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Abstract. The thesis concerns the problems of visual tracking and vi-
olence detection in video sequences. For the visual tracking problem,
two feature fusion frameworks are presented. For violence detection, a
system that classifies movie segments as violent or non-violent is pro-
posed. The first tracking framework called ’Model Fusion via Proposal’
(MFP) framework, provides a way to efficiently fuse visual cues using
independent trackers to construct an improved proposal distribution for
the main tracker. The fusion method results in reduced computational
requirements due to the better proposal and the gradual exploitation
of the state space. The ’Hierarchical Model Fusion’ (HMF) framework,
extends the MFP framework by integrating the multiple models into a
single tracker which exploits all the visual cues. This way the robust-
ness of the approach is further increased. To this end, we extended the
Bayesian framework to allow the integration of multiple models and we
derived a particle filtering based approximation algorithm which allows
the efficient integration of complementary models of different complexity
with redundancy of information. Both tracking frameworks use multiple
object models to describe the target. This feature enables the develop-
ment of an adaptation strategy which adds or deletes models to cope with
target appearance changes. For violence detection, a system that clas-
sifies movie segments as violent or non-violent is proposed. The system
fuses audio and visual information. The audio module uses state-of-the-
art methods. The visual features concern the general motion in the scene,
the detection of gunshots, and the motion of the detected people.

1 Introduction

1.1 Automated Video Understanding

A very active research area, automated video understanding, concerns the analy-
sis of video to extract semantic information. Most vision systems adopt a bottom-
up approach. First low level tasks such as motion segmentation, object recogni-
tion, and tracking are performed followed by scene analysis or event recognition
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to extract high level concepts about the scene. Its applications lie in the fields
of surveillance, control, and analysis. Motion segmentation is usually the first
step in surveillance systems and consists of detecting the objects of interest and
segmenting them from the static background. Object recognition is an important
step required for video understanding. The recognition may concern specific ob-
jects (e.g. a face of a specific person [15], [14], [3]) or object classes (e.g. vehicles,
people [2], [4]). The objects can be described by different cues. The next crucial
step in vision systems consists of tracking the objects of interest extracted by
motion segmentation or by object recognition. This is essential to establish the
correspondences between the detected objects from frame to frame and possibly
reduce the computational cost by avoiding detecting the objects in every frame.
Usually the detection process is much more complex than tracking. Event recog-
nition is the step that naturally follows the tracking of the objects of interest
[7], [12].

1.2 Contribution

The contribution of this thesis concerns the development of novel tracking al-
gorithms based on the particle filtering framework. Furthermore, a method for
violence detection in movies is presented, using a classification approach, with
features stemming from the tracking of objects using the proposed algorithm
and from other computer vision techniques. The work resulted in the following
publications: [9], [11], [1].

Proposed Tracking Frameworks The most important issues of the PFs are
the efficient and information-rich target representation and the selection of the
proposal distribution. We tackle these issues by proposing two generic frameworks
(Model Fusion via Proposal(MFP), Hierarchical Model Fusion(HMF)) for fusing
visual cues within the Bayesian framework. The MFP framework, provides a way
to efficiently fuse visual cues using independent trackers to construct an improved
proposal distribution for the main tracker. The fusion method results in reduced
computational requirements due to the better proposal and the gradual exploita-
tion of the state space. The HMF framework, extends the MFP framework by
integrating the multiple models into a single tracker which exploits all the visual
cues. This way the robustness of the approach is further increased. To this end,
we extended the Bayesian framework to allow the integration of multiple models
and we derived a particle filtering based approximation algorithm which allows
the efficient integration of complementary models of different complexity with
redundancy of information. Additionally, we developed an adaptation technique,
to automatically delete and re-initialize the auxiliary models.

Proposed Violence Detection Method A system that classifies movie seg-
ments as violent or non-violent is proposed. The system fuses audio and visual
information to increase the robustness. Two independent modules for audio and
video based classification were developed. The audio module has been developed
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in [5] where more details can be found. The video module uses features which
describe the amount and the direction of motion in the scene, the motion of
the detected people, and the illumination variations caused by gunshots. The
features are used to classify the segments in three activity classes according to
the amount of human activity of the segment (no, normal, and high activity)
and to two classes according to the existence or not of gunshots in the scene.
Similarly, The audio module uses several features to classify the movie segments
in one of several audio classes (e.g. music, speech, gunshots, fights). The output
of the video and audio classifiers is fed to a meta-classifier which decides for
the presence of violence in the segment. The system as well as the independent
modules were tested in real movie dataset. Both the modules when used inde-
pendently reach a satisfactory level of performance. The fusion methods boosts
that performance resulting in a system that detects about 4 out of 5 violent
events (80% recall) and about 1 out of 2 events classified as violent are indeed
violent (50% precision).

