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Abstract. We consider sparse elimination theory in order to describe
the Newton polytope of the sparse resultant of a given overconstrained
algebraic system, by enumerating equivalence classes of mixed subdi-
visions. In particular, we consider specializations of this resultant to a
polynomial in a constant number of variables, typically up to 3. We sketch
an algorithm that avoids computing the entire secondary polytope; our
goal is that it examines only the silhouette of this polytope with respect
to an orthogonal projection. Moreover, since determinantal formulae are
not always possible, the most efficient general method for computing
resultants is by rational formulae. We propose a single lifting function
which yields a simple method for computing Macaulay-type formulae
of sparse resultants, in the case of generalized unmixed systems, where
all Newton polytopes are scaled copies of each other. As another appli-
cation of sparse elimination, we consider rationally parameterized plane
curves and determine the vertex representation of the implicit equation’s
Newton polygon.

1 Introduction

In this dissertation we study problems in sparse elimination: rational formulae
for sparse resultants via a single lifting function, computation of the Newton
polytope of the sparse resultant and of some of its interesting specializations,
and sparse implicitization of rational parametric plane curves. The sparse (or
toric) resultant captures the structure of the polynomials by combinatorial means
and constitutes the cornerstone of sparse elimination theory [5, chap.7],[19,29].
It is an important tool in deriving new, tighter complexity bounds for system
solving, Hilbert’s Nullstellensatz, and related problems. These bounds depend
on the polynomials’ Newton polytopes and their mixed volumes, instead of total
degree, which is the only parameter in classical elimination theory. In particular,
if d bounds the total degree of each polynomial, the projective resultant has
complexity roughly dO(n), whereas the sparse resultant is computed in time
roughly proportional to the number of integer lattice points in the Minkowski
sum of the Newton polytopes.
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The sparse resultant is defined for an overconstrained system of n+1 Laurent
polynomials fi ∈ K[x±11 , . . . , x±1n ], in n variables over some coefficient ring K.
It is the unique, up to sign, integer polynomial over K which vanishes precisely
when the system has a root in the toric projective variety X defined by the
supports of fi, in which the torus (K)n is a dense subset.

2 Preliminaries

We now recall some crucial notions of sparse elimination theory. Given a poly-
nomial f , its support A(f) is the set of the exponent vectors corresponding to
monomials with nonzero coefficients. Its Newton polytope N (f) is the convex hull
of A(f), denoted CH(A(f)). Newton polytopes are the main tool that allows us
to translate algebraic problems into the language of combinatorial geometry. The
Minkowski sum A+B ofA,B ⊂ Rn is the setA+B = {a+b | a ∈ A, b ∈ B} ⊂ Rn.
If A,B are convex polytopes, then A+B is also a convex polytope. In what fol-
lows we will also denote the support of a polynomial fi as Ai and its Newton
polytope as Qi.

Let Q0, . . . , Qn be polytopes in Rn with Pi = CH(Ai) and Q their Minkowski
sum. We assume that Q is n-dimensional. A Minkowski cell of Q is any full-
dimensional convex polytope B =

∑n
i=0Bi, where each Bi is a convex polytope

with vertices in Ai. We say that two Minkowski cells B =
∑n
i=0Bi and B′ =∑n

i=0B
′
i intersect properly when the intersection of the polytopes Bi and B′i is

a face of both and their Minkowski sum descriptions are compatible.

Definition 1. A mixed subdivision of Q is any family S of Minkowski cells
which partition Q and intersect properly as Minkowski sums. A cell R is mixed,
in particular i-mixed or vi-mixed, if it is the Minkowski sum of n 1-dimensional
segments Ej ⊂ Qj and one vertex vi ∈ Qi: R = E0 + . . .+ vi + . . .+ En.

A mixed subdivision is called regular if it is obtained as the projection of the
lower hull of the Minkowski sum of lifted polytopes Q̂i := {(pi, ωi(pi)) | pi ∈ Qi}.
If the lifting function ω := {ωi . . . , ωn} is sufficiently generic, then the induced
mixed subdivision is called fine or tight, and

∑n
i=0 dimBi = dim

∑n
i=0Bi, for

every cell
∑n
i=0Bi. This construction method ensures that the lower hull facets

of the Minkowski sum of the lifted polytopes Q̂i, are projected bijectively onto
Q. Thus, every cell R of the mixed subdivision can be written uniquely as the
Minkowski sum R = F0+· · ·+Fn ⊂ Rn, where each Fi is a face of Qi. Two mixed
subdivisions are equivalent if they share the same mixed cells. The equivalence
classes are called mixed cell configurations [25].

