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Abstract. In this thesis we study the problem of finding the densest k-subgraph of a given
graph G = (V, E). We present algorithms of polynomial time as well as approximation results
on special graph classes.
Analytically, we study polynomial time algorithms for the densest k-subgraph problem on
weighted graphs of maximal degree two, on weighted trees even if the solution is disconnected,
and on interval graphs with intersection only between two consecutive cliques.
Moreover, we present a polynomial time approximation scheme for the densest k-subgraph prob-
lem on a star of cliques and a polynomial time algorithm on a tree of cliques of bounded degree.
Finally, in the last part of the thesis we analyze a constant-factor approximation algorithm for
the densest k-subgraph problem on chordal graphs.
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1 Introduction

In the Densest k-subgraph (DkS) problem we are given a graph G = (V,E), |V | = n, and
an integer k ≤ n, and we ask for a subgraph of G induced by exactly k of its vertices such
that the number of edges of this subgraph is maximized. The problem is directly NP-hard
as a generalization of the well known Maximum Clique problem. The weighted version of the
DkS problem is called Heaviest k-subgraph (HkS). In the HkS problem we are also given non
negative weights on the edges of G and the goal is to find a k-vertex induced subgraph of
maximum total edge weight.

During last years a large body of work has been concentrated on the design of approxi-
mation algorithms for both the DkS problem and its weighted version, based on a variety of
techniques including greedy algorithms, LP relaxations and semidefinite programming. For a
brief presentation of this body of work the reader is referred to [3] and the references therein.
The best known approximation ratio for the DkS problem, which performs well for all values
of k, is O(nδ), for some δ < 1

3 [6], while a simple greedy algorithm in [2] achieves an ap-
proximation ratio of O(n

k
) even for the weighted version of the problem. On the other hand,

it has been shown that the DkS problem does not admit a polynomial time approximation
scheme (PTAS) if NP * ∩ǫ>0BPTIME(2nǫ

) [13]. However, there is not a negative result
that achieving an approximation ratio of O(nǫ), for some ǫ > 0, is NP-hard. Concerning
approximation algorithms for special cases of the problem it is known that the DkS problem
admits a PTAS for graphs of minimum degree Ω(n) as well as for dense graphs (of Ω(n2)
edges) when k is Ω(n) [1]. Moreover, algorithms achieving approximation factors of 4 [24]
and 2 [11] have been proposed for the weighted DkS problem on complete graphs where the
weights satisfy the triangle inequality.
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The DkS problem is trivial on trees (any subtree of k vertices contains exactly k − 1
edges). It is also known that DkS can be solved in polynomial time on graphs of maximal
degree two [7] as well as on cographs, split graphs and k-trees [4]. On the other hand the DkS
problem remains NP-hard on bipartite graphs [4], even of maximum degree three [7], as well
as on comparability graphs, chordal graphs [4] and, if we are looking for a connected solution,
on planar graphs [12] . The weighted version of the DkS problem if we ask for a connected
solution is polynomial on trees [10, 21, 22].

In Section 2 we study the HkS problem on graphs of maximal degree 2 and on trees either
if we ask for a connected or a disconnected solution. We also propose a dynamic programming
algorithm for the DkS problem on interval graphs that have a simple path as clique graph. In
Section 3 we study the DkS problem on clique graphs. In particular, we present a polynomial
time approximation scheme (PTAS) on star of cliques and a polynomial time algorithm on
tree of cliques of bounded degree. Finally, in Section 4 we present a constant approximation
algorithm for the DkS problem on chordal graphs. We conclude on Section 5.

2 Polynomial variants of the HkS/DkS problem

We generalize the algorithms proposed in [22], [21] and [10], which yield a connected opti-
mal solution for the HkS problem on trees. In fact, we present a polynomial time dynamic
programming algorithm yielding an optimum solution that can be either connected or not.
Despite this generalization the algorithm keeps the same time complexity as the known algo-
rithms for the connected version of the problem. To obtain the optimal solution the algorithm
solves recursively, starting from the leaves of the tree, the HjS problems for each vertex of
the tree and for each value of j = 1, 2, ..., k and therefore in [18] we prove that there is an
O(nk2) time algorithm for the HkS problem on a tree.

