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Abstract. Unsupervised image segmentation techniques based on the image 

textures are studied and developed in this thesis. First, the wavelet filters are 

considered as the mean for feature extraction and feature vector creation. The 

creation of the filters is studied as well as the filtered images segmented 

spectrum. Next, the analysis with directional filters for feature extraction is 

used. Emphasis is given on the directional filter construction and on the 

different way of spectrum segmentation for the analyzed images that is 

achieved. In the next step, after the feature generation, possible ways of feature 

reduction are considered, ways that do not affect the image separability as it is 

described by a properly selected separability criterion. Next, known clustering 

methods and the way they are incorporated in the unsupervised segmentation 

process are studied. Novel applications of those techniques that point out the 

contribution of this thesis are presented, and finally, a traversal scheme for the 

efficient integral image coding is suggested. 
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1 Introduction 

Texture is the term used to qualify the surface of a given object and is undoubtedly 

one of the main features used in image processing and pattern recognition. Moreover, 

texture is used to identify regions of interest in a scene, for object-based video coding 

or image content analysis and content-based image retrieval. An important task in 

many image analysis applications is the unsupervised texture segmentation of a 

picture into homogeneous texture regions. The process of identifying regions with 

similar statistical behaviour while separating others is called texture segmentation. An 

effective and efficient texture segmentation method is desired in applications like the 

analysis of aerial images, biomedical images and the automation of industrial 

applications. Like other segmentation problems, the texture segmentation requires the 

identification and use of proper texture-specific features with high discriminatory 

power.  
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Texture features related to the spectrum of the image can be extracted by 

using a filterbank consisting of filters with non-overlapping pass-band areas which 

analyse the initial image x  
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called channels or subimages. These L channels are of the same magnitude as the 

initial image x but each of them contains only a distinct spectrum area, iA , of x. 

Utilizing these L channels, a feature vector with L components can be constructed for 

each pixel ( , )x m n of the initial image, x. Each component is related to the pixel 

energy content in the spectrum area iA  and can be evaluated by detecting the 

envelope value of the iy  in the corresponding pixel position ( , )iy m n , as Laine and 

Fan [1] did. A good detection of the envelope can be realised by taking the square of 

the iy  and smoothing the result by a properly chosen baseband filter (Figure 1). 

 

Fig. 1. Envelope Detection 

Jain and Farrokhnia [2] used a long series of Gabor filters for the construction of a 

spectrum sampling filterbank. These filters exhibit a narrow pass-band area that gives 

the ability to create channels containing a specified small area of the initial image’s 

spatial frequency plane. In Figure 2 the 3dB-contours of such a series of Gabor filters 

have been designed. From the Gabor series a long feature vector for each pixel of x is 

constructed. 

Unser [3] proposed the use of Discrete Wavelet Frames (DWF) instead of the 

Gabor filter series. In this case, each channel contains a large area of the initial 

image’s spatial frequency plane instead of the narrow areas contained in the Gabor 

analysis channels. For a great number of applications there is no need for a detailed 

description of the pixels so the length reduction of the feature vector improves both 

the algorithmic efficiency and the computational time of the classification procedure. 

Besides, the computational time for a DWF filterbank analysis of an image is only a 

small fraction of the time required for a Gabor filter series analysis. In Figure 3, the 

partitioning of the initial image’s spectrum into seven areas by a two-level DWF 

analysis is shown. However a channel may contain more than one different area of the 

spectrum with this being a drawback in the case when two or more image areas with 

symmetric texture construction are to be distinguished. As an example the image in 

Figure 4 is given. In this example there are two types of texture with symmetric 



orientation and the difference in their spectrum cannot be resolved by a DWF 

filterbank 

 

Fig. 2. Gabor Filter Series Spectrum Segmentation 

 

Fig. 3. Wavelet Frames Spectrum Segmentation 

2 The Descriptor 

Let x(i,j), 0<i,j<M a given image in the region in which different texture samples 

exist. By applying a real wavelet packet frame transform [3], the subimages ym(i,j) 

0<i,j<M, m=1,2,…,N are constructed. In some of these N images there is a significant 

difference in the energy in the different texture ranges but in the rest of them, this 

difference does not exists, or it is rather inadequate. Suppose that in the image x(i,j) 

there exist two different regions of texture and the first one covers a fraction q of the 

image surface while the second covers the  rest 1-q. After the wavelet transformation 

of x(i,j), the two textures possess the same pixels in the resulted ym(i,j) subimages. 