2 Hierarchical Model Fusion Framework

2.1 Algorithm Description

In the HMF framework the target is represented by several models of increasing
dimension, which are probabilistically linked. The parameter update for each
model takes place hierarchically so that the simpler models, which are updated
first, guide the search in the state space of the more complex models to relevant
regions. The most complicated model (in terms of state dimension) and the last
in hierarchy, is called main model and its parameters fully describe the target.
The rest of the models are referred as auxiliary as the estimation of their state
is not required by the application.

A simple example (see Figure 1) will clarify the proposed concept. Let us
consider a case of a target of which we want to estimate the bounding box. We
will use two models, an auxiliary that tracks a feature point in the target and
the main model, the bounding rectangle. The state of the first model has two
parameters, the point’s coordinates xs = [isx

; isy
], while the rectangle model

has three, the coordinates of its center and a scale parameter, xb = [ibx ; iby ; sb].
When the tracking is initialized the relative position of the rectangle’s center
and the point’s is measured. If the tracked object is rigid this relative position
should be almost constant between two consecutive frames. Thus if the location
of the feature point is found on the next frame we can infer the coordinates of
the center of the rectangle. The advantage of this strategy is that we first search
in a two-dimensional space for the feature point and then we search in an one-
dimensional space for the scale instead of searching in a three-dimensional state
space to locate the rectangle directly. One should argue here that the coordinates
obtained from the feature point model might not be very accurate or that this
strategy will fail for non rigid objects. These issues are addressed by relaxing the
link between the two models which will be discussed in detail in the following.
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Fig. 1. In (a) the tracking is initialized with two models describing the target, a bound-
ing rectangle and a salient point. The arrow shows the relative position of the salient
point and the center of the rectangle. In (b) the position of the point is updated and
using the stored relative distance the proposal for the rectangle given this position is
shown in the x and y axis (red). This proposal is much closer to the target than the
proposal derived by the state evolution model of the rectangle (blue).

In the general case M object models are used for target representation. The
state can be written as 1:

x = [x[1]; x[2]; . . . ; x[M ]] (1)

Where x[i] are the state vectors of each object model. To each object model
corresponds a measurement model with parameters z[i]. The graphical model of
Figure 2c encodes the architecture of our framework. It depicts the following
assumptions which we make to derive an algorithm for the recursive calculation
of the posterior:

– The total likelihood is given by multiplying the likelihoods of individual
models: p(z|x) =

∏M
i=1 p(z[i]|x[i]).

– The state evolution is decomposed as:
p(xt|xt−1) =

∏M
i=1 p(x[i]t|Pa(x[i]t)).

where Pa(x[i]t) denotes the parent nodes of x[i]t.
To construct algorithms that will be able to update the posterior of each

model sequentially we derive the following equation which is an extension to
the classical Bayesian tracking equation, but takes place in M steps. Each step
updates the state of the corresponding model. Using simple probability rules
and the assumptions mentioned above the filtering equation for the i − th step
is given by:

p(x[1:i]t,x0:t−1|z[1:i]t, z1:t−1) =

= p(x[1:i−1]t,x0:t−1|z[1:i−1]t, z1:t−1)
p(z[i]t|x[i]t)p(x[i]t|Pa(x[i]t))
p(z[i]t|z[1:i−1]t, z1:t−1)

(2)

1 For notational clarity we avoid using the T superscript, instead we use the Matlab’s
′;′ notation to concatenate vectors.
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Fig. 2. Graphical Models depicting only slices t− 1 and t of the temporal dimension.
The state to be approximated is denoted as x[3]. (a) Standard Particle Filter [8]. (b)
Partitioned Sampling [10],[13], the state is partitioned in 3 parts (x[31], x[32], x[33]),
which are updated independently, each one depending on different measurements. (c)
Proposed Graphical Model, using 2 auxiliary models (x[1], x[2]) which are linked to the
main model (x[3]).

As mentioned above, equation (2) can be used to construct Bayesian tracking
algorithms that use multiple object models. Here, we use it to construct a PF
based algorithm to iteratively update the posterior of each model.

