
Parameter identification and algorithmic
construction of fractal interpolation functions:

Applications in digital imaging and visualization

Polychronis Manousopoulos�

National and Kapodistrian University of Athens
Department of Informatics and Telecommunications

polyman@di.uoa.gr

Abstract. This dissertation examines the theory and applications of
fractal interpolation. Its main contribution is the parameter identifica-
tion, algorithmic construction and applications of fractal interpolation.
We focus on the self-affine and piecewise self-affine fractal interpola-
tion functions that are based on the theory of iterated function systems.
Specifically, we present two novel methods for parameter identification
that are based on minimising the symmetric difference between bound-
ing volumes of appropriately chosen points, achieving lower errors com-
pared to existing methods. We also present a novel method that aims
at preserving the fractal dimension of the initial set of points. Beyond
these, we introduce a new method for curve fitting using fractal interpo-
lation, allowing a more economical representation compared to existing
ones. Moreover, we construct non-tensor product bivariate fractal inter-
polation surfaces. As far as the applications are concerned, we focus on
isosurface triangulation, point cloud modelling, active shape models as
well as representation and compression of medical and geographic data;
fractal interpolation is used as the core of the proposed methods yielding
better results or overcoming limitations of existing methodologies.

Keywords: fractal interpolation, iterated function system, fractal di-
mension, curve fitting, bounding volume, vertical scaling factor.

1 Introduction

The subject of this dissertation belongs to the greater field of knowledge of frac-
tal geometry and its applications, such as data imaging, computer vision and
visualization. Its main contribution is the parameter identification, the algo-
rithmic construction and the applications of fractal interpolation. We focus on
self-affine and piecewise self-affine fractal interpolation functions that are based
on the theory of iterated function systems.

Fractal interpolation, as defined by M. F. Barnsley and other researchers,
is an alternative to traditional interpolation techniques aiming mainly at data
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Professor.



which present detail at different scales or some degree of self-similarity. These
characteristics imply an irregular, non-smooth structure that is inconvenient to
describe e.g. by polynomials. Examples of successful use of fractal interpola-
tion include projections of physical objects such as coastlines and plants, or
experimental data of non-integral dimension. Fractal interpolation provides a
constructive way to describe data as opposed to the descriptive ways employed
by most traditional methods.

The generic problem we intend to solve is the following. Given a set of points,
we select a subset of them as interpolation points and construct a fractal func-
tion that passes through them. The identification of its parameters, free or not,
is important since it determines the quality of interpolation with respect to the
initial set of points. Specifically, the closeness of fit of a fractal interpolation
function is mainly influenced by the determination of its vertical scaling factors.
No direct way to determine the optimum values of these factors exists and most
popular approaches employ mainly algebraic or geometric methods. Our motiva-
tion is to create an alternative methodology for determining the vertical scaling
factors using bounding volumes of appropriately chosen points, such that the
resulting fractal function provides a closer fit, with respect to some metric, to
the original points. We have developed two such methods for both the self-affine
and piecewise self-affine fractal interpolation functions: Bounding rectangles and
convex hulls. The first allows the calculation of the optimum vertical scaling fac-
tors using analytic expressions, while the second provides tighter bounds and
efficient algorithmic calculations. Furthermore, we present a novel method for
piecewise self-affine fractal interpolation functions that aims at preserving the
fractal dimension of the initial set of points. Results indicate that the proposed
methods are effective, achieving lower errors compared to existing ones.

Literature on fractal interpolation focuses mainly on functions, i.e. the data
points are linearly ordered with respect to their abscissa and the interpolant
is a function of (usually) non-integral dimension. In practice, however, there
are many cases where the data are suitable for fractal interpolation but define
a curve rather than a function, e.g. when modelling coastlines or plants. So,
it is useful to extend fractal interpolation to include curves as well, an issue
not fully addressed so far. Existing methods are based on generalizations to
higher dimensions, on the use of index coordinates or on non-affine models. We
create a method that is more accurate and economical than the existing ones,
thus being more suitable for practical applications such as shape representation.
Specifically, the proposed method involves applying a reversible transformation
to the data points, such that they define a function on the plane. These are
then interpolated as usual and the constructed function is transformed back to
the original coordinates in order to obtain a curve that interpolates the original
points. The proposed method as well as the most popular existing ones are
compared in practical applications showing the advantages of the proposed one
in terms of either accuracy or compression ratio.