The above mentioned dynamic programming algorithm solves the HkS problem on chains
in O(nk) time. In fact, the result for the latter case -the HkS problem on chains- is implied by
a result for the solution of the quadratic 0-1 knapsack problem on edge series-parallel graphs
in [23].

We also prove that there is a polynomial time algorithm yielding an optimal solution
for the HkS problem on graphs of maximum degree two. We denote by gi, 1 ≤ i ≤ m, a
connected component (either a cycle or a chain) of a graph G of maximal degree two. If by
ni we denote the number of vertices of each component gi then the algorithm in its first
phase solves optimally, for each connected component gi of G, the j-vertex heaviest subgraph
problems for each value of j = 1, 2, . . . ,min{ni, k}. If gi is a chain this step can be carried
out in O(nk) by the dynamic programming algorithm for the HkS on trees. If gi is a cycle
we prove that there is an O(nk) time algorithm for the HkS problem on a cycle of n vertices
[18].

What we want in the second phase of the algorithm is to select at most one optimal solu-
tion (for some value of j) from each connected component such that the total number of their
vertices is k and their total cost is maximized. This problem is, essentially, a generalization
of the KNAPSACK problem, where we are given a partition of the items into groups and we
have the restriction to select at most one item from each group. It is known that this problem
can be solved in O(mk2) time by a dynamic programming algorithm proposed in [14]. Since
m is O(n) the second phase of the algorithm takes O(nk2) time. Combining the two phases of
the algorithm we obtain an O(nk2) time algorithm for the HkS problem on graphs of maximal



degree two [18].

A graph G = (V,E) is called interval if there is a mapping I of the vertices of G into sets of
consecutive integers such that for each pair of vertices u, v ∈ V , (u, v) ∈ E ⇐⇒ I(u)∩I(v) 6= ∅.
A maximal clique is a clique, which is not contained in any larger clique. A largest maximal
clique is called maximum clique. The intersection graph of a family, F , of subsets of a set is
defined as a graph, G, whose vertices correspond to the subsets in F , and there is an edge
between two vertices of G if the corresponding pair of subsets intersect. Given these definitions,
the clique graph of a graph G is defined as the intersection graph of the maximal cliques of
G.

Here, we focus on the subclass of interval graphs that have a simple path as clique graph
and we give a dynamic programming algorithm which yields an optimum solution for the
DkS problem on this subclass of interval graphs. Hence, in [17, 18] we prove that there is an
O(nk3) algorithm for the DkS problem on interval graphs that have a simple path as clique
graph. Recall that the DkS problem on chordal graphs is NP-hard [4], while its complexity
on interval graphs still remains an open question.

3 The DkS problem on clique graphs

In this section we study graphs having as clique graph a star of cliques. Let C0, C1, . . . , Cm−1

be the maximal cliques of such a star such that C0 intersects with each other clique and no
other intersection exists (by convention we denote by Ci both the clique Ci and the set of its
vertices). Since such a star is the clique graph of a graph G, there is no edge of G between
vertices belonging to different cliques.

We shall call C0 central clique and all other cliques, Ci, 1 ≤ i ≤ m − 1, exterior cliques.
For each exterior clique Ci we denote by ai the number of vertices in its intersection with C0

i.e., ai = |Ci ∩ C0| and by bi the number of its vertices outside C0 i.e., bi = |Ci| − ai > 0. By
C ′

0 we denote the clique consisting of the vertices of C0 not belonging to any other clique i.e.,
C ′

0 = C0 \
⋃m−1

i=1 Ci. By S we denote a solution to the DkS problem i.e., a subset of |S| = k
vertices, and by E(S) we denote the number of edges in the subgraph induced by S. By S∗

we denote an optimal solution to the DkS problem. By n > k is denoted the total number of
vertices in all cliques.