We can suppose that each one of them has a Gaussian pdf with standard deviations σ 

and λ σ respectively. Zero mean value for both pdfs is imposed by the nature of the 

wavelet transformation. If λ=1 in a subimage, The energy of this subimage has similar 



values all over it and this subimage cannot offer in the discrimination of the two 

textures. In contrast, values of λ greater than 2, or less than 0.5 result in different 

energy values in the two regions and this subimage is selected for a discriminant 

analysis process. 

We propose the following technique for detecting the subimages with proper λ 

value. The pdf of the whole subimage can be written as:  
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As p(x) is a zero mean value pdf, the second μ2 and fourth μ4 central moments of 

the p(x) are evaluated as: 
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It can be easily shown that: 
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By plotting relation (1), Figure 4 makes clear that the ratio 2

24
 is a good 

descriptor for detecting subimages with λ values not near to one. 

3 Directional Filters 

Various techniques for the construction of directional filters can be found in 

international literature, like, for instance, Park et al [4] and Bamberger and Smith [5]. 

However, all these techniques are derived from the coding applications area, where 

the samples of the obtained analysis channels are decimated, so these channels and 

the initial image no longer have the same size. Features extracted from such channels 

are not shift invariant and cannot be used for a reliable unsupervised texture 

segmentation procedure. Kontaxakis et al [6] propose a Directional Filter Bank 

construction for the creation of channels of equal size to the analysed image. This 

bank produces an overall number of eight channels, four for the low and four for the 

high area of the image spectrum, each one containing a wedge shaped region of the 

corresponding spectral area. 



 

Fig. 4. Parametric Plotting of relation (1) 

In this section a simpler Directional Filter Bank dividing the initial spectrum into 

the four regions showed in Figure 5, is proposed. 

 

Fig. 5. Directional Filters Spectrum Segmentation 

In Figure 6 the construction of the corresponding filters using the convolution of a 

fan and a quadrant filter, is shown. Combining the two types of fan with the two types 

of quadrant filters, the four directional filters are obtained. In general, directional 

filters have poor response in the very low frequencies area; they cannot resolve it so 

this area must be removed from the initial image. For this reason a circularly 

symmetric 2-D filter, with a bandstop response in the very low frequency area, is used 

in order to eliminate a narrow region around (0,0)
T
 frequency. The outline of the DFA 

procedure is shown in Figure 7. 

The feature vector components are formed using an envelope detection technique 

which is a two-stage process. The first stage includes squaring (or rectification) of 

each analysis channel while during the second stage, smoothing of each channel is 

performed. For the smoothing stage b-spline filters are employed. 



 

Fig. 6. Directional Filter Bank construction 

In order to suitably remove the generation of transient regions at the boundaries of 

the initial image, during the convolution (filtering), a periodic-symmetric expansion 

of the image is undertaken, before the analysis takes place. 

 

Fig. 7. Outline of the DFA procedure 

 

4 Integral Image Coding 

In this section an image traversal scheme based on the Hilbert curve is proposed, in 

order to increase the efficiency of encoders where EI rearrangement is performed. 

This is achieved by maximizing a 2D locality property of the EIs that are encoded as a 



single entity and therefore increasing the correlation between jointly encoded EIs. As 

the encoded EIs are reassembled in a static InIm at the display and projected to the 

viewer, large variations in the quality of different areas in the InIm can reduce the 3D 

effect. For this reason a quality assessment metric is introduced for evaluating the 

optimality of a number of different traversal schemes previously proposed in the 

literature [8,9], taking into account the variability in the quality of different regions of 

an InIm. A number of different test InIms are used for evaluating the effect of the 

different traversal schemes for the encoders proposed in [8,9].  

There are many types of curves [10] that can be used in order to traverse a set of 

points placed on a regular 2D grid and transform them to a 1D sequence of points. 

One of the most discussed properties of these curves is their ability to retain the 

locality properties of the reordered points. For this reason a number of different 

measures are used [11] to evaluate their efficiency. In omni-directional InIm coding, 

these curves are used in order to rearrange the EIs in a 1D stream of images 

preserving the highest possible correlation among jointly EIs.  