We also examine the case of fractal interpolation surfaces, where ensuring
continuity is a more complicated task. Specifically, we construct non-tensor prod-



uct bivariate fractal interpolation surfaces by extending and correcting an ex-
isting method. Moreover, we examine the issue of continuity of such surfaces
presenting and comparing various approaches.

As far as the applications of fractal interpolation are concerned, we focus
on data imaging, visualization and computer vision, as well as data modelling.
Specifically, we present (a) a new algorithm for triangulating isosurfaces using
fractal interpolation surfaces which is based on the methodology of the well-
known marching cubes algorithm, achieving better results while producing an
adjustable amount of output primitives, (b) a new method for modelling point
clouds based on fractal interpolation, which achieves considerable compression
ratios and allows multiresolution reconstruction, (c) active shape models using
fractal interpolation, which present the advantage of requiring a considerably
smaller number of landmark points and thus a simpler annotation process, and
finally (d) the application of fractal interpolation to medical and geographic
data, demonstrating its suitability in these cases.

2 Fractal interpolation: Parameter identification and
algorithmic construction

2.1 Fractal interpolation functions

Let Δ1, Δ2 be partitions of the real compact interval I = [a, b], i.e. Δ1 = {u0, u1,
. . . , uM} satisfying a = u0 < u1 < · · · < uM = b and Δ2 = {x0, x1, . . . , xN}
satisfying u0 = x0 < x1 < · · · < xN = uM , such that Δ1 is a refinement of
Δ2. Let us represent as P = {(um, vm) ∈ I × R: m = 0, 1, . . . , M} the given set
of data points and as Q = {(xi, yi) ∈ I × R: i = 0, 1, . . . , N ≤ M} a subset of
them, the interpolation points. The subintervals of Δ2 are known as interpolation
intervals and may be chosen equidistantly or not. The data points within the
nth interpolation interval In = [xn−1, xn] are represented as Pn = {(ui, vi) :
xn−1 ≤ ui ≤ xn} for all n = 1, 2, . . . , N .

Let {R
2; wn, n = 1, 2, . . . , N} be an iterated function system, or IFS for short,

with affine transformations
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constrained to satisfy wn [x0 y0]
T = [xn−1 yn−1]

T and wn [xN yN ]T = [xn yn]T

for every n = 1, 2, . . . , N . After solving the above equations, the real numbers
an, dn, cn, en are completely determined by the interpolation points; the sn are
free parameters satisfying |sn| < 1 in order to guarantee that the IFS is hy-
perbolic with respect to an appropriate metric, for every n = 1, 2, . . . , N . The
transformations wn are shear transformations : line segments parallel to the y-
axis are mapped to line segments parallel to the y-axis contracted by the factor
|sn|. For this reason, the sn are called vertical scaling (or contractivity) factors.
It is well known that the attractor G =

⋃N
n=1 wn(G) of the aforementioned IFS

is the graph of a continuous function f : [x0, xN ] → R that passes through the



interpolation points (xi, yi), for all i = 0, 1, . . . , N . This function is called frac-
tal interpolation function, or FIF for short, corresponding to these points. A
section is defined as the function values between interpolation points. This is a
self-affine function since each affine transformation wn maps the entire (graph
of the) function to each section.

The aforementioned model of self-affine FIFs can be extended as follows.
Each interpolation interval is associated with a pair of data points called ad-
dress points. Specifically, the interpolation interval In = [xn−1, xn] is asso-
ciated with the points (x′

n,1, y
′
n,1) and (x′

n,2, y
′
n,2) for n = 1, 2, . . . , N , where

(x′
n,k, y′

n,k) = (um, vm) for all k ∈ {1, 2} and some m = 0, 1, . . . , M . Each pair of
address points defines the address interval [x′

n,1, x
′
n,2] and we have x′

n,1 < x′
n,2

for all n = 1, 2, . . . , N by definition. The set of data points within each ad-
dress interval is denoted as P [n] = {(u, v) ∈ P : x′

n,1 ≤ u ≤ x′
n,2}, for all n =

1, 2, . . . , N . The affine transformations wn, n = 1, 2, . . . , N are now constrained
to satisfy wn

