
Theory of Logic Programming and the

Semantics of Non-Monotonic Formal

Grammars

Vassileios Kountouriotis∗

National and Kapodistrian University of Athens
Department of Informatics and Telecommunications

b.kountouriotis@gmail.com

Abstract

In this dissertation we give the first proper mathemat-
ical treatment of the semantics of Boolean grammars. We
show that for every Boolean grammar there exists a distin-
guished (three-valued) interpretation of the non-terminal
symbols, which satisfies all the rules of the grammar and at
the same time is the least fixed-point of an operator asso-
ciated with the grammar. Then, we propose an O(n3) al-
gorithm for parsing that applies to any normalized Boolean
grammar. Finally, we give a purely game-theoretic charac-
terization of Boolean grammars: we propose a two-player
infinite game of perfect information for Boolean grammars,
which is equivalent to their well-founded semantics.

1 Well-Founded Semantics for Boolean Grammars

In this dissertation we propose and investigate the properties of the well-
founded semantics for Boolean grammars. We begin by giving the formal
definition of Boolean grammars. We then define the well-founded semantics
of a given Boolean grammar as the least fixed-point of an operator associated
with the grammar. Moreover we examine the mathematical properties of
this operator in detail.

1.1 Syntax

In [Okh04] A. Okhotin proposed the class of Boolean grammars. Formally:
∗Dissertation Advisor: Panagiotis Rondogiannis, Associate Professor

1

Definition 1.1. A Boolean grammar is a quadruple G = (Σ, N, P, S), where
Σ and N are disjoint finite non-empty sets of terminal and non-terminal
symbols respectively, P is a finite set of rules, each of the form

A→ α1& · · ·&αm&¬β1& · · ·&¬βn (m+ n ≥ 1, αi, βj ∈ (Σ ∪N)∗),

and S ∈ N is the start symbol of the grammar. We will call the non-terminal
A the head of the rule, the αi’s positive conjuncts and the ¬βj’s negative
ones.

We will often use the short notation A → ϕ1 | · · · | ϕk to represent k
rules of the form A→ ϕi.

1.2 Interpretations and Models for Boolean Grammars

Definition 1.2. Let Σ be a finite non-empty set of symbols. Then, a (three-
valued) language over Σ is a function from Σ∗ to the set

{
0, 1

2 , 1
}

.

Intuitively, given a three-valued language L and a string w over the
alphabet of L, there are three-cases: either w ∈ L (i.e., L(w) = 1), or
w 6∈ L (i.e., L(w) = 0), or finally, the membership of w in L is unclear (i.e.,
L(w) = 1

2). Given this extended notion of language, it is now possible to
interpret the grammar S → ¬S: its meaning is the language which assigns
to every string the value 1

2 .
The following definition, which generalizes the familiar notion of con-

catenation of languages, will be used in the rest of the dissertation:

Definition 1.3. Let Σ be a finite non-empty set of symbols and let L1, . . . , Ln
be (three-valued) languages over Σ. We define the three-valued concatena-
tion of the languages L1, . . . , Ln to be the language L such that for every
w ∈ Σ∗:

L(w) = max
(w1,...,wn):
w=w1···wn

(
min

1≤i≤n
Li(wi)

)
The concatenation of L1, . . . , Ln will be denoted by L1 ◦ · · · ◦ Ln.

It can be easily checked that when the languages involved are total (i.e.,
with no 1

2 values assigned to strings) then the above definition reduces to
the familiar definition of concatenation.

We can now define the notion of interpretation of a given Boolean gram-
mar:

Definition 1.4. An interpretation I of a Boolean grammar G = (Σ, N, P, S)
is a function I : N →

(
Σ∗ →

{
0, 1

2 , 1
})

.

An interpretation I can be recursively extended to apply to expressions
that appear in the right-hand sides of Boolean grammar rules:

2

Definition 1.5. Let G = (Σ, N, P, S) be a Boolean grammar and let I be
an interpretation of G. Then, the extension Î of I is defined as follows:

• For every w ∈ Σ∗, it is Î(ε)(w) = 1 if w = ε, and Î(ε)(w) = 0 otherwise.

• Let A ∈ N . Then, for every w ∈ Σ∗, it is Î(A)(w) = I(A)(w).

• Let a ∈ Σ. Then, for every w ∈ Σ∗, it is Î(a)(w) = 1 if w = a, and
Î(a)(w) = 0 otherwise.