We assume that at time t−1 the posterior p(x[1:M ]0:t−1|z[1:M ]1:t−1) is approx-
imated by a weighted particle set comprised of N weighted sample trajectories:
{x(n)

[1:M ]0:t−1, w
(n)
[M ]t−1}

N
n=1. To update the particle set that approximate the pos-

terior at time t we proceed in a sequential fashion. Each model is updated using
the information from the already updated models at time t. The proposal dis-
tribution is selected to factorize as:

q(x[1:i]t,x0:t−1|z[1:i]t, z1:t−1) =
q(x[i]t|Pa(x[i]t), z[i]t)q(x[1:i−1]t,x0:t−1|z[1:i−1]t, z1:t−1) (3)

As in standard PF the samples are drawn from the first factor of Eq. (3).
The weights are given by:

w
(n)
[i]t =

p(x(n)
[1:i]t,x

(n)
0:t−1|z[1:i]t, z1:t−1)

q(x(n)
[1:i]t,x

(n)
0:t−1|z[1:i]t, z1:t−1)

(4)
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By substituting equations (2) and (3) into (4) we get the following weight
update equation:

w
(n)
[i]t ∝ w

(n)
[i]t−1

p(z[i]t|x
(n)
[i]t )p(x(n)

[i]t |Pa
(n)(x[i]t))

q(x(n)
[i]t |Pa(n)(x[i]t), z[i]t)

(5)

The steps of the iteration for the update of model i at time t of the proposed
algorithm are the following (see Figure 3):
Given the particle set:
{x(n)

[1:i−1]t,x
(n)
0:t−1, w

(n)
[i]t }

N
n=1:

1. Sample: For n = 1 to N draw x(n)
[i]t from q(x(n)

[i]t |Pa(x[i]t)(n), z[i]t).
2. Update the weights of each particle using Eq. (5).
3. Normalize the weights.
4. Resample the particle set according to its weights, so that the resulting

particle set will be un-weighted and with the same number of particles.

Fig. 3. Update for model i at time t. (a) The pdf and particles at time t− 1. (b) The
proposal is formed by fusing information from the current model’s previous state and
from the rest of the models. Pat(x[i]t) denotes the parent nodes of x[i]t from time t,
Pa[i+1:M ]t−1(x[i]t) denotes the parent nodes of x[i]t from time t−1 excluding x[i]t−1. (c)
The new particles are weighted. Darker particles have higher weight. (d) Resampling.

2.2 Tracker Implementation

In this section we use the framework to build a tracker, which we applied in
tracking various targets in challenging situations. We combined three different
object models to represent the target which are in the order which are updated:
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(i) A salient point tracking model. This model has only 2 position parameters.
(ii) A blob tracking model. The blob represents a rectangular region of the target

with homogeneous color with 3 parameters which describe its position and
scale.

(iii) The target’s contour. This is the main object model. It is represented as
a b-spline curve and contains 5 parameters which allow several geometric
transformations.

Fig. 4. (a)Sample image showing two salient points(dark), one blob(red) and one curve
model(blue). (b)Graphical model of the implemented tracker, depicting slices t−1 and
t of the temporal dimension for the aforementioned models. The evidence nodes are
omitted for clarity.

The combined state vector is: x = [x[S]; x[B]; x[C]], where x[S] represents the
salient points x[B] represents the blobs and x[C] represents the contour curve.
For a single target more than one salient points or blobs models can be used.

Adaptation Procedure So far we proposed a framework to fuse information
from different cues using several object models which are initialized at the first
frame. Here, we will expand the proposed framework to adapt the auxiliary
models during tracking using information from the main model. The adaptation
of the auxiliary models is integrated in the update equation. Each auxiliary
model has a parameter that encodes the confidence of the object to belong to
the target (target confidence). The adaptation consists of deleting an object if
the target confidence is below a threshold and detecting and initializing new
objects. For the ks salient point model the target confidence parameter xks

[st]t

is initialized when the point is detected and updated during tracking by the
following filtering equation:

xks

[st]t
= astc

xks

[st]t−1 + (1− astc
)fstc(xks

[S]t−1,x[C]t−1) (6)

Where astc
is the filtering parameter and tstc is the threshold for deleting an

auxiliary model. fstc(·) is a metric measuring the compatibility between the
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points and the contour model on the previous frame:

fstc(xks

[S]t−1,x[C]t−1) = exp

{
−
d2

bht(L
ks

[S], L[C])

2σ2
stc

}
(7)

where σstc is the deviation, Lks

[S], L[C] are the likelihood vectors for the ks-th
salient point and the curve model respectively defined as
Lks

[S] = [p(zks

[S]|x
ks(1)
[S] ); ...; p(zks

[S]|x
ks(N)
[S] )] and similarly for the curve model. This

equation models the similarity between the likelihood vectors which is high when
the two models describe the same target. In that case the link from one model
to the other is meaningful. In contrast when one of the models is distracted by
clutter then the similarity between the two vectors is expected to be lower. The
same equations hold for the initialization and update of the target confidence
parameter of the blob model xkb

[bt]t
.

