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Abstract. This dissertation deals with problems of Pattern Recognition
in the framework of Machine Learning (ML) and, specifically, Statistical
Learning Theory (SLT), using Support Vector Machines (SVMs). The
focus of this work is on the geometric interpretation of SVMs, which is
accomplished through the notion of Reduced Convex Hulls (RCHs), and
its impact on the derivation of new, efficient algorithms for the solution
of the general, i.e., linear, nonlinear, separable and non-separable, SVM
optimization task. The contributions of this work are i) the extension of
the mathematical framework of RCHs (which allow the restriction of the
expression of the extreme points of the RCHs and provide an analytic
form of their projection onto a specific direction), ii) the development of
novel geometric algorithms for SVMs (based on Schlesinger-Kozinec and
Gilbert nearest point algorithms), which were tested using public bench-
mark datasets and outperformed the existing algebraic SVM algorithms
and, finally, iii) the derivation and assessment of a set of qualitative and
quantitative mammographic textural and morphological features (using
methods of statistical and fractal analysis) and the application of the
SVM algorithms (as well as other machine learning paradigms) to the
field of Medical Image Analysis and Diagnosis (Mammography) with very
encouraging practical results.

Keywords: Classifier, Support vector machine, Geometric algorithm, Reproducing
kernel Hilbert space, Reduced convex hull, Mammography, Image processing, Frac-
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1 Introduction

The contribution1 of this dissertation is twofold: i) the extension of the geo-
metric framework of the Support Vector Machine (SVM) paradigm, which is a
fundamental derivative of the Statistical Learning Theory (SLT) and is used to
? Dissertation Advisor: Sergios Theodoridis, Professor
1 Published parts of this work have been awarded with the following international
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accomplish a wide range of Machine Learning tasks, and the development of
efficient and theoretically sound algorithms to practically solve the general SVM
problem and ii) the derivation and assessment of a set of qualitative and quan-
titative mammographic textural and morphological features (using methods of
statistical and fractal analysis) and the application of the SVM algorithms (as
well as other machine learning paradigms) to the field of Medical Image Analysis
and Diagnosis (Mammography).

Geometry provides a very intuitive background for the understanding and
the solution of many problems in the fields of Pattern Recognition and Machine
Learning. The SVM paradigm in pattern recognition presents a lot of advantages
over other approaches (e.g., [4,21]), some of which are: 1) the uniqueness of the
solution (as it is guaranteed to be the global minimum of the corresponding op-
timization problem), 2) good generalization properties of the solution, 3) rigid
theoretical foundation based on SLT and optimization theory, 4) common for-
mulation for the class separable and the class non-separable problems (through
the introduction of appropriate penalty factors of arbitrary degree in the opti-
mization cost function) as well as for linear and non-linear problems (through
the so called “kernel trick”) and, last but not least, 5) clear geometric intuition
of the classification problem. Due to these very attractive properties, SVM have
been successfully used in a number of applications. Although some authors have
presented the theoretical background of the geometric properties of SVM, ex-
posed thoroughly in [23], the main stream of solving methods comes from the
algebraic field (mainly decomposition). One of the most popular algebraic algo-
rithms, combining speed and ease of implementation with very good scalability
properties, is the Sequential Minimal Optimization (SMO) [19]. The geometric
properties of learning [1] and specifically of SVM in the feature space have been
pointed out early enough, through the dual representation (i.e., the convexity
of each class and finding the respective support hyperplanes that exhibit the
maximal margin) for the separable case [2] and also for the non-separable case
through the notion of the Reduced Convex Hull (RCH) [3]. Actually, the geomet-
ric algorithms presented until the work of this thesis ([11,5]) are suitable only for
solving directly the separable case and indirectly the non-separable case through
the technique proposed in [6]. However, the latter incorporates not linear, but
quadratic penalty factors and it has been reported to lead to poor results in
practical cases [11].

