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Abstract. This work examines the problem of training-based channel
estimation in multiple antennae and multicarrier systems. In the case
of multiple antennae systems, optimal training sequences w.r.t. mini-
mizing the estimation mean square error are derived for optimal linear
estimators that use partial knowledge about the state of the unknown
channel, additive noise and multiuser interference. This partial knowl-
edge refers to the first and second order statistics of the aforementioned
random processes. Two estimators accompanied by their optimal training
sequences are proposed: the Bayesian Minimum Disturbance Estimator
(BMDE) and the Two-Sided Bayesian Minimum Disturbance Estimator
(2S BMDE). Their performances and feedback requirements are inves-
tigated both analytically and via simulations, while certain properties
of the Toeplitz matrices are explored in order to reduce the feedback
requirements for both schemes. In the second part of this work the
Orthogonal Frequency Division Multiplexing (OFDM) system using a
Quadrature Amplitude Modulation (QAM) and a cyclic prefix (CP) is
compared with the OFDM system employing an Offset QAM (OQAM)
transmission strategy, w.r.t. to the channel estimation performances of
the optimal preambles for both systems. Optimal training sequences are
derived for both systems, while their fundamental differences and simi-
larities are highlighted via this exposition.

1 Introduction

A crucial task in the operation of a transmission system is the availability of
exact knowledge about the effect of the physical channel on the transmitted
signal. Exact knowledge of this effect offers the possibility of coherent detection
of the transmitted symbol, which is superior than semicoherent and noncoherent
methods [10]. In the case of multiple antennae systems, this knowledge is more
difficult to be acquired, while it is crucial to be obtained in order to exploit the
huge capacity that is promised by theoretical studies of these systems [11, 1].
In the case of multicarrier systems, accurate channel knowledge is desirable for
similar reasons.

Due to complexity and pure signal processing reasons, the estimators that
we usually study in the context of practical transmission systems are linear.
? Dissertation Advisor: Sergios Theodoridis, Professor



The complexity justification is almost obvious, while from the aspect of signal
processing the justification is based on the fact that nonlinear transformations
of a certain input spectrum lead to undesirable generation of new frequencies in
the output spectrum. The optimal algorithms derived in this work belong to the
general class of parametric estimation methods. They are based on a model for
the transmitted and received signal, while the unknown channel is a parameter
of this model.

This work is divided in two parts. The first part examines the problem of
optimal channel estimation w.r.t. the mean square error (MSE) in multiple an-
tennae systems. It is used to call these systems Multiple Input Multiple Output
(MIMO), although the term MIMO may refer to any system (e.g. a filter) that
possess multiple inputs and multiple outputs. The great interest on these sys-
tems is based on the fact that theoretical results of the current and the previous
decade showed that these systems can increase greatly the information rate with-
out sacrificing spectral efficiency or increasing the power. Accurate knowledge
of the channel affects the achievable capacity. Two estimators with their opti-
mal training sequences are proposed in this context: The Bayesian Minimum
Disturbance Estimator (BMDE) and the Two Sided Bayesian Minimum Distur-
bance Estimator (2S BMDE). For the latter estimator, it is shown that it has
less feedback requirements than the former with a comparable performance. The
second part deals with the same problem but in multicarrier (MC) systems. The
Cyclic Prefixed Orthogonal Frequency Division Multiplexing (CP-OFDM) sys-
tem transmitting a Quadrature Amplitude Modulation (QAM) and the OFDM
system implemented based on the Offset QAM modulation (OFDM/OQAM) are
compared from the aspect of preamble-based channel estimation performance.
To this end, three different preambles are defined: the sparse, the full and the
sparse-data. Detailed definitions of these are given later on. It is showed that
the sparse sparse preamble containing Lh equispaced and equal or equipowered
pilot tones for the CP-OFDM and OFDM/OQAM systems, respectively, is the
optimal one when all preambles transmit the same training power. Then, the
sparse preambles for these systems are compared and it turns out that the opti-
mal sparse preamble for the OFDM/OQAM performs 3− 9 dB better that the
corresponding optimal preamble for the CP-OFDM system. Additional unknown
results accompanied the above analysis.