[
x′

n,1 y′
n,1

]T = [xn−1 yn−1]
T and wn

[
x′

n,2 y′
n,2

]T = [xn yn]T for all
n = 1, 2, . . . , N , i.e. each address interval is mapped to its corresponding interpo-
lation interval. After solving the above equations, the real numbers an, dn, cn, en

are completely determined by the interpolation and address points; the vertical
scaling factors sn are again free parameters satisfying |sn| < 1. Let W (A) =⋃N

n=1 wn(A[n]), where A ∈ H(R2) and A[n] = {(x, y) ∈ A : x′
n,1 ≤ x ≤ x′

n,2}, for
n = 1, 2, . . . , N . The unique set G ≡ A∞ = limk→∞ W k(A0), for all A0 ∈ H(R2),
is the graph of a continuous function f : [x0, xN ] → R that passes through the
interpolation points (xi, yi), for all i = 0, 1, . . . , N . This function is called piece-
wise self-affine FIF, since each transformation wn maps the part of the (graph
of the) function defined by the corresponding address interval to each section.

Although a (piecewise) self-affine or FIF passes by definition through its in-
terpolation points, this is not necessarily the case for the remaining data points
P \ Q. The closeness of fit depends solely on each sn, n = 1, 2, . . . , N , the only
free parameters for a given P , and can be measured e.g. as the squared error
between the ordinates of the original and the reconstructed points, as the Haus-
dorff distance h(P, G), or as the Modified Hausdorff Distance hMHD(P, G) =
max

{
1/|P |∑a∈P minb∈G ‖a − b‖, 1/|G|∑b∈G mina∈P ‖a − b‖} , where | · | de-

notes the cardinality of a set.
In [2], [6] and [7] we propose to work with bounding volumes of P [n] (= P for

the self-affine case) and Pn in order for the transformed points wn(P [n]) to best
approximate the data points within Pn. Let B[n] ∈ K2

0(= B for the self-affine
case) be a bounding volume of P [n], where K2

0 denotes the set of convex, compact
subsets of R

2 with non-empty interior, and Bn ∈ K2
0 be convex bounding volumes

of Pn for every n = 1, 2, . . . , N . In other words, it is P [n] ⊂ B[n] and Pn ⊂ Bn,
for every n = 1, 2, . . . , N . We use the symmetric difference metric

δS(K, L) = H2(K � L) = H2((K \ L) ∪ (L \ K)), K, L ∈ K2
0 (1)

where H2 denotes the Hausdorff measure in R
2, in order to minimize the area

of the symmetric difference Bn � wn(B[n]), n = 1, 2, . . . , N . Notice that since
we are constrained in K2

0 the Hausdorff measure coincides with the Lebesgue



measure, i.e. the area, in R
2. So, Eq. (1) can be written in the form

δS(K, L) = area(K \ L) + area(L \ K) = area(K ∪ L) − area(K ∩ L). (2)

Therefore, by selecting the values of sn that result in the maximum overlap of
the respective bounding volumes we are able to produce a better approximation
of the data points. This approach has the advantage that, for suitably chosen
bounding volumes B[n] and Bn, we are able to efficiently obtain the optimum sn

using either analytic expressions or efficient algorithms. Two types of bounding
volume for the minimization of δS(Bn, wn(B[n])), for all n = 1, 2, . . . , N are
selected, namely the bounding rectangle and the convex hull. The first type allows
the calculation of the optimum vertical scaling factors using analytic expressions,
while the second provides tighter bounds and efficient algorithmic calculations.

The Minimum Bounding Rectangle Method, or MBRM for short, employs
bounding rectangles aligned with the axes of the co-ordinate system. Let Rn

be the MBR of Pn and R[n] (= R for the self-affine case) the MBR of P [n].
In view of Eq. (1), our aim is the minimization of δS(Rn, wn(R[n])), for every
n = 1, 2, . . . , N . This is achieved by minimizing the area of the non-overlapping
parts of Rn and wn(R[n]). The possible cases of intersection of Rn and wn(R[n])
along with the analytic expressions for the optimum sn that minimize the area
of the non-overlapping parts in each case are presented in detail in [6].