The main contribution of this work is the development of a complete mathe-
matical framework to support the RCH and therefore make it directly applicable
to practically solve the non-separable SVM classification problem. Without this
framework, the application of a geometric algorithm in order to solve the non-
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separable case through RCH is practically impossible, since it leads to a problem
of combinatorial complexity. Subsequently, two known and well studied geomet-
ric algorithms, namely Schlesinger-Kozinec’s and Gilbert’s algorithms, have been
rewritten in the context of this framework, therefore showing the practical ben-
efits of the theoretical results derived to support the RCH notion.

2 Geometric Support Vector Machines

2.1 Support Vector Machines

A SVM finds the best separating (maximal margin) hyperplane between two
classes of training samples in the feature space, which is in line with optimiz-
ing bounds concerning the generalization error [22,20]. The playground for SVM
is the feature space H, which is a Reproducing Kernel Hilbert Space (RKHS),
where the mapped patterns reside (Φ : X → H). It is not necessary to know
the mapping Φ itself analytically, but only its kernel, i.e., the value of the inner
products of the mappings of all the samples (K (x1, x2) = 〈Φ (x1) , Φ (x2)〉 for
all x1, x2 ∈ X ) [20]. Through the “kernel trick”, it is possible to transform a
nonlinear classification problem to a linear one, but in a higher (maybe infinite)
dimensional space H2. Once the patterns are mapped in the feature space, pro-
vided that the problem for the given model (kernel) is separable, the target of
the classification task is to find the maximal margin hyperplane. This classifica-
tion task, expressed in its dual form, is equivalent with finding the closest points
between the convex hulls generated by the (mapped) patterns of each class in
the feature space [2], i.e., it is a Nearest Point Problem (NPP). Finally, in case
the classification task deals with non-separable datasets, i.e., the convex hulls of
the (mapped) patterns in the feature space are overlapping, the problem is still
solvable, provided that the corresponding hulls are reduced, so that to become
non-overlapping [3,17]. This is illustrated in Figure 1. Therefore, the need to
resort to the notion of the reduced convex hulls becomes apparent. However, in
order to work in this RCH geometric framework, one has to extend the available
palette of tools by a set of new RCH-related mathematical properties.

2.2 Reduced Convex Hulls (RCHs)

Definition 1. (Reduced Convex Hull): The set of all convex combinations of
points in some set C (of cardinality |C|), with the additional constraint that
each coefficient αi is upper-bounded by a non-negative number µ < 1 is called
the reduced convex hull (RCH) of C and it is denoted as R (C, µ):

R (C, µ) .=

w|w =
|C|∑
i=1

αixi, xi ∈ C,

|C|∑
i=1

αi = 1, 0 ≤ αi ≤ µ

 . (1)

2 In the rest of this work, for keeping the notation clearer and simpler, the quantities
x will be used instead of Φ (x), since in the final results, the patterns enter only
through inner products and not individually, therefore making the use of kernels
readily applicable.



Fig. 1. The initial convex hulls (light
gray), generated by the two training
datasets (of disks and diamonds re-
spectively) are overlapping; still over-
lapping are the RCHs with µ = 0.4
(darker gray); however, the RCHs with
µ = 0.1 (darkest gray) are disjoint and,
hence, separable. The nearest points of
the RCHs, found by the Nearest Point
Algorithms (NPAs) presented here, are
shown as circles and the separating hy-
perplane as the bold line.
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Fig. 2. Evolution of a reduced convex
hull with respect to µ

The initial convex hull (µ = 1), gen-
erated by 10 points (n = 10), is suc-
cessively reduced, setting µ to 8/10,
5/10, 3/10, 2/10, 1.5/10, 1.2/10 and, finally,
1/10, which corresponds to the centroid.
Each smaller (reduced) convex hull is
shaded with a darker color. The corre-
sponding µ of each RCH are the values
indicated by the arrows.

Every combination of the above form, i.e., of points belonging in R (C, µ), is
called a reduced convex combination.

The effect of the upper-bound parameter µ to the size of RCH is very intuitive
and is presented in Figure 2.