A monomial of the sparse resultant is called extreme if its exponent vector
corresponds to a vertex of the Newton polytope N(R) of the resultant. The
following corollary of [28, Thm. 2.1], allows us to compute the extreme monomials
of the sparse resultant using tight regular mixed subdivisions.

Corollary 1. There exists a surjection from the mixed cell configurations onto
the set of extreme monomials of the sparse resultant.
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Fig. 1. Minkowski sum of two triangles (left) and construction of its regular
mixed subdivision (right).

Given supports A0, . . . , An, the Cayley embedding κ introduces a new point
set C := κ (A0, A1, . . . , An) =

⋃n
i=0(Ai × {ei}) ⊂ R2n, where ei are an affine

basis of Rn. The following proposition reduces the computation of regular tight
mixed subdivisions to the computation of regular triangulations.

Proposition 1. [The Cayley Trick]. There exists a bijection between the regular
tight mixed subdivisions of the Minkowski sum P and the regular triangulations
of C.

Regular triangulations are in bijection with the vertices of the secondary
polytope [19]. A bistellar flip is a local modification on a triangulation that leads
to a new one. The following theorem allows us to explore the set of regular
triangulations of a point set using bistellar flips.

Theorem 1. [19] For every set C of points affinely spanning Rd there is a
polytope Σ(C) in R|C|−d−1, the secondary polytope of C, such that its vertices
correspond to the regular triangulations of C and there is an edge between two
vertices if and only if the two corresponding triangulations are obtained one from
the other by a bistellar flip.

3 Basic results

3.1 Macaulay-type formulae for generalized unmixed sparse
resultants

A resultant is most efficiently expressed by a matrix formula: this is a generically
nonsingular matrix, whose specialized determinant is a multiple of the resultant.
Its degree in the coefficients of one polynomial equals the corresponding degree
of the resultant. For n = 1 there are matrix formulae named after Sylvester and
Bézout, whose determinant equals the resultant. Unfortunately, such determi-
nantal formulae do not generally exist for n > 1, except for specific cases, e.g.
[7,9,22]. Macaulay’s seminal result [24] expresses the extraneous factor as a minor



of the matrix formula, for projective resultants of (dense) homogeneous systems,
thus yielding the most efficient general method for computing such resultants.

Matrix formulae for the sparse resultant were first constructed in [1]. The
construction relies on a lifting of the given polynomial supports, which defines a
mixed subdivision of their Minkowski sum into mixed and non-mixed cells, then
applies a perturbation δ so as to define the integer points that index the matrix.
The algorithm was extended in [3,2,28]. In the case of dense systems, the matrix
coincides with Macaulay’s numerator matrix.

Extending the Macaulay formula to toric resultants had been conjectured in
[3,5,10,19,28]; it was a major open problem in elimination theory. D’Andrea’s
result [6] answers the conjecture by a recursive definition of a Macaulay-type
formula. But this approach does not offer a global lifting, in order to address the
stronger original conjecture [10, Conj. 3.1.19], [3, Conj. 13.1].

We give an affirmative answer to this stronger conjecture by presenting a
single lifting which constructs Macaulay-type formulae for generalized unmixed
systems, i.e. when all Newton polytopes are scaled copies of each other. We state
our main result:

Theorem 2. [12] The single lifting algorithm of Section 3.1 constructs a Ma-
caulay-type formula for the toric resultant of an overconstrained generalized un-
mixed algebraic system, by means of the lifting function of Definition 5.

Our method can be generalized to certain mixed systems: those with n ≤ 3,
as well as systems that possess sufficiently different Newton polytopes. A single
lifting algorithm is conceptually simpler and also easier to implement.