We say that a clique Ci, 0 ≤ i ≤ m− 1, is completely in a solution S if all its vertices are
in S. On the other hand, we say that the cliques C0 and C ′

0 are partially in a solution S if
a non-empty subset of their vertices, but not all, are in S. However, we say that an exterior
clique Ci, 1 ≤ i ≤ m − 1, is partially in S if a non-empty subset of its Ci \ C0 vertices, but
not all, are in S. We distinguish the definition of the partial inclusion in a solution S for an
exterior clique Ci because if only some of its Ci ∩C0 vertices are in S, they can be considered
as vertices of C0. In general we say that a clique is participating in a solution S if it is either
completely or partially in S.

Concerning an optimal solution, S∗, we observe that if an exterior clique Ci is partially in
S∗, then all its |Ci∩C0| = ai vertices are in S∗. Otherwise replacing a vertex y ∈ Ci\C0, y ∈ S∗

by a vertex x ∈ Ci ∩ C0, x /∈ S∗ yields a better solution, a contradiction.
In the following we assume that:
(i) k > |Ci|, i = 0, 1, . . . ,m − 1. Otherwise S∗ consists of any subset of k vertices of some

clique for which |Ci| ≥ k.
(ii) m > 2. For m = 1 the point (i) holds. For m = 2, if k > |C0| ≥ |C1|, then S∗ consists



of the vertices of C0 plus any subset of k − |C0| vertices of C1 \ C0.

Using these definitions and assumptions we prove some structural properties of an optimal
solution S∗.

– At most one of the cliques C ′
0, C1, . . . , Cm−1 is partially in an optimal solution.

– If C0 is the largest clique i.e., |C0| > |Ci|, 1 ≤ i ≤ m − 1, then C0 belongs completely to
every optimal solution.

– If C0 is partially in an optimal solution S∗, then |C0| ≤ |Ci| for every clique Ci participating
in S∗.

Despite the nice structural properties of an optimal solution many natural greedy criteria
based on the sizes of the cliques or/and the sizes of intersections fail to give such an opti-
mal solution. In the following we are able to give a polynomial time dynamic programming
algorithm for the case where the central clique is completely in the optimal solution and a
polynomial time approximation scheme for the general case.

We prove that if clique C0 is completely in the optimal solution, then there is an O(nk2)
dynamic programming algorithm for the DkS problem on a star of cliques [15, 16]. Notice that
if C0 is the largest clique then, by the structural properties of the star graphs, C0 belongs
completely to every optimal solution and the above dynamic programming algorithm applies.

In the general case, C0 is partially in the optimal solution and, by the structural properties
of the star graphs, there are exterior cliques larger than C0. Let c be the number of those
cliques of size at least |C0|. Moreover, we know that the cliques participating in the optimal
solution are some of these c cliques. First we give a weak upper bound for the number c. If
C0 is partially in an optimal solution, then the number of exterior cliques of size at least |C0|
is at most

√
n.

To proceed towards a polynomial time approximation scheme we argue further on the
number of the exterior cliques of size at least |C0|. We define r = ⌊ k

|C0|
⌋. Then the number of

exterior cliques of size at least |C0| that can be involved in an optimal solution is at most r.
Let also δ be a fixed number which will be defined later. Comparing r with δ we distinguish
between two cases.

Case 1: r < δ
If r is ”small”, then we proceed in an exhaustive manner. We examine all the possible sets of
r cliques out of c cliques of size at least |C0| i.e.,

(
c
r

)
sets of cliques. A technical detail here

is that clique C ′
0 should be also considered as one of the c cliques. It can be easily done by

considering clique C ′
0 as an external clique with zero vertices outside clique C0.

By the fact that the number of exterior cliques of size at least |C0| is at most
√

n, it follows
that the number of all the

(
c
r

)
sets of cliques is O(n

r

2 ). For each one of these sets of r cliques
we compute the k vertices that maximize the number of edges as follows:

Let R be a set of r cliques. We have already proved that at most one of the cliques in R
is partially in S∗. We consider all the 2r − 1 subsets of R. Let Ri be one of these subsets and

let Cj
i be the jth, 1 ≤ j ≤ |Ri|, clique of the set Ri. Clearly if

∑|Ri|
j=1 |C

j
i | < k, we discard



the set Ri. Otherwise, let k(j) =
∑|Ri|

t=1,t6=j |Ct
i |, for each j = 1, 2, . . . , |Ri|. If k(j) > k then

we discard this j. Otherwise (if k(j) ≤ k) we obtain a k-vertex solution by taking k − k(j)
vertices from clique Cj

i , starting from vertices which belong to its intersection with C0.