In this section the performance of previously proposed traversal schemes [9] along 

with the one based on the Hilbert curve is evaluated. The different traversal schemes 

are depicted in Fig. 8 

 

Fig. 8. Traversal schemes for rearranging the EIs of the InIm 2D structure into a 1D stream of 

EIs. (a) Parallel, (b) Perpendicular, (c) Spiral and (d) Hilbert. 

The locality preservation properties of each of these space filling curves can be 

evaluated by estimating a large number of different metrics as the ones proposed in 

[11]. The Hilbert curve outperforms all previously proposed curves achieving 

performance very close to the boundary values of these metrics. In this section we 

propose an appropriate metric for evaluating the efficiency of the different traversal 

schemes, which is defined as the ratio between the EI distances in the 2D grid, and 

their distance in the 1D stream as given by Eq. (2). 
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In this equation i, j are the indices of the EIs in the constructed 1D stream and d(·) 

is their Euclidean distance in the 2D InIm structure. Specifically if (wi,ci) and (wj,cj) 

are the row and column indices of the two EIs in the 2D InIm structure then the 

distance  is defined by Eq. (3). 
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Next, we calculate the mean value, r , and the standard deviation, , of this 

quantity for each traversal scheme. A simulation performed for InIms with different 

number of EIs, showed that the Hilbert curve achieves the minimum mean and 

standard deviation values for rij that are almost invariant regardless of the number of 

EIs contained in an InIm. On the contrary, as shown in Fig. 9, the corresponding 

values for the other traversal schemes dramatically diverge as the number of EIs 

increases. In the same figure, a non linear increase of the standard deviation is 

observed for traversals other than the Hilbert curve, which increases the possibility for 

jointly encoding low correlated EIs and thus reducing the overall encoder 

performance.  

 

Fig. 9. (a) Mean value and (b) Standard deviation of rij for different traversal schemes  

and InIm sizes. 

There are primarily two different approaches for evaluating the performance of 

image encoding techniques based on subjective or objective evaluation metrics 

[12,13]. The most used metric for objective 2D image quality assessment is the peak-

signal-to-noise-ratio (PSNR) which is given by Eq.(4) 
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where the mean squared error (MSE) is calculated using Eq.(5).  
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where I(i,j) are the intensity values of an 8-bit grayscale N x M pixels original 

uncompressed InIm, and Ir(i,j) are the intensity values of the decompressed InIm. 



However this measure estimates the overall image quality and do not take into 

account the special structure of the displayed InIm. In detail, as neighboring EIs are 

simultaneously displayed to produce the 3D representation, they should exhibit 

similar quality characteristics in order to produce viewable results. In this case large 

variations of the PSNR values can diminish the 3D effect while PSNR values remain 

high. It is therefore necessary to calculate the fluctuation of the PSNR value over the 

InIm. In this work the mean PSNR value ( PSNR ) and its standard deviation (σPSNR) 

are calculated using the PSNR values found by applying Eq.3 for each of the EIs in 

the InIm. The values for the PSNR  and σPSNR for an InIm assembled of K x L EIs 

are given by Eqs. (6) and (7) respectively. 
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Whenever an MPEG-2 strategy is employed to encode a video sequence, the 

quality of the reproduced sequence varies between frames as a result of the encoding 

process. In the case of video sequences these fluctuations are not perceived by the 

observer due to the rapid succession of frames. On the other hand, InIms encoded 

using an MPEG-2 encoder, also exhibit this kind of PSNR variation between EIs 

resulting in a poor 3D image quality. The use of the Hilbert curve traversal for the 

InIm decomposition also manages to substantially decrease these variations in regard 

to previously proposed traversal schemes. In our context we introduce the relative 

standard deviation, given as 
PSNR

PSNR/ which quantifies the fluctuation of the 

PSNR value for each traversal scheme and acts as an index of homogeneity 

characterisation for the displayed InIm. The results for all traversal schemes for both 

PSNR  and 
PSNR

PSNR/  values for a representative InIm are depicted in Figure 

10 (a)-(b) respectively. 

 

Fig. 10. (a) PSNR and (b) 
PSNR

PSNR/  for an encoded InIm as a function of bitrate for 

the MPEG-2 encoder 
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