D’Andrea’s [6] recursive construction requires one to associate integer points
with cells of every dimension from n to 1. Our method constructs the matrix for-
mula directly, without recursion, by examining only n-dimensional cells. These
are more numerous than the n-dimensional cells in [6] but our algorithm defines
significantly fewer cells totally. The weakness of our method is to consider extra
points besides the input supports. Related implementations have been under-
taken in Maple, but cover only the original Canny-Emiris method [3], either
standalone1 or as part of library Multires2. We expect that our algorithm shall
lead to an efficient implementation of Macaulay-type formulae.

Let f0, . . . , fn be polynomials with supports A0, . . . , An ⊂ Zn and Newton
polytopes

Q0, . . . , Qn ⊂ Rn, Qi = CH(Ai),

where CH(·) denotes convex hull. A monomial with exponent a = (a1, . . . , an) ∈
Zn shall be denoted as xa, where x := x1 · · ·xn.

Our lifting shall induce a regular and fine (or tight) mixed subdivision of the
Minkowski sum

∑n
i=0Qi. Let Z be the integer lattice generated by

∑n
i=0Ai. The

Minkowski sum
∑n
i=0Qi is perturbed by a vector δ ∈ Qn, which is sufficiently

small with respect to Z, and in sufficiently generic position with respect to the

1 http://www.di.uoa.gr/∼emiris/soft alg.html
2 http://www-sop.inria.fr/galaad/logiciels/multires.html



Qi. The lattice points in E = Z ∩ (
∑n
i=0Qi + δ) are associated to a unique max-

imal cell of the subdivision, and this allows us to construct a matrix formula M
whose rows and columns are indexed by these points. In particular, polynomial
xp−aijfi fills in the row indexed by the lattice point p in Definition 2.

Definition 2. Let p ∈ E lie in a cell F0 + · · · + Fn + δ of the perturbed mixed
subdivision, where Fi is a face of Qi. The row content (RC) of p is (i, j), if
i ∈ {0, . . . , n} is the largest integer such that Fi equals a vertex aij ∈ Ai.

Our method is based on the matrix construction algorithm of [3,10]. For
completeness, we recall the basic steps:

1. Pick (affine) liftings Hi : Zn → R : Ai → Q, i = 0, . . . , n.
2. Construct a regular fine mixed subdivision of the Minkowski sum

∑n
i=0Qi

using liftings Hi.
3. Perturb the Minkowski sum

∑n
i=0Qi by a sufficiently small vector δ ∈ Qn, so

that integer points in
∑n
i=0Qi+ δ belong to a unique cell of the subdivision,

and assign row content to these points by Definition 2.
4. Construct resultant matrix M with rows and columns indexed by the previ-

ous integer points.

The main idea of both our and D’Andrea’s methods is that one point, say
b01 ∈ Q0, is lifted significantly higher. Then, the 0-summand of all maximal cells
is either b01 or a face not containing it. In D’Andrea’s case, facets not containing
b01 correspond to different subsystems where the algorithm recurses (each time
on the integer lattice specified by that subsystem). In designing a unique lifting,
the issue is that points appearing in two of these subsystems may be lifted
differently in different recursions. To overcome this, we introduce several points
cijs, each lying in a suitable face of Qi indexed by s, very close (with respect to
Z) to every bij , which is lifted very high at recursion i by D’Andrea’s method.
This captures the multiple roles bij may assume in every recursion step.

Single lifting Algorithm. Our algorithm directly generalizes the one given
in [3,10], and is based on the 4 steps described above. We modify step (1) and
define a new lifting function; moreover, we describe necessary adjustments to
the matrix construction and extend step (4) so as to produce the denominator
matrix of the Macaulay-type formula. The following three definitions suffice to
specify our algorithm.

We shall use E to index the rows (and columns) of the numerator matrix M ,
whereas the denominator shall be indexed by points lying in non-mixed cells.
We focus on generalized unmixed systems, where

Qi = kiQ ⊂ Rn,

for some n-dimensional lattice polytope Q and ki ∈ N∗, i = 0, . . . , n. Let the
vertices of Q be b0, . . . , b|A|, where Q = CH(A). We shall denote the vertices of
each Qi = kiQ, for i = 0, . . . , n, as bi1, . . . , bi|A|. Obviously, bij := kibj .