Consider now all the solutions obtained for each j = 1, 2, . . . , |Ri|, and for each Ri ⊆ R.
By their construction, these solutions are all the possible k-vertex solutions for the set R of
cliques, under the restriction that at most one of them is partially taken. Therefore, to find
the optimal solution we simply have to choose the one with the maximum number of edges.

For a set R of r cliques, there are 2r − 1 subsets Ri, and for each subset there are at
most r possible solutions. Therefore, the number of solutions to compare is O(r 2r). Recalling
that we have to examine O(n

r

2 ) sets of r cliques, it follows that for the case r < δ, δ be a
fixed number, an optimal solution to the DkS problem in a star of cliques can be found in
O(r 2r n

r

2 ) time.

Case 2: r ≥ δ
If r is ”large”, then we proceed in a greedy manner. We consider the solution, S, obtained by
the following simple algorithm:
Let C1 ≥ C2 ≥ . . . ≥ Cm−1 and t be the largest integer number such that k ≥ ∑t

i=1 |Ci| = k′.
Return all the vertices of the cliques C1 ≥ C2 ≥ . . . ≥ Ct and k − k′ vertices of clique Ct+1.

We prove that if R1 and R2 are two sets of independent cliques with all cliques in R1 of
size at least L and all cliques in R2 of size exactly L then for any pair of sets of k vertices S1

and S2 in R1 and R2, respectively, such that in both sets at most one clique is taken partially,
it holds that E(S1) ≥ E(S2). This will be useful for bounding the deviation of our solution
from the optimal one.

Let us now consider the solution S obtained by the algorithm. We know that the optimal
solution S∗ involves exterior cliques of size at least |C0|. Since our algorithm finds a solution
S by choosing k vertices from the larger exterior cliques, it follows that all cliques in S are of
size at least |C0|. Moreover, since r = ⌊ k

|C0|
⌋, we need at least r cliques of size |C0| in order to

fill k. Hence, choosing k vertices from a set of independent cliques of size |C0|, yields at least
rE(C0) edges. Therefore, it follows that E(S) ≥ rE(C0).

Clearly, an optimal solution, S∗, could contain cliques of smaller size than those chosen by
our algorithm. These small cliques are selected by S∗ due to the edges between their overlaps
with C0. Since these edges belong to C0, the optimal solution cannot be greater than E(S)

plus the edges of C0 i.e., E(S∗) ≤ E(S) + E(C0) ≤ E(S) + E(S)
r

≤ E(S) + E(S)
δ

= E(S) δ+1
δ

.
Thus, for the case r ≥ δ, where δ = 1−ǫ

ǫ
, 0 < ǫ < 1, there is an (1−ǫ)-approximation algorithm

for the DkS problem in a star of cliques.

The complexity of the greedy approximation algorithm is O(n logn). The complexity of
the exhaustive optimal algorithm is exponential to r ≤ δ = 1−ǫ

ǫ
, that is exponential to 1

ǫ
.

Hence, we obtain a polynomial time approximation scheme for the DkS problem on a star of
cliques [15, 16].

We also give a dynamic programming algorithm which yields an optimal solution for the
DkS problem for graphs having as clique graph a tree. Let C1, C2, ..., Ct be the cliques of
such a tree and m its maximum degree. We consider |Ci| < k, i = 1, . . . , t, otherwise the
problem is trivial. The algorithm traverses the tree of cliques starting from the leaves cliques.
In each step it computes an optimal solution for all the j-vertex densest subgraph problems,



for j = 1, ..., k, on the subtree rooted at clique Ci. Thus, we can prove that there is an
O(nkm+1) algorithm for the DkS problem on a tree of cliques of maximum degree m [15, 16].
It directly follows that there is an O(nk3) optimal algorithm for the DkS problem on a path
of cliques.

