005)
4. F. Leymann, D. Roller, and M. T. Schmidt, Web services and business process manage-

ment, Available at: http://www.research.ib m.com/journal/sj/412/leymann.html)
5. Martin Hepp, Frank Leymann, John Domingue, Alexander Wahler, and Dieter Fensel Se-

mantic Business Process Management: A Vision Towards Using Semantic Web Services
for Business Process Management, IEEE International Conference on e-Business Engi-
neering, 2005, p:535-540

6. Liangzhao Zeng, Boualem Benatallah, Anne H.H. Ngu, Marlon Dumas,Jayant Kalag-
nanam, and Henry Chang. Qos-aware middleware for web services composition. IEEE
Trans. Softw. Eng., 30(5):311–327, 2004.

7. L. Zeng, Dynamic Web Services Composition, PhD thesis, Univ. of New South Wales,
2003.

8. H.C.L and, K. Yoon, Multiple Criteria Decision Making,” Lecture Notes in Economics
and Mathematical Systems. Springer-Verlag, 1981.

9. K. Verma, R. Akkiraju, R. Goodwin, P. Doshi, J. Lee, On Accommodating Inter Service
Dependencies in Web Process Flow Composi-tion, AAAI Spring Symposium PP: 37-43
on Semantic Web Ser-vices.

10. Hassan Issa, Chadi Assi, Mourad Debbabi, QoS-Aware Middleware for Web Services
Composition - A Qualitative Approach, in Proceedings of the 11th IEEE Symposium on
Computers and Communications, 2006

11. Liangzhao Zeng; Hui Lei; Junjang Jeng; Jen-Yao Chung; Benatallah, B. Policy-driven exception-
management for composite Web services, E-Commerce Technology, 2005. CEC 2005. 7th IEEE Inter-
national Conference on Volume , Issue , 19-22 July 2005, 355 – 363

12. Liangzhao Zeng, JunJan Jeng, Santhosh Kumaran and Jayant Kalagnanam, Reliable Exe-
cution Planning and Exception Handling for Business Process, LNCS, Springer, Tech-
nologies for E-Services, 2003. p.119-130

13. Kochut, K. J.: METEOR Model version 3. Athens, GA, Large Scale Distributed Information Systems
Lab, Department of Computer Science, University of Georgia (1999)

14. K. Verma, K. Sivashanmugam, A. Sheth, A. Patil, S. Oundhakar, and J. Miller, METEOR-
S WSDI: A Scalable Infrastructure of Registries for Semantic Publication andDiscovery of
Web services. Journal of Information Technology and Management, Special Issue on Uni-
versal Global Integration, Vol. 6, No. 1 (2005) 17-39

15. Cimpian, E., Moran, M., Oren, E., Vitvar, T., Zaremba, M.: Overview and Scope of
WSMX. Technical report, WSMX Working Draft,
http://www.wsmo.org/TR/d13/d13.0/v0.2/

16. D. Roman, D2v1.2 Web Service Modeling Ontology (WSMO). WSMO Final Draft April
13, 2005. Available at: http://www.wsmo.org/TR/d2/v1.2/20050413/

17. DAML+OIL, Available at: http://www.daml.org/ 2001/03/daml+oil-index.html
18. Dellarocas, C. and M. Klein, A knowledge-based approach for handling exceptions in

business processes, Information Technology and Management 2000.
19. O’Sullivan J., Edmond D., and A. Ter Hofstede (2002), What is a Service?: Towards Ac-

curate Description of Non-Functional Properties, Distributed and Parallel Databases, 12.
20. Kareliotis C., Vassilakis C., Rouvas E., Georgiadis P. (2008), Exception Resolution for

BPEL Processes: a Middleware-based Framework and Performance Evaluation. Procs of
iiWAS 2008, Linz, Austria.

21. Kareliotis C., Vassilakis C., Georgiadis P. (2007), Enhancing BPEL scenarios with Dy-
namic Relevance-Based Exception Handling, Proceedings of the ICWS 2007, pp.751-758.

22. Kareliotis C., Vassilakis C., Rouvas E., Georgiadis P. (2009), QoS-Driven Adaptation of
BPEL Scenario Execution. Procs of ICWS 2009, July 6-10, 2009, Los Angeles, CA, USA.

23. Christos Kareliotis, Costas Vassilakis, Stathis Rouvas, Panagiotis Georgiadis. QoS-Aware
BPEL Scenario Execution and Adaptation: A Middleware-Oriented Framework. Extended
version invited from ICWS09 in International Journal on Web Services Research. JWSR.
2009.

24. Kareliotis Christos, Vassilakis Costas, Georgiadis Panagiotis: Towards Dynamic, Rele-
vance-Driven Exception Resolution in Composite Web Services. Proceedings of Interna-
tional Conference on Object Oriented Programming, Systems, Languages and Applications
2006.

25. Costas Vassilakis, Kareliotis Christos: A framework for adaptation in secure web services.
4th Mediterranean Conference on Information Systems 2009. MCIS, Athens, Greece

http://www.wsmo.org/TR/d13/d13.0/v0.2/
http://www.wsmo.org/TR/d2/v1.2/20050413/