Definition 3. For i = 0, . . . , n−2, consider any (n−i)-dimensional face F
(i)
s ⊂

Q, where integer s indexes all such faces. Take any vertex bij ∈ kiF (i)
s , for any

valid j ∈ N. Let δijs ∈ Qn denote a perturbation vector such that:

1. bij + δijs lie in the relative interior of kiF
(i)
s ,

2. It is sufficiently small compared to lattice Z, and ‖δijs‖ � ‖δ‖, where ‖ · ‖
is the Euclidean norm and δ as above, and

3. It is sufficiently generic to avoid all edges in the mixed subdivision of
∑n
i=0Qi.

For an example of Definition 3 see Figure 2, where the (appropriately trans-
lated) δijs’s are depicted by arrows. We shall use the perturbation vectors of
Definition 3 to define extra points not contained in the input supports. Condi-
tion (2) of Definition 3 implies that, in the mixed subdivision induced by the
single lifting function β bellow, the cells created by the introduction of the extra
points will not contain integer points after we perturb the mixed subdivision by
δ. This can be checked at the end of the construction of the mixed subdivision.

Definition 4. We define points cijs ∈ Qi ∩ Qn, for i = 0, . . . , n − 2. Firstly,
set c011 := b01 + δ011 ∈ Q0 ∩ Qn where δ011 satisfies Definition 3. Now let

{cijs ∈ kiF (i)
s } be the set of points defined in Qi, where s ranges over all (n− i)-

dimensional faces F
(i)
s ⊂ Q and j over the set of indices of points in Qi. Then,

let F
(i+1)
u be a facet of F

(i)
s such that:

1. kiF
(i+1)
u does not contain any of the bij’s corresponding to the already defined

cijs’s, and

2. ki+1F
(i+1)
u does not contain any of the already defined c(i+1)l’s.

For each such facet choose a vertex b(i+1)j ∈ Ai+1, for some j, and a suitable
perturbation vector δ(i+1)ju satisfying Definition 3, and set c(i+1)ju := b(i+1)j +
δ(i+1)ju ∈ Qi+1 ∩Qn.

The previous definition implies a many-to-one mapping from the set of cijs’s to

that of bij ’s; it reduces to a bijection when restricted to a fixed face kiF
(i)
s ⊂ Qi

containing bij . For an application of Definition 4 for n = 2 see Figure 2 where
Q is the unit square. In this example, for illustration purposes, we define points
cijs also on edges of polytope Q1.

Definition 5. Let h0 � h1 � . . . � hn−1 � 1. The single lifting algorithm
uses sufficiently random linear functions Hi, i = 0, . . . , n, such that:

1� Hi(aij) > 0, and Hi � Ht, i < t,

where aij ∈ Ai and i, t = 0, . . . , n, j = 1, . . . , |Ai|. Define a global lifting β as
follows:

1. cijs 7→ hi, cijs ∈ kiF (i)
s ⊂ Qi, i = 0, . . . , n− 1; this is called primary lifting.

2. aij 7→ Hi(aij), aij ∈ Ai, i = 0, . . . , n.
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c134

Fig. 2. Two scenarios of an application of Def. 4 for 3 unit squares. Facets are
numbered clockwise starting from the left vertical edge

Let F β denote face F lifted under β. Now cβtjs, for all valid j, s, is much

higher, respectively lower, than any cβijs, for i > t, respectively i < t. The β-
induced subdivision contains edges with one or two vertices among the cijs, and

edges from the Qi. The vertex set of the upper hull of Qβi contains some or all

of the cβijs and the lifted vertices of Qi.
Figure 3 shows the mixed subdivisions of three unit squares and their Mink-

owski sum, induced by lifting β. Here, the perturbation vectors are not suffi-
ciently small compared to Z2 for illustration purposes.

Q0 Q1 Q2

∑2
i=0Qi

Fig. 3. The mixed subdivisions of 3 unit squares and their Minkowski sum in-
duced by lifting β

The matrix formula M constructed by our algorithm is indexed by all lattice
points in E . To decide the content of each row, every point is associated to a
unique (maximal) cell of the mixed subdivision according to Definition 2. The
t-mixed cells contain lattice points as follows:

p ∈ k0E0 + · · ·+ kt−1Et−1 + ctjs + kt+1Et+1 + · · ·+ knEn ∩ Z,



for edges Ei ⊂ Q spanning Rn. This gives unique writing

p = p0 + · · ·+ pt−1 + (btj + δtjs) + pt+1 + · · ·+ pn, pi ∈ Ai ∩ Ei.