• Let α = α1 · · ·αn, n ≥ 2, αi ∈ Σ ∪ N . Then, for every w ∈ Σ∗, it is
Î(α)(w) = (Î(α1) ◦ · · · ◦ Î(αn))(w).

• Let α ∈ (Σ ∪ N)∗. Then, for every w ∈ Σ∗, it is Î(¬α)(w) = 1 −
Î(α)(w).

• Let l1, . . . , ln be conjuncts. Then, for every w ∈ Σ∗, it is Î(l1& · · ·&ln)(w) =
min{Î(l1)(w), . . . , Î(ln)(w)}.

We are now in a position to define the notion of a model of a Boolean
grammar:

Definition 1.6. Let G = (Σ, N, P, S) be a Boolean grammar and I an in-
terpretation of G. Then, I is a model of G if for every rule A→ l1& · · ·&ln
in P and for every w ∈ Σ∗, it is I(A)(w) ≥ Î(l1& · · ·&ln)(w).

In the definition of the well-founded model, two orderings on interpre-
tations play a crucial role (see [PP90] for the corresponding ordering in the
case of logic programming). Given two interpretations, the first ordering
(usually called the standard ordering) compares their degree of truth:

Definition 1.7. Let G = (Σ, N, P, S) be a Boolean grammar and I, J be
two interpretations of G. Then, we write I � J if for all A ∈ N and for all
w ∈ Σ∗, I(A)(w) ≤ J(A)(w).

The following lemma is easy to establish:

Lemma 1.8. Let G = (Σ, N, P, S) be a Boolean grammar and I, J be two
interpretations of G such that I � J . Then, for all α ∈ (Σ ∪ N)∗ and for
all w ∈ Σ∗, Î(α)(w) ≤ Ĵ(α)(w).

Among the interpretations of a given Boolean grammar, there is one
which is the least with respect to the � ordering and is denoted by ⊥. That
is, for all A and all w, ⊥(A)(w) = 0.

The second ordering (usually called the Fitting ordering) compares the
degree of information of two interpretations. We first need to define the
corresponding numerical ordering:

Definition 1.9. Let v1, v2 ∈ {0, 1
2 , 1}. We write v1 ≤F v2 if and only if

either v1 = v2 or v1 = 1
2 .

3

Definition 1.10. Let G = (Σ, N, P, S) be a Boolean grammar and I, J be
two interpretations of G. Then, we write I �F J if for all A ∈ N and for
all w ∈ Σ∗, I(A)(w) ≤F J(A)(w).

We now establish a lemma regarding �F which is similar to Lemma 1.8
for �:

Lemma 1.11. Let G = (Σ, N, P, S) be a Boolean grammar and I, J be two
interpretations of G such that I �F J . Then, for any conjunct l (either
positive or negative) and for any w ∈ Σ∗, Î(l)(w) ≤F Ĵ(l)(w).

Among the interpretations of a given Boolean grammar, there is one
which is the least with respect to the �F ordering and is denoted by ⊥F .
That is, for all A and all w, ⊥F (A)(w) = 1

2 .
Given a set U of interpretations, we will write lub�U for the least upper

bound of the members of U under the standard ordering. Formally:

(lub�U)(A)(w) =

1, if there exists I ∈ U such that I(A)(w) = 1
0, if for all I ∈ U , I(A)(w) = 0
1
2 , otherwise

The situation changes when one wants to define lub�FU , that is, the
least upper bound of the members of U under the Fitting ordering, since
this notion cannot in general be defined for an arbitrary set of interpretations
U . However, lub�FU can be defined if U is a directed set of interpretations,
i.e., if for every I1, I2 ∈ U there exists J ∈ U such that I1 �F J and I2 �F J .
In this case lub�FU is defined as follows:

(lub�FU)(A)(w) =

1, if there exists I ∈ U such that I(A)(w) = 1
0, if there exists I ∈ U such that I(A)(w) = 0
1
2 , otherwise

1.3 Well-Founded Semantics for Boolean Grammars

In this section we define the well-founded semantics of Boolean grammars.
The basic idea behind the well-founded semantics is that the intended model
of the grammar is constructed in stages that are related to the levels of
negation used by the grammar. At each step of this process and for every
non-terminal symbol, the values of certain strings are computed and fixed
(as either true or false); at each new level, the values of more and more
strings become fixed (and this is a monotonic procedure in the sense that
values of strings that have been fixed for a given non-terminal in a previous
stage, are not altered by the next stages). At the end of all the stages, certain
strings for certain non-terminals may have not managed to get the status of
either true or false (this will be due to circularities through negation in the
grammar). Such strings are classified as unknown (i.e., 1

2).