In this way, the initially overlapping convex hulls, with a suitable selection of
the bound µ, can be reduced so that to become separable. Once separable, the
theory and tools developed for the separable case can be readily applied. The
algebraic proof is found in [3] and [2] and the geometric one in [23]. The bound
µ, for a given set of original points, plays the role of a reduction factor, since it
controls the size of the generated RCH; the effect of the value of bound µ to the
size of the RCH is shown in Figures 1 and 2.

Although, at a first glance, this is a nice result, that paves the way to a
geometric solution, i.e., finding the nearest points between the RCH, it turns
out not to be such a straightforward task: The search for nearest points between
the two (one for each class) convex hulls depends directly on their extreme points
[10], which, for the separable case are some of the points in the original dataset.
However, in the non-separable case, each extreme point of the RCH turns out
to be a reduced convex combination of the original points. This fact makes the
direct application of a geometric NPA impractical, since an intermediate step of
combinatorial complexity has been introduced.



In the sequel, we present a mathematical framework of theorems and propo-
sitions (which has been development as a result of this thesis) that shed further
intuition and usefulness to the RCH notion and at the same time form the ba-
sis for the development of the novel geometric SVM algorithms which we have
developed.

Proposition 1. If all the coefficients αi of all the reduced convex combinations,
forming the RCH R (X, µ) of a set X with k elements, are less than 1/k (i.e.,
µ < 1/k), then R (X, µ) = Ø. [18]

Proposition 2. If for every i , it is αi = 1/k in a RCH R (X, µ) of a set X
with k different points as elements, then R (X, µ) degenerates to a set of one
single point, the centroid point (or barycenter) of X. [18]

Remark 1. It is clear that in a RCH R (C, µ), a choice of µ > 1 is equivalent
with µ = 1, as the upper bound for all αi, because, from the Definition 1, it
must be

∑k
i=1 αi = 1 and, therefore, αi ≤ 1. As a consequence of this and the

above Proposition 2, it is deduced that the RCH R (C, µ) of a set C will be
either empty (if µ < 1/k), or grows from the centroid (µ = 1/k), to the convex
hull (µ ≥ 1) of C.

Proposition 3. The set −R (C, µ) is still a RCH; actually, it is R (−C, µ). [16]

Proposition 4. Scaling is a RCH-preserving property, i.e., for any s ∈ R\ {0},
it is sR (C, µ) = R (sC, µ). [16]

Proposition 5. The Minkowski sum (or difference) of two RCH R (C1, µ1) −
R (C2, µ2) is a convex set. [16]

For the application of the above to real life algorithms, it is absolutely nec-
essary to have a clue about the extreme points of the RCH. In the case of a
convex hull generated by a set of points, as stated before, the set of extreme
points consists of a subset of the set of points, which, it turns out to be the min-
imal representation of the convex hull. Therefore, as it clear (e.g., [10]), only a
subset of the original points is needed to be examined and not every point of the
convex hull. In contrast, for the case of RCH, its extreme points are the result
of (reduced convex) combinations of the extreme points of the original convex
hull, which, however, do not belong to the RCH, as it was deduced above. In the
sequel, it will be shown that not any combination of the extreme points of the
original convex hull leads to extreme points of the RCH, but only a small subset
of them. This is the seed for the development of efficient algorithms presented
in this dissertation.

Lemma 1. For any point w ∈ R (X, µ), if there exists a reduced convex combi-
nation

∑k
i=1 αixi, with xi ∈X, k = |X|,

∑k
i=1 αi = 1, 0 ≤ αi ≤ µ and at least

one coefficient αr, 1 ≤ r ≤ k, not belonging in the set S = {0, 1− b1/µcµ, µ},
then there exists at least another coefficient αs, 1 ≤ s ≤ k, s 6= r, also not
belonging in the set S, i.e., there cannot be a reduced convex combination with
just one coefficient not belonging in S. [18]



Theorem 1. The extreme points of a RCH R (X, µ) of a set X, with xi ∈ X
and k = |X|, have coefficients αi belonging to the set S = {0, 1− b1/µcµ, µ}.
[18]

Proposition 6. Each of the extreme points of a RCH R (X, µ) of a set X,
with xi ∈ X and k = |X|, is a reduced convex combination of m = d1/µe
(distinct) points of the original set X. Furthermore, if d1/µe = 1/µ then all
αi = µ; otherwise, αi = µ for i = 1, 2, · · · ,m− 1 and αm = 1− b1/µcµ.[18]

Remark 2. For the coefficients λ
.= 1 − b1/µcµ and µ, it holds 0 ≤ λ < µ. This

is a byproduct of the proof of the above Proposition 6 [18].