When x
ks(n)
[st]t−1 < tstc or xkb(n)

[bt]t−1 < tstc for the ks-th salient point and kb-th
blob models respectively then the auxiliary model is deleted and a detection
procedure searches for new salient points or blobs to re-initialize in the target
region as defined by the main model.

3 Tracking Experiments

The experiments have been executed using several challenging video sequences
and various objects have been tracked to verify our methods. More specifically,
we experimented with sequences containing deformable objects, abrupt motion,
heavy clutter, partial occlusions, and short full occlusions. For the experiments
we implemented the following trackers which we compare: SIR - the original SIR
algorithm, MFP and aMFP - the MFP tracker with and without adaptation,
HMT aHMT - the HMF tracker with and without adaptation.

To compare the trackers we annotated several sequences by hand and we
calculated the ‘Tracker Detection Rate’ (TDR) and ‘False Alarm Rate’ (FAR)
measures [6]:

TDR =
TP

TP + FN
,FAR =

FP

FP + TP
(8)

where TP , FN and FP denote the true positive, false negative and false positive
area respectively.

In the experiment displayed in Figure 5 we compare our HMT tracker to the
SIR in a PETS 2006 surveillance sequence using the blob and contour models.
The contour hypotheses of our method are much more concentrated near the
actual target than those of the SIR because of the strong prior provided by the
blob model.

The experiment displayed in Figure 6, illustrates the concept of the model
adaptation using the aHMT tracker with two model types, salient points and
contour. The salient point models are deleted and re-initialized as the initial
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Fig. 5. Tracking Results - Surveillance Sequence:(a),(b),(c)-SIR, 50 particles
(d),(e),(f)-HMT, 50 particles. Frames 1,35,50. Both trackers use the blob and the con-
tour models, for image clarity we only show the contour particles. The particles of
the HMT tracker are more concentrated near the target due to the better proposal
distribution.

Fig. 6. Tracking Results - 7up Sequence:aHMT, 60 particles, frames 1,180,300

points are occluded due to the object rotation. The main model (contour), defines
the target area and the search for new points is performed there.

In several cases some type of auxiliary models do not provide valid informa-
tion for the target. In such cases the adaptation mechanism discards these models
without replacing them. One such situation is observed in Figure 7 where the
blob models are misled by similar background colors and are quickly discarded.
The spots are not helpful throughout the whole sequence and therefore are dis-
carded for several frames as well.

In the HMT framework the object models are connected and form a single
graphical tracking model whereas in the MFP framework several independent
trackers are used with each one having a single object model and they exchange
information only through the proposal distribution. This type of connection
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Fig. 7. Tracking Results - Sequence without blobs:aHMT, 50 particles, frames
1,15,30,50. The blob models, although initialized in (a), are quickly discarded because
the background contains similar colors that distract it. In (c), the spot models are also
discarded and only the contour is used. In (d), several new spots are detected.

between the models does not guarantee that the trackers will remain locked on
the same target, especially when the adaptation method is not used. In Figure
8, this point is highlighted. The contour model is distracted by the player of the
other team and destabilizes the tracker.

Fig. 8. Tracking Results - Soccer Sequence:(a)-(e) MFP, 50 particles, (f)-(j) HMF, 50
particles, frames 1,21,24,29,40. In (c), the contour model is distracted by the player of
the other team as opposed to the HMF tracker which is not distracted as seen in (h).

4 Conclusions

Two feature fusion frameworks for visual tracking were presented. The imple-
mented trackers were used in the following to create features for the developed
violence detection system, which classifies movie segments as violent or non-
violent. The trackers are based on the particle filtering methods. Their main
goal was to create better hypotheses thus reducing the computational cost and
enabling the use of high dimensional object models in real time applications.A
violence detection system was also developed. The proposed system fuses au-
dio and visual information using features that do not restrict the scope of its
application and was tested on a real film dataset.
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