4

1.4 The Properties of ΘJ

Consider the Boolean grammar G = (Σ, N, P, S). Then, for any interpreta-
tion J of G we define the operator [ΘG]J : I → I on the set I of all 3-valued
interpretations of G.

Definition 1.12. Let G = (Σ, N, P, S) be a Boolean grammar, let I be the
set of all three-valued interpretations of G and let J ∈ I. The operator
[ΘG]J : I → I is defined as follows. For every I ∈ I, for all A ∈ N and for
all w ∈ Σ∗:

1. [ΘG]J (I)(A)(w) = 1 if there exists a rule A → l1& · · ·&lr in P such
that for every positive li it is Î(li)(w) = 1 and for every negative li it
is Ĵ(li)(w) = 1;

2. [ΘG]J (I)(A)(w) = 0 if for every rule A→ l1& · · ·&lr in P , either there
exists a positive li such that Î(li)(w) = 0, or there exists a negative li
such that Ĵ(li)(w) = 0;

3. [ΘG]J (I)(A)(w) = 1
2 , otherwise.

An important fact regarding the operator [ΘG]J is that it is monotonic
with respect to the � ordering of interpretations:

Lemma 1.13. Let G = (Σ, N, P, S) be a Boolean grammar and let J be an
interpretation of G. Then, the operator [ΘG]J is monotonic with respect to
the � ordering of interpretations.

The next definition and theorem demonstrate that [ΘG]J has a unique
least fixed-point:

Definition 1.14. Let G = (Σ, N, P, S) be a Boolean grammar and let J be
an interpretation of G. Define:

[ΘG]↑0J = ⊥
[ΘG]↑n+1

J = [ΘG]J ([ΘG]↑nJ)
[ΘG]↑ωJ = lub�{[ΘG]↑nJ | n < ω}

Theorem 1.15. Let G = (Σ, N, P, S) be a Boolean grammar and let J be
an interpretation of G. Then, the sequence {[ΘG]↑nJ }n<ω is increasing with
respect to � and [ΘG]↑ωJ is the unique least fixed-point of the operator [ΘG]J
with respect to �.

1.5 The Properties of ΩG

We will denote by ΩG(J) the least fixed-point [ΘG]↑ωJ of [ΘG]J . Given a
grammar G, we can use the ΩG operator to construct a sequence of inter-
pretations whose least upper bound MG (with respect to �F) will prove to
be a distinguished model of G.

The definition of MG has as follows:

5

Definition 1.16. Let G = (Σ, N, P, S) be a Boolean grammar. Define:

MG,0 = ⊥F
MG,n+1 = ΩG(MG,n)
MG = lub�F {MG,n | n < ω}

As we are going to see shortly, the operator ΩG is monotonic with respect
to �F and this ensures that the sequence {MG,n}n<ω is increasing (which
ensures that lub�F is well-defined).

Lemma 1.17. Let G = (Σ, N, P, S) be a Boolean grammar. Then, ΩG is
monotonic with respect to the �F ordering of interpretations.

Theorem 1.18. Let G = (Σ, N, P, S) be a Boolean grammar. Then, the
sequence {MG,n}n<ω is increasing with respect to the �F ordering of inter-
pretations. Moreover, MG is the least fixed-point of the operator ΩG.

1.6 The Well-Founded Model MG

The above results lead to the following theorem, which demonstrates that
MG satisfies all the rules of the grammar G:

Theorem 1.19. Let G = (Σ, N, P, S) be a Boolean grammar. Then, MG is
a model of G (which will be called the well-founded model of G).

We now give an example that illustrates the well-founded construction
as this has been defined above:

1.7 An Undecidability Result

At this point we examine a natural question that springs to mind after
the introduction of the three-valued well-founded model. Since most of the
current work in formal language theory is based on two-valued languages,
it is reasonable to wonder whether the problem “Given a Boolean grammar
G, is MG two-valued?” is decidable. The following theorem demonstrates
that this is not the case.

Theorem 1.20. The following problem is undecidable: “Given a Boolean
grammar G = (Σ, N, P, S), decide whether for all w ∈ Σ∗, MG(S)(w) ∈
{0, 1}”.