The Convex Hull Method, or CHM for short, employs the convex hull as
bounding volume. This provides a tighter bound than the rectangle and is ac-
tually the smallest convex set containing the data points. Similarly to the case
of bounding rectangles, we want to minimize the area of the nonoverlapping
parts of the convex hull of the points in the nth interpolation interval and the
transformation of the convex hull of P [n] under wn. According to Eq. (2), this is

δS(CH(Pn), CH(wn(P [n]))) = Area{CH(Pn)} + Area{CH(wn(P [n]))} −
−2Area{CH(Pn ∩ wn(P [n]))}, (3)

where CH(·) is the convex hull of a set of points. The calculation of the optimum
ŝn cannot be performed analytically as in the MBRM. As implied by Eq. (3),
the calculation of δS is algorithmic and involves the computation of convex
hulls, polygon intersections and areas. As we suggest in [6], a method for one-
dimensional minimization without derivatives should be used, such as R. P.
Brent’s method which is a bracketing method with parabolic interpolation.

Also, in [7] we propose an alternative approach for piecewise self-affine FIFs
that aims at preserving the box-counting dimension of the original data points.
It is known that the box-counting dimension D of a piecewise self-affine FIF
satisfies under certain conditions the equation ρ(CS(D)) = 1, where ρ(·) is the
spectral radius, C = (cij) is the connection matrix and S(d) = diag{|s1||a1|d−1,
. . . , |sN ||aN |d−1}. We examine the case when, additionally for all n = 1, 2, . . . , N ,
we have that (a) the vertical scaling factors are the same, i.e. sn = s, (b) the
address intervals are of equal length, i.e. x′

n,2 − x′
n,1 = L′ and

∑N
j=1 cij = c,

for every i = 1, 2, . . . , N , (c) the interpolation intervals are of equal length, i.e.
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Fig. 1. The original signal (bottom), its reconstruction by the CHM and their difference
(2nd from bottom), its reconstruction by the MBRM and their difference (3rd from
bottom), and its reconstruction by the BCDM and their difference (top).

xn − xn−1 = L, so an = L/L′ = a. As we prove in [7], if the vertical scaling
factors are calculated as |s| = 1/

(
c|a|D−1

)
, then the box-counting dimension of

the resulting piecewise self-affine FIF is D, which therefore can be set equal to the
dimension of the set of points P in order to preserve it. The sign of the vertical
scaling factor is determined by selecting the one that minimizes the Hausdorff
distance between the original and the reconstructed points. Henceforth, we will
call this method the Box-Counting Dimension Method, or BCDM for short.

The lower part of Figure 1 presents a part of an EEG signal1 consisting of
5000 points. In the same figure, the piecewise self-affine FIFs constructed by the
CHM, the MBRM and the BCDM are shown from bottom to top. Interpolation
intervals of 25 points and address intervals of 500 points have been used. The
address intervals have been chosen to be consecutive and non-overlapping, while
the optimum one for each interpolation interval has been chosen in terms of
the Hausdorff distance between the original and the reconstructed points. Under
each graph, its difference from the original is also depicted in red. As can be
seen from the figure, the reconstructed functions interpolate the data points quite
successfully despite the sparsity of the interpolation points. Detailed comparison
of the proposed methods along with the popular geometric and the algebraic ones
of D. S. Mazel and M. H. Hayes indicates that MBRM and CHM outperform
both existing methods in terms of Hausdorff distance and Modified Hausdorff

1 The data are part of the MIT-BIH Polysomnographic Database.



distance between the original and the reconstructed data points. The BCDM
produces acceptable results even though it does not aim at minimizing some
error measure, while preserving the dimension of the data.

2.2 Fractal inteprolation curves

Fractal interpolation literature focuses on functions, i.e. the data points are
linearly ordered with respect to their abscissa. In practice, however, there are
cases when the data are suitable for fractal interpolation but define a curve rather
than a function, e.g. when modelling coastlines or plants. In order to model
curves by fractal interpolation, existing methods use generalizations to higher
dimensions, index coordinates or non-affine models. In [4] and [9] we propose
a novel method for representing curves using fractal interpolation. The main
advantage of the proposed method is offering a more economical representation
of the data compared to existing methods, thus allowing higher compression
ratios. The central idea is to apply a reversible transformation to the data points
such that they define a function on the plane. A FIF is constructed as usual and
then it is transformed back to the original coordinates in order to obtain a curve
that interpolates the original points. An example is depicted in Figure 2, where
a fractal interpolation curve is constructed for a set of 11 interpolation points.