2 MIMO Signal Model

Assume that we have a MIMO system with MT transmit and MR receive anten-
nae for any use1. There L interfering sources in the communication between the
desired user and the desired receiver. All the MIMO channels involved are as-
sumed to be quasi-stationary for the duration of one block, while the can change
randomly from a block to another (block fading). These channels are also con-
sidered to be narrowband (flat fading). The nth received vector (n is a temporal

1 This assumption can be eliminated. It is maintained here for simplicity.



index) is given by:

y(n) = H0x0(n) +
L∑

i=1

Hixi(n) + w(n) (1)

y(n),w(n) are MR × 1 vectors, xi(n), i = 0, 1, . . . , L are MT × 1 vectors and
Hi, i = 0, 1, . . . , L are MR × MT channel matrices. The quantities with index
i = 0 correspond to the desired user and the rest of the indices to the interferers.
Hi contains the channel gains between the receiver and the ith user. xi(n) is the
vector signal transmitted at the nth time instant by the array of the ith user.
We assume that the transmitted signals have zero mean and they are spatially
and/or temporally correlated. They are considered uncorrelated among them
and w.r.t. the additive noise vector w(n). Additionally, w(n) is considered to
have zero mean.

3 The Unvectorized Linear Minimum Mean Square Error
(LMMSE) Estimator

Suppose that M time slots per frame are devoted for training. Grouping together
the received vectors in a MR×M matrix, the aggregated signal model becomes:

Y =
[
y(n) y(n− 1) · · · y(n−M + 1)

]

= H0

[
x0(n) x0(n− 1) · · · x0(n−M + 1)

]

+
[
H1 H2 · · · HL

]
︸ ︷︷ ︸

Hint




x1(n) x1(n− 1) · · · x1(n−M + 1)
x2(n) x2(n− 1) · · · x2(n−M + 1)

...
...

. . .
...

xL(n) xL(n− 1) · · · xL(n−M + 1)




︸ ︷︷ ︸
Xint

+
[
w(n) w(n− 1) · · · w(n−M + 1)

]
︸ ︷︷ ︸

W

or
Y = H0X0 + H intX int + W︸ ︷︷ ︸

E

= H0X0 + E (2)

where the matrix E = H intX int + W contains the total interference (multiuser
interference plus thermal noise) at the receiver for the duration of time slots.
The matrix X0 is assumed to be known to the receiver and it will be called the
training matrix.

Our goal is to estimate H0. We need as many measurements as our unknowns.
Thus, we assume that ≥ MT . Suppose that C is the estimating filter of size M×
MT , which is applied to the matrix Y from the right. The minimum mean square
error (MMSE) criterion can be formulated here with the use of the Frobenius
norm as follows:

min
C

E
[‖Y C −H0‖2F

]
(3)



and the solution, C, is given by the Wiener filter [8, 2]:

C = R−1
Y 0

RY H0
(4)

where RY = E
[
Y HY

]
and RY H0

= E
[
Y HH0

]
. Using the eq. (2), we can

derive C as:
C = R−1

E XH
0

(
X0R

−1
E XH

0 + R−1
H0

)−1

(5)

where RE = E
[
EHE

]
and RH0

= E
[
HH

0 H0

]
. Also,

min
C

E
[‖Y C −H0‖2F

]
= tr

[(
X0R

−1
E XH

0 + R−1
H0

)−1
]

(6)

4 The BMDE

The MT ×M training matrix X0, as it is incorporated in the signal model (2),
can be designed in such a way that the MMSE, which occurs by the processing
of the received data by C to be reduced further. To eliminate the possibility of
trivial solutions, we impose a training energy constraint on X0. An optimization
problem can be formulated in this way, which is given by:

minX0
tr

[(
X0R

−1
E XH

0 + R−1
H0

)−1
]

(7)

s.t. tr
[
X0X

H
0

]
≤ ET (8)

where ET is the available training energy. We observe that the objective function
(7) equals the sum of the inverse eigenvalues of X0R

−1
E XH

0 +R−1
H0

. Suppose that
RH0

= QKQH , where Q is a unitary matrix and K = diag (κ1, κ2, · · · , κMT ) is
the EVD of channel autocorrelation matrix. In addition, RE = GΛGH , where G
is unitary and Λ = diag (λ1, λ2, · · · , λM ), is the interference autocorrelation. We
assume that κ1 ≥ κ2 ≥ · · · ≥ κMT and that λ1 ≤ λ2 ≤ · · · ≤ λM . The eigenvalues
of X0R

−1
E XH

0 are µ1, µ2, . . . , µMT and we assume that µ1 ≥ µ2 ≥ . . . ≥ µMT .
The selection of the optimal training matrix for problem (7)-(8) is summarized
bellow:

Proposition 1 The optimal training matrix for the problem (7)-(8) is:

X∗
0 = Q




√
µ∗1λ1 0 · · · 0 0 · · · 0
0

√
µ∗1λ1 · · · 0 0 · · · 0

...
...