1.8 Normal Form

The binary normal form we will derive is defined as follows:

Definition 1.21. A Boolean grammar G = (Σ, N ∪ {U, T}, P, S) is said to
be in binary normal form if P contains the rules U → ¬U and T → ¬ε,

6

where U and T are two special symbols not in N , and every other rule in P
is of the form:

A → B1C1& · · ·&BmCm&¬D1E1& · · ·&¬DnEn&TT [&U] (m,n ≥ 0)
A → a[&U]
S → ε[&U] (only if S does not appear in right-hand sides of rules)

where A,Bi, Ci, Dj , Ej ∈ N , a ∈ Σ, and the brackets denote an optional
part.

Theorem 1.22. Let G = (Σ, N, P, S) be a Boolean grammar. Then there
exists a grammar G′ = (Σ, N ′, P ′, S) in binary normal form such that
MG(S) = MG′(S).

The proof of Theorem 1.22 is based on the definition of certain meaning-
preserving grammar transformations.

The normal form we derive, generalizes the well-known Chomsky nor-
mal form for context-free grammars as-well-as the binary normal form for
Boolean grammars introduced in [Okh04]. Actually, certain of the steps
we adopt, were initially proposed in [Okh04], the main difference being that
the binary normal form obtained there, always produces two-valued Boolean
languages.

The steps of the proposed procedure, can be summarized as follows:

• The initial Boolean grammar is first brought into pre-normal form.
This is just a simpler and more manageable form of the initial grammar.

• The grammar is then transformed into direct form. This means that if
a non-terminal of the previous form of the grammar could produce a
string of length one (possibly through the use of many rules), then this
fact is recorded by using a single rule in the new grammar. The same
happens even if the status of the string of length one was undefined in
the previous grammar.

• The next step is to bring the grammar into an ε-free form, i.e., a form
in which no non-terminal produces the string ε.

• The final step is to bring the grammar into a binary normal form, i.e.,
a form in which the “long” rules of the grammar contain conjuncts
which consist of two non-terminals (with the possible exception of the
non-terminal U , see Definition 1.21 above).

1.9 Parsing under the Well-Founded Semantics

We next present an algorithm that computes the truth value of the mem-
bership of an input string w 6= ε in the language defined by a grammar G,
which is assumed to be in binary normal form.

7

Algorithm for parsing under G = (Σ, N, P, S)

Input: string w = a1 · · · an ∈ Σ+

Initialization step:
for i := 1 to n do begin

for every A ∈ N do
if there exists a rule A→ ai then M [A, i, i] := 1
else if there exists a rule A→ ai&U then M [A, i, i] := 1

2
else M [A, i, i] := 0

end

Main loop:
for d := 2 to n do

for i := 1 to n− d+ 1 do begin
j := i+ d− 1
for every B,C ∈ N such that BC appears in the right-hand side of a rule do

Q[B,C, i, j] := maxj−1
`=i min{M [B, i, `],M [C, `+ 1, j]}

for every A ∈ N do M [A, i, j]:=0
for every rule A→ B1C1& . . .&BmCm&¬D1E1& . . .&¬DrEr&TT&U do begin

v := min{ 1
2 ,minm

p=1Q[Bp, Cp, i, j],minr
q=1(1−Q[Dq, Eq, i, j])}

if v > M [A, i, j] then M [A, i, j] := v
end
for every rule A→ B1C1& . . .&BmCm&¬D1E1& . . .&¬DrEr&TT do begin

v := min{minm
p=1Q[Bp, Cp, i, j],minr

q=1(1−Q[Dq, Eq, i, j])}
if v > M [A, i, j] then M [A, i, j] := v

end
end

return M [S, 1, n]

The correctness of the above algorithm is established by the following
theorem:

Theorem 1.23. Let G = (Σ, N, P, S) be a fixed Boolean grammar. Then,
for every string w = a1 · · · an ∈ Σ+, the above algorithm computes the correct
value MG(A)(w), in time O(n3).

2 Game-Theoretic Semantics for Boolean Gram-
mars

In this section we demonstrate that there exists a simple game-theoretic
characterization of the semantics of Boolean grammars. In particular, we
prove that this game-theoretic approach is equivalent to the well-founded
semantics of the grammar.

8

2.1 A Formalization of the Game

In this section we formalize the game we have just described. In particular,
we present some basic background on infinite games of perfect information,
which we then use in order to present the proposed game for Boolean gram-
mars in a formal way.