Fig. 2. A fractal interpolation curve constructed by the proposed method.

2.3 Fractal inteprolation surfaces

A fractal interpolation surface is a function that belongs in the three-dimensional
space and has Hausdorff-Besicovitch dimension between 2 and 3; it is defined
for sets of interpolation points formulated as {(xi, yj, zij = z(xi, yj) ∈ R

3, i =
0, 1, . . . , M ; j = 0, 1, . . . , N}. Such sets of data points usually form triangular
or rectangular grids. The key difficulty in the construction of fractal interpola-
tion surfaces is ensuring their continuity. In [1] we construct non-tensor product
bivariate fractal interpolation surfaces for arbitrary interpolation points and ver-
tical scaling factors. This is an important result, since most existing methods
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Fig. 3. (a) The rectangular lattice. (b) The fractal inteprolation surface.

impose restrictions on the interpolation points or the factors in order to achieve
continuity. In Figure 3(a) a rectangular lattice is depicted; in Figure 3(b) the re-
spective fractal interpolation surface constructed by the proposed method using
vertical scaling factors sm,n = 0.45 for all m, n = 1, 2, 3 is depicted.

3 Applications of fractal interpolation

3.1 Volume data visualization

Visualization of medical or experimental 3D data is often achieved by extracting
an intermediate geometric representation of the data. One such popular method
for extracting an isosurface from volume data is the Marching Cubes (MC ) algo-
rithm, which creates a polygon mesh by sampling the data at the vertices of the
cubes of a 3D grid. In [5] we present a novel method for isosurface approxima-
tion that uses the vertex extraction phase of the MC algorithm, but subsequently
represents the data by fractal interpolation surfaces instead of a polygon mesh,
considering additionally the surface topology in the interior of the cubes. The
proposed Fractal Marching Cubes (FMC ) method is appropriate for isosurfaces
that are not locally flat, such as natural structures. Another advantage is that a
coarser grid resolution can typically be used, since fractal interpolation surfaces
are particularly good at representing detailed, irregular or self-similar structures.
The multiresolution extension of the method is also straightforward. In Figure 4,
an example of medical data visualization is presented, showing that the proposed
FMC method can achieve superior results compared to the original MC.

3.2 Image understanding

Active Shape Models (ASM ) are used in image understanding either for locating
shapes in static images or for motion tracking in image sequences. They have
been successfully used in practice, especially in biomedical applications. ASM
use a statistical representation of shapes. The shape in each image of a training



Fig. 4. CT visualization of tissue using the MC algorithm and grid resolution 128 ×
128× 52.(left) CT visualization of tissue using the FMC algorithm and grid resolution
128 × 128 × 52. (right)

sample is annotated by a set of landmark points and is thus represented as the
vector of the point coordinates. The shape vectors are aligned and then described
by applying Principal Component Analysis (PCA) to them. In this way, we have
a mean shape and the possible variation along the eigenvectors of the covariance
matrix, thus defining the space of allowable shapes implied by the sample. It is
then possible to locate allowable shapes in new images, by an iterative image
search algorithm that attracts an initial shape approximation towards the image
edges while remaining inside the allowable space.

In many ASM applications a significant number of landmark points or train-
ing images may be required, thus rendering the (partly or wholly manual) anno-
tation process time-consuming and error-prone. In [3] we introduce the Fractal
Active Shape Models (FASM ) aiming at considerably reducing the number of
required landmark points. They describe a shape by fractal interpolation curves
and represent it by the vector of the interpolating IFS transformation coeffi-
cients. Afterwards, PCA is applied to the shape vectors in order to define the
allowable shape space, while image search is performed in a similar manner. In
Figure 5(b), the shape boundary of Figure 5(a) is depicted. The shape can be
represented either by the 77 landmark points of Figure 5(c) or by the fractal
interpolation curve of 23 interpolation points of Figure 5(d). In both cases the
representation quality is similar, but the proposed method requires about 30%
of the ASM landmark points. The feasibility of this method is based on the
fact that there is a continuous dependence between the transformations’ coeffi-
cients and the attractor of an IFS, while its efficiency in image search has been



shown in practice. It is especially useful for image samples containing irregular,
non-smooth shapes.