4 The DkS problem on chordal graphs

A graph is called chordal if every cycle of length strictly greater than three possesses a chord,
that is, an edge joining two nonconsecutive vertices of the cycle. In the rest of this section by
G = (V,E) we denote a chordal graph. It is well known that for a chordal graph, G = (V,E),
the following hold:
(i) G has at most m ≤ |V | maximal cliques, C = {C1, C2, . . . , Cm}, which can be found in

polynomial time [9].
(ii) G has a simplicial vertex, that is a vertex that all its adjacent vertices induce a complete

subgraph in G. Actually, if G is not a clique, then it has two nonadjacent simplicial
vertices [5].

(iii) G has a perfect elimination order, that is an order 〈u1, u2, . . . , un〉 of the vertices of G
in which each ui is a simplicial vertex of the subgraph of G induced by the vertices
{ui, ui+1, . . . , un}. Moreover, any simplicial vertex can start such an order [8].

By GA we denote the subgraph of G induced by a subset A ⊆ V of its vertices and by GF we
denote the subgraph of G induced by a subset F ⊆ E of its edges. A direct consequence of the
definition of the class of chordal graphs is that being chordal is a hereditary property inherited
by every vertex-induced subgraph GA of G, but not by every edge-induced subgraph GF of
G. It is also obvious that for every maximal clique Ci of a vertex-induced or an edge-induced
subgraph of G, there is at least one maximal clique Cj of G such that Ci ⊆ Cj .

By E(A) we denote the set of edges in a subgraph GA of G, while by E(A,B) we denote the
set of edges between two disjoint subsets A,B ⊆ V of vertices of G i.e., the set of edges with
one of their endpoints in A and the other in B. By S we denote a solution to the DkS problem,
that is a subset S ⊆ V such that |S| = k, while by S∗ we denote an optimal solution, that is
a solution S for which |E(S)| is maximized. Finally, we assume that k > |Ci|, 1 ≤ i ≤ m, for
otherwise S∗ consists of any subset of k vertices of some clique for which |Ci| ≥ k.

Since all the maximal cliques of a chordal graph G = (V,E) can be found in polynomial
time it is natural to study the DkS problem on those maximal cliques instead on G itself.
In this section we analyze the following simple greedy algorithm for finding an approximate
solution to the DkS problem on a chordal graph G.

Greedy Algorithm:

1. Let C1, C2, . . . Cm be the maximal cliques of G, sorted in non-increasing order of their sizes.
2. Find the largest integer t such that k > |⋃t−1

i=1 Ci| = k′.
3. Return the solution S consisting of all the vertices of the cliques C1, C2, . . . , Ct−1 plus

k − k′ > 0 vertices of clique Ct.

The size of the maximal clique Ct plays a crucial role in our analysis and it will be denoted
by L = |Ct|.

We first obtain a lower bound on the number of edges |E(S)| in the solution S derived by
the Greedy Algorithm for a chordal graph G. This bound is obtained by relating the solution
S to the solution that the Greedy Algorithm returns for a graph consisting of independent



cliques of size L. Formally, for a chordal graph G and the parameter L we consider the chordal
graph G̃ consisting of at least ⌈k/L⌉ independent cliques all of size L. We can prove that if S
and S̃ are the solutions that the Greedy Algorithm returns for the DkS problem on graphs G
and G̃, respectively, then it holds that |E(S)| ≥ |E(S̃)| = k(L−1)−b(L−b)

2 , where b = k mod L.

Next we give un upper bound, which is of independent interest, on the number of edges
of a chordal graph as a function of the size of its maximum clique.

Let c ≥ 2 be the size of a maximum clique of a chordal graph G = (V,E). The graph G, as
a chordal one, has a perfect elimination order. We remove from G vertices (and their incident
edges) in a perfect elimination order until the remaining number of its vertices is c. Since
the size of a maximum clique of G is c, each removed vertex has degree at most c − 1. Thus,
the number of the edges removed during this process, let |E1|, is at most (|V | − c)(c − 1).

Moreover, the remaining number of edges, let |E2|, is at most c(c−1)
2 (the remaining c vertices

form a clique). Thus, |E| = |E1|+ |E2| ≤ (|V | − c)(c− 1) + c(c−1)
2 = (c− 1)(|V | − c

2) and this
bound is the best possible [19, 20].