Hence, the row indexed by p, as with matrix constructions in [3,6], contains a
multiple of ft(x):

xp0+···+pt−1+pt+1+···+pnft(x),

and the diagonal element is the coefficient of the monomial with exponent btj
in ft(x). Similarly, for the rows corresponding to lattice points in non-mixed
cells. The extraneous factor detM/Res(f0, . . . , fn) is the minor of M indexed by
points in E lying in non-mixed cells.

3.2 The Newton polygon of rational parametric plane curves

Implicitization is the problem of switching from a parametric representation of
a hypersurface to an algebraic one. It is a fundamental question with several ap-
plications, see [20]. We consider the implicitization problem for a planar curve,
where the polynomials in its parameterization have fixed Newton polytopes. We
determine the vertices of the Newton polygon of the implicit equation, or im-
plicit polygon, without computing the equation, under the assumption of generic
coefficients relative to the given supports, i.e. our results hold for all coefficient
vectors in some open dense subset of the coefficient space. The support of the
implicit equation, or implicit support, is taken to be all interior points inside the
implicit polygon.

This problem was posed in [32] but has received much attention lately. Ac-
cording to [30], “apriori knowledge of the Newton polytope would greatly facil-
itate the subsequent computation of recovering the coefficients of the implicit
equation [. . . ] This is a problem of numerical linear algebra . . . ”.

Previous work includes [15,16], where an algorithm constructs the Newton
polytope of any implicit equation. That method had to compute all mixed sub-
divisions, then applies Cor. 1. In [19, chapter 12], the authors study the resultant
of two univariate polynomials and describe the facets of its Newton polytope.
In [18], the extreme monomials of the Sylvester resultant are described. The
approaches in [15,19] cannot exploit the fact that the denominators in a rational
parameterization may be identical.

By employing tropical geometry, [30,31] compute the implicit polytope for
any hypersurface parameterized by Laurent polynomials. Their theory extends
to arbitrary implicit ideals. They give a generically optimal implicit support; for
curves, the support is described in [30, example 1.1].

More recently, in [17] the problem was solved in an abstract way by means
of composite bodies and mixed fiber polytopes. In [8] the normal fan of the
implicit polygon is determined. This is computed by the multiplicities of any
parameterization of the rational plane curve. The authors reduce the problem to
studying the support function of the implicit polytope and counting the number
of solutions of a certain system of equations. The latter is solved by applying
a refinement of the Kushnirenko-Bernstein formula for the computation of the



isolated roots of a polynomial system in the torus, given in [26]. As a corollary,
they obtain the optimal implicit polygon in the case of generic coefficients.

In [13], we presented a method to compute the vertices of the implicit polygon
of polynomial or rational parametric curves, when the denominators differ. We
also introduced a method and gave partial results for the case when denominators
are equal; both methods are described in final form in [14].

Our main contribution is to determine the vertex structure of the implicit
polygon of a rational parameterized planar curve, or implicit vertices, under the
assumption of generic coefficients. If the coefficients are not sufficiently generic,
then the computed polygon contains the implicit polygon. Our approach con-
siders the symbolic resultant which eliminates the parameters and, then, is spe-
cialized to yield an equation in the implicit variables. In the case of rationally
parameterized curves with different denominators (which includes the case of
Laurent polynomial parameterizations), the Cayley trick reduces the problem to
computing regular triangulations of point sets in the plane. If the denominators
are identical, two-dimensional mixed subdivisions are examined; we show that
only subdivisions obtained by linear liftings are relevant. These results also apply
if the two parametric expressions share the same numerator, or the numerator
of one equals the denominator of the other. We prove that, in these cases, only
extremal terms matter in determining the implicit polygon as well as in ensuring
the genericity hypothesis on the coefficients.

The following proposition collects our main corollaries regarding the shape
of the implicit polygon in terms of corner cuts on an initial polygon. A corner
cut on a polygon P is a line that intersects the polygon, excluding one vertex
while leaving the rest intact. φ is the implicit equation and N(φ) is the implicit
polygon.