Definition 2.1. An infinite game of perfect information is a quadruple Γ =
(X,R,D,Φ), where:

• X is a nonempty set, called the set of moves for Players I and II.
• R is a tree on X (usually implicitly specified by a set of rules) which

imposes restrictions on the moves of the two players.
• D is a linearly ordered set called the set of rewards, with the property

that for all S ⊆ D, lub(S) and glb(S) belong to D.
• Φ : {〈x0, x1, . . .〉 ∈ Xω | ∀i〈x0, x1, . . . , xi〉 ∈ R} → D, is the payoff

function of the game.

Based on the set of moves X of a game, we define two sets StratI(Γ) and
StratII(Γ) which correspond to the set of strategies for Player I and Player
II respectively. A strategy σ ∈ StratI(Γ) assigns a move to each even length
partial play of the game; similarly for τ ∈ StratII(Γ) and odd length partial
plays.

Definition 2.2. Let Γ = (X,R,D,Φ) be a game. Define the set of strategies
for Player I and Player II respectively to be the sets:

• StratI(Γ) = {f ∈ (
⋃
n<ωX

2n)→ X | 〈x0, . . . , xn−1, f(〈x0, . . . , xn−1〉)〉 ∈
R}
• StratII(Γ) = {f ∈ (

⋃
n<ωX

2n+1)→ X | 〈x0, . . . , xn−1, f(〈x0, . . . , xn−1〉)〉 ∈
R}

Definition 2.3. Let Γ be a game and let σ ∈ StratI(Γ) and τ ∈ StratII(Γ).
We define the following sequence:

s0 = σ(〈〉)
s2i = σ(〈s0, s1, . . . , s2i−1〉)

s2i+1 = τ(〈s0, s1, . . . , s2i〉)

A play of the game determined by the strategies σ and τ is the infinite
sequence 〈s0, s1, s2, . . .〉. The si’s will be called the moves of the play.

Given two strategies σ ∈ StratI(Γ) and τ ∈ StratII(Γ), we will often
write σ ? τ for the play determined by these two strategies.

Definition 2.4 (Determinacy). Let Γ = (X,R,D,Φ) be a game and let
S = StratI(Γ) and T = StratII(Γ). Then Γ is determined with value v if:

glbτ∈T lubσ∈SΦ(σ ? τ) = lubσ∈Sglbτ∈T Φ(σ ? τ) = v

9

The following lemma can be established (see for example [Myc92]):

Lemma 2.5. Let Γ = (X,R,D,Φ) be a game and let S = StratI(Γ) and
T = StratII(Γ). Then:

glbτ∈T lubσ∈SΦ(σ ? τ) ≥ lubσ∈Sglbτ∈T Φ(σ ? τ)

2.2 A Formal Definition of the Game

Let G = (Σ, N, P, S) be a Boolean grammar, let A ∈ N and let w ∈ Σ∗. We
will define the perfect information game ΓG(A,w) = (X,R(A,w), D,Φ(A,w)).

Definition 2.6. Let u ∈ Σ∗. Then, a partition π of u of length n, is a
sequence 〈u1, . . . , un〉 such that ui ∈ Σ∗, 1 ≤ i ≤ n, and u1 · · ·un = u. We
denote by Πn the set of all partitions of length n.

The game ΓG(A,w) can now be formally defined. We first define the set
of moves:

X = {(α,w) | α ∈ (Σ ∪N)∗, w ∈ Σ∗} ∪
{(¬α,w) | α ∈ (Σ ∪N)∗, w ∈ Σ∗} ∪
{(R,w) | R ∈ P,w ∈ Σ∗} ∪
{(α, π) | α ∈ (Σ ∪N)∗, π ∈ Π|α|} ∪
{(I’ve won), (I’ve lost)}

We next define the tree R(A,w) of the game ΓG(A,w): R(A,w) consists of
all sequences 〈x0, . . . , xn−1〉, which satisfy the following restrictions for each
k < n− 1:

R0. x0 = (A→ l1& · · ·&lm, w), where A→ l1& · · ·&lm is a rule of G.
R1. If xk = (B → l1& · · ·&lm, u), then xk+1 = (li, u), where 1 ≤ i ≤ m.
R2. If xk = (B, u), where B ∈ N , then xk+1 = (B → l1& · · ·&lm, u), where

B → l1& · · ·&lm is a rule of G.
R3. If xk = (¬β, u), then xk+1 = (β, u). A transition of this form from xk

to xk+1 will be called a role-switch.
R4. If xk = (β, u), where β ∈ E, then xk+1 = (β, π), where π is a partition

of u of length |β|.
R5. If xk = (β, π), then xk+1 = (β(i), π(i)), where 1 ≤ i ≤ |β|.
R6. xk = (u, u), where u ∈ Σ∗, or xk = (I’ve lost), then xk+1 = (I’ve won).
R7. xk = (v, u), where v, u ∈ Σ∗ and v 6= u, or xk = (I’ve won), then

xk+1 = (I’ve lost).