To prove that this bound is the best possible consider the chordal graph G = (V,E) con-
sisting of a clique, C, of size c − 1 and |V | − c + 1 independent vertices each one of them
adjacent to all vertices of C. Observe that a maximum clique of G consists of the clique
C plus one of the independent vertices, and it is of size c. For this graph G it holds that
|E| = (c−1)(c−2)

2 +(|V |− c+1)(c− 1) = (c− 1)(|V |− c
2). Note that if c = |V |, then G becomes

a complete graph.

Let us now relate the solution S of the Greedy Algorithm to an optimal solution S∗ to
the DkS problem on a chordal graph G. Let S∗ = A ∪ B, where A = S∗ ∩ S is the subset of
vertices of S∗ that belong to S and B = S∗ \ A is the subset of vertices of S∗ that do not
belong to S. Let also Γ ⊆ A be the subset of vertices in A that have adjacent vertices in B
and F = E(B)∪E(Γ,B). Obviously, Γ ∩B = ∅ and |E(S∗)| = |E(A)|+ |E(B)|+ |E(Γ,B)| =
|E(A)| + |F |.

In order to bound the number of edges in an optimal solution S∗ we shall consider the
edge-induced subgraph GF = (Γ ∪ B,F ) as well as the vertex-induced subgraph GB∪Γ of G.
Note that GB∪Γ , as a vertex-induced subgraph of G, is a chordal graph, while GF , as an edge-
induced subgraph of G, is in general a non chordal one. A useful structural property of the
subgraph GF is that all the maximal cliques of the graph GF = (Γ ∪B,F ) are of size at most
L. Using this property we can now prove that for the edge-induced graph GF = (Γ∪B,F ) of G
it holds that |F | ≤ (L−1)(|Γ ∪B|− L

2 ). Applying this bound on GF , (with |Γ ∪B| ≤ |S∗| = k)
we obtain |F | = |E(B)| + |E(Γ,B)| ≤ (L − 1)(k − L

2 ).

For the edges E(A) it holds that |E(A)| ≤ |E(S)|, since A ⊆ S. We also know that

|E(S)| ≥ k(L−1)−b(L−b)
2 . Therefore, |E(S∗)|

|E(S)| = |E(A)|+|F |
|E(S)| ≤ 1 + |F |

|E(S)| ≤ 1 + (L−1)(2k−L)
k(L−1)−b(L−b) . By

recalling that b = k mod L ≤ L − 1 and by distinguishing between two cases for b (b ≤ L/2

and b > L/2) it is easy to prove that (L−1)(2k−L)
k(L−1)−b(L−b) ≤ 2. Thus, it follows that there is a

3-approximation algorithm for the DkS problem on chordal graphs [19, 20].



5 Concluding remarks

At first we gave polynomial time algorithms for the HkS problem on graphs of maximal degree
2 and on trees either if we ask for a connected or a disconnected solution. We also proposed a
dynamic programming algorithm for the DkS problem on interval graphs that have a simple
path as clique graph.

Then we presented a polynomial time approximation scheme for the DkS problem on a
star of cliques and an O(nkm+1) time algorithm for the same problem on a tree of cliques,
where n is the total number of vertices in all the cliques and m is the maximum degree of
the tree. This last algorithm gives an O(nk3) optimal algorithm for paths of cliques. Since
interval and chordal graphs can be seen as clique graphs our result could be exploited in the
direction of exploring the complexity and the approximability of the DkS problem in these
classes of graphs.

Finally, we gave a 3-approximation algorithm for the DkS problem on chordal graphs,
which, up to our knowledge, is the first constant approximation algorithm for an NP-hard
variant of the problem on non-dense graphs. Concerning the tightness of our analysis we
succeeded to construct counterexamples for which our algorithm gives a solution of at least
half of the edges of an optimal one.

On the other hand many questions concerning the frontier between hard and polynomial
solvable or approximable, within a constant ratio, variants of the DkS problem, remain open.
Such an outstanding open question concerns the complexity of the DkS problem on interval
graphs or even on proper interval graphs. The existence of a constant approximation algorithm
for the NP-hard variant of the DkS problem on planar graphs is another interesting open
question.
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