(a) (b) (c) (d) 

Fig. 5. (a) A leaf of the plant Laurus nobilis. (b) The shape boundary consisting of 930
points. (c) The 77 landmark points. (d) The fractal interpolation curve of 23 points.

3.3 Point cloud modelling

Point clouds are used for modelling 3D objects, especially those digitized by 3D
scanners. In such applications high-resolution digitization is performed result-
ing in an increased amount of points, e.g. data sets of 107 points are common in
practice. Moreover, additional information, such as normal vector or colour, nec-
essary for photorealistic rendering may be stored. All these result in an increased
volume of data, often difficult and time consuming to handle, thus leading to
the development of point cloud modelling and compression methodologies.

In [8] we propose a novel method based on fractal interpolation for modelling
and compressing point clouds. Our aim is (a) to achieve considerable compres-
sion ratios and (b) to allow multi-resolution reconstruction, i.e. the ability of a
fast approximative reconstruction as well as a slower but accurate one. Each 3D
point of the cloud is allowed to be associated with additional coordinates, corre-
sponding e.g. to normal vector or colour. The first step is to partition the point
cloud into subsets using the k-means clustering algorithm. The points of each
cluster are sorted in order of mutual proximity and are subsequently represented
by multiple FIFs, each one constructed for one of the point coordinates and an
appended index coordinate. Every cluster is then modelled by the transforma-
tion coefficients of the interpolating IFSs and the point cloud by the coefficients
of all clusters. The compression ratio is determined by the density of the inter-
polation points which defines the number of transformations of each IFS. The
reconstruction of the point cloud is achieved by constructing the attractors of all
IFSs and subsequently merge them in a single set based on the discardable index
coordinate. The cardinality of the reconstructed point cloud can be parametrized
through the attractor calculations, thus determining the accuracy and speed of
the reconstruction.

3.4 Modelling and compression of geographic and medical data

In [7], [4] and [9] we present various applications of fractal interpolation to medi-
cal and geographic data. Here we give two such examples. In Figure 6 an example
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Fig. 6. (a) The brain axial anatomical image. (b) The representation of the white
matter using fractal interpolation curves.

Fig. 7. The coastline representation at multiple scales.

of applying fractal interpolation to axial anatomical images is presented2. Specif-
ically, the boundary of the brain white matter is modelled by multiple fractal
interpolation curves constructed by the proposed method using interpolation
intervals of 20 points. We note that the usefulenss of fractal interpolation in
medical applications can be significant, since it has been shown that it can be
used for dimension based diagnosis. In Figure 7 a coastline representation is de-
picted. In this example, the ability of fractal interpolation to represent detail at
different scales is emphasized.

4 Conclusions and future work

This dissertation has examined the theory and applications of fractal inter-
polation contributing to its parameter identification, algorithmic construction
2 Data from the “Visible Human Project” of the National Library of Medicine.



and applications, such as data imaging, computer vision and visualization. We
have presented two novel methods for parameter identification of self-affine and
piecewise self-affine fractal interpolation functions; by minimising the symmet-
ric difference between bounding volumes of appropriately chosen points, we
have achieved lower errors compared to existing methods. Furthermore, a novel
method that aims at preserving the fractal dimension of the initial set of points
has been presented. Beyond these, we have proposed a new method for curve fit-
ting using fractal interpolation, allowing a more economical representation than
existing methods. Moreover, we have constructed non-tensor product bivariate
fractal interpolation surfaces. As far as the applications are concerned, we have
focused on isosurface triangulation, point cloud modelling, active shape models,
and representation and compression of medical and geographic data. In all appli-
cations, fractal interpolation has been used as the core of the proposed methods
yielding better results or overcoming limitations of existing methodologies.

Future research directions can be derived based on each individual problem
studied in the context of this dissertation. Extending the proposed parameter
identification methods to fractal interpolation surfaces, as well as achieving au-
tomated diagnosis in medical applications using fractal interpolation models are
representative examples of such further work.
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