The strategies of the two players are as defined in Definition 2.2. Con-
sider now the set of rewards. We define D = {0, 1

2 , 1}. In other words, a
play of the game can be assigned the value 0 (Player II has won the play),
the value 1 (Player I has won), or the value 1

2 (the result is a tie).

10

Definition 2.7 (True-play, False-play). Let G = (Σ, N, P, S) be a Boolean
grammar, w ∈ Σ∗ and A ∈ N , and let s be a play of the corresponding
game ΓG(A,w). Then, s is called a true-play if either Player I plays the
(I’ve won) move in s or s is a genuinely infinite play that contains an odd
number of role-switches. Similarly, s is called a false-play if either Player I
plays the (I’ve lost) move in s or s is a genuinely infinite play that contains
an even number of role-switches.

The payoff function is defined as follows:

Φ(A,w)(s) =

1, if s is a true-play
0, if s is a false-play
1
2 , otherwise

3 Equivalence to the Well-Founded Semantics

Theorem 3.1. Let G = (Σ, N, P, S) be a Boolean grammar and MG be its
well-founded model. For every A ∈ N and w ∈ Σ∗, the game ΓG(A,w) is
determined with value MG(A)(w).

The proof of the theorem is based on the following steps: we start by
slightly extending the game to a more general context. We then define two
optimal strategies for the two players of the new game. Finally, we use these
two strategies in order to establish a more general statement which implies
the above theorem as a special case. Because of space considerations, we
omit the proof entirely.

4 Conclusions and Future Work

We have presented a novel semantics for Boolean grammars which has been
inspired by techniques that have been developed in the logic programming
domain. Under this new semantics every Boolean grammar has a distin-
guished (three-valued) model that satisfies its rules. Moreover, we have
shown that this model is the least fixed-point of an appropriate operator
that is associated with the grammar. Finally, we have demonstrated that
every Boolean grammar can be transformed into an equivalent one in a bi-
nary normal form. For grammars in this normal form, we have derived an
O(n3) parsing algorithm.

We believe that the well-founded semantics will prove to be a useful tool
for the further development of the theory of Boolean grammars. In particu-
lar, the well-founded approach has already been used in order to prove that
the locally stratified construction is well-defined (see [NR08] for details).
Also, it is expected that the well-founded semantics and its corresponding
parsing algorithm can form the basis of general implementations of Boolean

11

grammars. On the more theoretical side, the formal machinery behind the
well-founded semantics can help to the further development of many-valued
formal language theory (see for example [EK07]).

Furthermore, we have presented an infinite game semantics for Boolean
grammars and have demonstrated that it is equivalent to the well-founded
semantics of this type of grammars. The simplicity of the new semantics
stems mainly from its anthropomorphic flavor. In this respect, it differs
from the well-founded semantics whose construction requires a more heavy
mathematical machinery. We believe that these two semantical approaches
can be used in a complementary way in the study of Boolean grammars. In
our opinion, the game-theoretic approach will prove useful in establishing the
correctness of meaning-preserving transformations for Boolean grammars.
On the other hand, the well-founded semantics appears to be more useful in
computing the meaning of specific grammars. This is due to the iterative-
inductive flavor of the well-founded approach (see [NR08] for an example
of an iterative computation of the meaning of a Boolean grammar using a
procedure that was inspired by the well-founded construction).

Closing, we would like to express our strong belief that a further inves-
tigation of the connections between formal language theory and the theory
of logic programming will prove to be very rewarding.

References

[EK07] Z. Esik and W. Kuich. Boolean Fuzzy Sets. International Journal
of Foundations of Computer Science, 18(6):1197–1207, 2007.

[Myc92] J. Mycielski. Games with perfect information. Handbook of Game
Theory, pages 41–70, 1992.

[NR08] C. Nomikos and P. Rondogiannis. Locally stratified Boolean gram-
mars. Information and Computation, 206(9-10):1219–1233, 2008.

[Okh04] A. Okhotin. Boolean grammars. Information and Computation,
194(1):19–48, 2004.

[PP90] H. Przymusinska and T. Przymusinski. Semantic issues in deduc-
tive databases and logic programs. Formal Techniques in Artificial
Intelligence, 1990.

12