. . .
...

...
. . .

...
0 0 · · · √

µ∗MT
λMT 0 · · · 0


 GH (9)

where

µ∗i =





ET +
∑m∗

j=1
λj/κj

√
λi

∑m∗
j=1

√
λj

− 1
κi

, i = 1, 2, . . . ,m∗

0, i = m∗ + 1, . . . ,MT

(10)



are the optimal values for the mui’s and m∗ is chosen so that all the µi’s to be
positive.

m∗ = max

{
m ∈ {1, 2, . . . ,MT } :

√
λm

κm

m∑

i=1

√
λi −

m∑

i=1

λi

κi
< ET

}
(11)

5 The Unvectorized LMMSE in Two Steps

The unvectorized LMMSE in the last section can be seen to occur as a two-step
procedure. In the first step, the interference is minimized under a zero forcing
(ZF) constraint, which aims at the preservation of the desired channel after the
minimization has taken place. We call this first filter C1 and it is a M × MT

matrix, which applies to Y from the right :

Y 1
4
= Y C1 = H0X0C1 + EC1 = H0X0C1 + E1 (12)

where E 4
= EC1 is the residual interference at the filter’s output. The problem

of the optimal selection of C1 is formulated as follows:

min
C1

E(‖E1‖2F )

s.t. X0C1 = IMT

Taking the constraint into account, we have:

Y 1 = H0 + E1 (13)

The last equation shows that Y 1 is a first estimate of the unknown channel and
it holds: E [Y 1] = H0. I.e. in this first step, the unknown channel is considered
to be deterministic.

The solution of the last problem is known to be given by [2]:

C1 = R−1
E XH

0 (X0R
−1
E XH

0 )−1 (14)

if and only if X0 is full row rank.
We can further refine this first estimate using a second filter C2, which is

chosen through the unconstrained problem E[‖Y 1C2 − H0‖2] as a MT × MT

matrix. This filter incorporates reduces the MSE by incorporating in the final
channel estimate our knowledge about the statistics of the channel. The solution
of the last problem is the Wiener filter [2, 8]:

C2 = R−1
Y 1

RY 1H0
(15)

where RY 1

4
= E(Y H

1 Y 1) and RY 1H0

4
= E(Y H

1 H0). Using the above equations,
it is:

C2 = [RH0
+ (X0REXH

0 )−1]−1RH0
(16)

We can easily show that the composition of the two steps leads to the unvector-
ized LMMSE estimator:



Proposition 2 The composition of the above two steps is given by the expres-
sion:

C1C2 = R−1
E XH

0 (X0R
−1
E XH

0 + R−1
H0

)−1 = C

5.1 The 2S BMDE

In the last section, the filters C1,C2 are applied on the measurement matrix
from the right. Observing eq. (13), one can easily verify that the Wiener filter C2

does not need to be applied on Y 1 from the right. We can define a corresponding
filter C̄2 which will be applied on Y 1 from the left side. This modification leads
to an alternative unvectorized LMMSE estimator and allows a great reduction
of the feedback requirements of the BMDE. It also reduces the transmitter’s and
receiver’s complexity, while it usually maintains a comparable perfromance.

The first step filter remains as it is. The filter of the second step will be given
by:

Ȳ 2 = C̄2Y 1 = C̄2H0 + C̄2E1

The selection of C̄2 is performed via the following optimization problem:

min
C̄2

E
(‖C̄2Y 1 −H0‖2

)

The solution of this problem is again the Wiener filter, which now has the form:

C̄2 = R̄Y 1H0
R̄
−1
Y 1

, (17)

where R̄Y 1

4
= E

(
Y 1Y

H
1

)
and R̄Y 1H0

4
= E

(
Y 1H

H
0

)
. After some algebra,

C̄2 = R̄H0

(
R̄H0

+ R̄E1

)−1

(18)

We can also write:

C̄2 = R̄H0

(
R̄
−1
E1

R̄H0
+ IMR

)−1

R̄
−1
E1

=
(
R̄
−1
H0

+ R̄
−1
E1

)−1

R̄
−1
E1

The MSE will be given by:

min E
(‖C̄2Y 1 −H0‖2

)
= tr

[
R̄H0

− R̄H0
(R̄H0

+ R̄E1
)−1R̄H0

]

= tr
[
(R̄−1

H0
+ R̄

−1
E1

)−1
]

(19)

where we have used the matrix inversion lemma.
The optimal training matrix can be selected as:

min
X0

tr
[
(R̄−1

H0
+ R̄

−1
E1

)−1
]

(20)

s.t. tr
[
X0X

H
0

]
≤ ET (21)



In the general case, the dependence on trace operators makes the last problem
very difficult to be solved analytically. To achieve an analytical solution we will
relax the above problem to:

min
X0

tr
(
R̄E1

)
(22)

s.t. tr
(
X0X

H
0

)
≤ ET (23)

The solution of this problem is summarized below:

Theorem 1 A class of training matrices which optimizes the criterion (22),
(23) is given by the expression:

X̄
∗
0 = U




σ1 0 · · · 0 0 · · · 0
0 σ2 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · σMT
0 · · · 0


GH (24)

where

σi =

√√√√
√

λi∑MT

j=1

√
λj

ET , i = 1, 2, . . . ,MT (25)

and U any unitary MT ×MT matrix.

6 CP-OFDM and OFDM/OQAM: A Fair Comparison
Framework

Suppose that we want to built a transmission system based on blocks of data.
If we desire to estimate the channel with the use of training sequences, then at
the beginning of each block we introduce some symbols or a priori known data
vectors devoted for training. This part of the block is called preamble.

For the CP-OFDM system, the preamble will consist of a complex training
vector, which is a common assumption in the litterature [9]. Each complex CP-
OFDM symbols is equivalent to two real vector symbols in the OFDM/OQAM
system. We consider an equivalent preamble for the OFDM/OQAM system,
which consists of a nonzero first training vector followed by a zero second vector.

Clarifying the above, we have:

Definition 1 Assume that a preamble consists of a certain number of train-
ing vectors and one among them is nonzero. This nonzero vector will be called
preamble vector.

Assume that T1, T2 are the sampling periods at the output of the SFBs for the
two OFDM systems2 and that the minimum possible number of output samples
2 Either CP-OFDM or OFDM/OQAM



at the SFB output for the reconstruction of the preamble vector at the receiver
is R1, R2 for each system respectively. Then the following quantity will be useful
in the definition of a fair comparison framework of different preambles:

Definition 2 The Training Power Ratio (TPR) for the preambles of the two
systems is defined as:

TPRp1,p2 =
1

R1T1
Ep1

1
R2T2

Ep2

where Ep1 , Ep2 are the energies of the corresponding preambles at the SFB outputs
for the minimum required sample numbers R1, R2 respectively.

We observe that if we define different preambles within the same system, then
T1 = T2 and the sampling periods can be neglected from the last definition. We
can now define a fair comparison framework.

Suppose that p1, p2 are two different preambles in two systems. To guarantee
a fair comparison among these preambles, it necessary that TPRp1,p2 = 1. In
other words, we require that both systems put the amount of power in the
training data at the transmit antenna.

7 Summary of Definitions and Useful Results

We use the assumption that the ratio of the number of subcarriers, M , in the
systems over the channel length Lh is an integer number and a power of two3 If
M is selected to be a power of 2, the last can always be achieved through zero
padding of the channel.

Definition 3 Sparse preamble vector is a M × 1 training vector, which consists
of Lh isolated pilot tones and nulls to the rest of the positions.

Definition 4 A preamble vector will be called full if it contains pilot symbols
on all subcarriers.

Definition 5 A preamble vector with Lh isolated pilot symbols and data symbols
to the rest of the positions will be called sparse-data preamble vector.

The rest of the results will be useful.

Theorem 2 For the CP-OFDM system, the sparse preamble that minimizes the
MSE of the channel frequency response (CFR) estimates subject to an energy
constraint both on the useful part of the signal as well as on the CP is the one
containing equispaced and equal pilot symbols.