Proposition 2. N(φ) is a polygon with one vertex at the origin and two edges
lying on the axes. In particular, for polynomial parameterizations, N(φ) is a
right triangle with at most one corner cut, which excludes the origin. For rational
parameterizations with equal denominators, N(φ) is a right triangle with at most
two cuts, on the same or different corners. For rational parameterizations with
different denominators, N(φ) is a quadrilateral with at most two cuts, on the
same or different corners.

Example 1. Consider the plane curve parameterized by:

x =
t6 + 2t2

t7 + 1
, y =

t4 − t3

t7 + 1
,

Our formulas yield vertices (7, 0), (0, 7), (0, 3), (3, 1), (6, 0), which define the ac-
tual implicit polygon (see Figure 4, left). Changing the coefficient of t2 to -1,
leads to an implicit polygon with four cuts which is contained in the polygon
predicted by our results. This shows the importance of the genericity condition
on the coefficients of the parametric polynomials.

An instance where the implicit polygon has 6 vertices is:

x =
t3 + 2t2 + t

t2 + 3t− 2
, y =

t3 − t2

t− 2
.



Our results yield implicit vertices (0, 1), (0, 3), (3, 0), (1, 3), (2, 0), (3, 2) which de-
fine the actual implicit polygon (see Figure 4, right).

Fig. 4. The implicit polygons of the curves of Example 1

3.3 The Newton polytope of the resultant and its specializations

We describe algorithms to compute the Newton polytope of the sparse resultant,
or resultant polytope, of an overconstrained system of polynomials. We rely on
Corollary 1 and 1 and following [25] it suffices to enumerate a subset of the ver-
tices of the secondary polytope associated with the input data, corresponding to
mixed cell configurations. The resultant polytope allows us to compute a super-
set of the support of the resultant by considering all integer points contained in
it; then we can reduce the computation of the resultant to linear algebra [4].

Corollary 1 establishes a surjection from the set of mixed cell configurations
onto the set of vertices of the resultant polytope. Experiments3 indicate that
mixed cell configurations are, depending on the input, much less numerous than
mixed subdivisions, hence the computation of the resultant vertices becomes
more efficient if we focus on the former.

The set of mixed cell configurations corresponds bijectively by the Cayley
trick 1, to a set of equivalence classes of regular triangulations. This set can be
regarded as a subset of the vertices of the secondary polytope. Thus, we can
enumerate mixed cell configurations by enumerating this subset of triangula-
tions. Several algorithms and implementations enumerate regular triangulations
e.g. PUNTOS [23], TOPCOM [27], and the algorithm in [21]. We character-
ize the edges of the secondary polytope that connect the equivalence classes.
The sub-graph of the secondary polytope with vertices, regular triangulations
corresponding to mixed cell configurations, and the previous edges, is connected.

In [13], we computed the Newton polytope of specialized resultants while
avoiding to compute the entire secondary polytope; our approach was to exam-
ine the silhouette of the latter with respect to an orthogonal projection. This
method is revisited in [11] by studying output-sensitive methods to compute the

3 See for example the webpage http://ergawiki.di.uoa.gr/index.php/Implicitization



resultant polytope. Applications such as the computation of the u-resultant or
implicitization of polynomial parametric curves or surfaces call for the computa-
tion of the resultant polytope after a specialization of some of its indeterminates,
i.e. some of the coefficients of the input polynomials. This reduces to enumer-
ating the vertices lying on the silhouette of the secondary polytope Σ(C) with
respect to some suitably defined projection. For example, the projection of Σ(C)
to R2 solves the problem of implicitization of polynomial curves, the projection
to R3 the one of polynomial surfaces etc. The silhouette can be obtained naively
by computing all the vertices of Σ(C), then projecting them to the subspace of
smaller dimension. For efficiency we want to enumerate only the vertices lying on
a silhouette of Σ(C) with respect to a projection to be defined by the problem,
without computing Σ(C).

In short, we have the following polytope theory problem: We have a high
dimensional polytope Σ(C) which we know only locally. By this we mean that
from every vertex we have an oracle to find the coordinates of all of its neigh-
bours. We describe an algorithm to compute, for a certain projection π to a
space of 1,2, or 3 dimensions, the projection π(Σ(C)).
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