Even if the last result holds for the full preamble vector as well, we can show
the following result:

3 FFT implementation of the DFT.



Theorem 3 There full preambles which are MSE-optimal subject to an energy
constraint both on the useful part of the signal and the CP which contain simply
equipowered symbols.

For the OFDM/OQAM system, the corresponding results are:

Theorem 4 For the OFDM/OQAM, the sparse preamble vector which mini-
mizes the MSE of the CFR estimates subject to an enery constraint is built with
equispaced and equipowered pilot symbols.

Theorem 5 Full OFDM/OQAM preamble vectors with equal symbols are locally
MSE-optimal under an energy constraint. Their global optimality can be shown
when the enery constraint is translated to the SFB input.

Result: It can be proved that the sparse preambles are MSE-optimal when
compared to full and sparse-data preambles carrying the same training energy.
Therefore, the comparison between CP-OFDM and OFDM/OQAM can be per-
formed based on their optimal sparse preambles under the same transmit training
power.

8 OFDM/OQAM Sparse Preamble vs. CP-OFDM Sparse
Preamble

We may neglect the mathematical analysis for brevity and simply give the final
expression that relates the MSE’s achieved by the optimal sparse preambles of
the two systems, when both systems transmit the same training power:

MSEs
OFDM/OQAM =

M + Lh − 1
Lg

MSEs
CP−OFDM

where Lg is the length of the prototype pulse used by the OFDM/OQAM sys-
tem and it is usually given by Lg = KM , where K ∈ {1, 2, 3, 4, 5} is called
overlapping factor. For example, suppose that Lh = 32. Then, for Lg = M , the
CP-OFDM sparse preamble is better than the corresponding OFDM/OQAM
sparse preamble, but for Lg = KM with 2 ≤ K ≤ 5, the OFDM/OQAM sparse
preamble is 3− 9 dB better.

9 Simulations

9.1 BMDE and 2S BMDE

The performance of the analyzed schemes is demonstrated in this section via
a simulation result for a wide range of SINRs and for a certain system setup
due to space limitations. We assume three interferers (i.e., L = 3) with transmit
array size (MT ) the same as that of the desired user. All channel matrices are
generated as [12]

Hi = R1/2
ri

Hwi
R

1/2
ti

,



where Hwi
, i = 0, 1, . . . , L is an uncorrelated channel, represented by an MR ×

MT matrix of i.i.d. zero mean, unit variance, circularly symmetric complex
Gaussian entries, and R

1/2
ti

and R1/2
ri

are Hermitian square roots of the ith
transmit and receive fade correlation matrices, respectively. The fading correla-
tion matrices follow the exponential model [?], that is, they are built as Hermitian
with entries:

Ri,j = rj−i, j ≥ i

where r is the (complex) normalized correlation coefficient with magnitude ρ =
|r| < 1. The correlation strengths for the receive and transmit sides of the desired
channel will be denoted by ρr and ρt, respectively. Each interfering source is
generated as a linearly filtered i.i.d. QPSK sequence.

Remark that the 2S B-MDE is the only one, among the schemes under study,
which employs the receive fading correlation matrix. This feature suggests that
there might be cases where the B-MDE is outperformed by the two-sided scheme,
namely when ρr À ρt. In Fig. 1 we demonstrate such a scenario. These results
show that in cases that the receive correlation is significantly stronger than the
correlation at the transmit side, the 2S B-MDE can provide the best performance
of all the schemes, while being also the most economic one in the amount of
information to be fed back. This holds for both the optimal schemes and their
sub-optimal variants.

Remark: In this figure, the GM/LS estimator is a common name for the
Gauss-Markov and Least Squares Estimators which is shown in this thesis that
for their optimal training they coincide. The suboptimal variants of the schemes
use DFT matrices of proper dimensions as the modal matrices of the interference
and channel correlation matrices.

9.2 CP-OFDM vs. OFDM/OQAM

The sparse preambles for the CP-OFDM and OFDM/OQAM systems are com-
pared in Fig. 2. The superiority of the OFDM/OQAM sparse preamble, when
the entire transmit pulse duration is considered, is evident. The analytical re-
sults can be seen to be approximately verified. Thus, for Fig. 2a, the theoretical
difference is 10 log10 [KM/(M + Lh − 1)] ≈ 4.5 dB, while for Fig. 2b, it is ap-
proximately 5.9 dB. These values agree with the difference of the experimental
curves.
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