Remark 3. The separation hyperplane depends on the pair of closest points of
the convex hulls of the patterns of each class, and each such point is a convex
combination of some extreme points of the RCHs. As, according to the above
Theorem 1, each extreme point of the RCHs depends on d1/µe original points
(training patterns), it follows directly that the number of support vectors (points
with non-zero Lagrange multipliers) is at least d1/µe, i.e, the lower bound of
the number of initial points contributing to the discrimination function is d1/µe
(Figure 3)3.
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Fig. 3. Extreme points of an evolving (shrinking) RCH
Three RCHs ((a) R (P5, 4/5), (b) R (P5, 2/5) and (c) R (P5, 1.3/5)) are shown, generated
by 5 points (stars), to present the points that are candidates to be extreme (small
squares). Each point in the RCH is labeled so, as to present the original points from
which it has been constructed; the last label is the one with the lowest coefficient.

Remark 4. Although the above Theorem 1, along with Proposition 6, restricts
considerably the candidates to be extreme points of the RCH, since they should
be reduced convex combinations of d1/µeoriginal points and also with specific
coefficients (belonging to the set S), the problem is still of a combinatorial
nature, since each extreme point is a combination of d1/µe out of k initial points
for each class. This is shown in Figure 3. Theorem 1 provides the necessary but
not the sufficient condition for a point to be extreme in a RCH. The set of points
satisfying the condition is larger than the set of extreme points; these are the
3 Pn stands for a (convex) Polygon of n vertices.



“candidate to be extreme points”, shown in Figure 3. Therefore, the solution of
the problem of finding the closest pair of points of the two reduced convex hulls
essentially entails the following three stages:

1. Identifying all the extreme points of each of the RCHs, which are actually
subsets of the candidates to be extreme points pointed out by Theorem 1.

2. Finding the subsets of the extreme points that contribute to the closest
points, one for each set.

3. Determining the specific convex combination of each subset of the extreme
points for each set, which gives each of the two closest points.

However, in the algorithms proposed herewith, it is not the extreme points them-
selves that are needed, but their inner products (projections onto a specific di-
rection). This case can be significantly simplified, through the next theorem.

Lemma 2. Let S = {si|si ∈ R, i = 1, 2, · · · , n}, λ ≥ 0, µ > 0 and λ 6= µ, with
kµ + λ = 1. The minimum weighted sum on S (for k elements of S if λ = 0, or
k + 1 elements of S if λ > 0) is the expression λsi1 + µ

∑k+1
j=2 sij

if 0 < µ < λ,
or µ

∑k
j=1 sij

+ λsik+1 if 0 < λ < µ, or µ
∑k

j=1 sij
if λ = 0, where sip

≤ Siq
if

p < q. [18]

Theorem 2. The minimum projection of the extreme points of a RCH R (X, µ)
of a set X, with xi ∈X and k = |X|, in the direction p (setting λ

.= 1−b1/µcµ
and m

.= b1/µc) is:

– µ
∑m

j=1 sij
if 0 < µ and λ = 0

– µ
∑m

j=1 sij + λsim+1 if 0 < λ < µ

where sij

.= 〈p,xj〉
‖p‖ and si is an ordering, such that sip

≤ Siq
if p < q. [18]

Remark 5. In other words, the above Theorem 2 states that the calculation of the
minimum projection of a RCH onto a specific direction does not depend on the
knowledge of all the possible extreme points of RCH, but only on the projections
of the k original points and then a subsequent summation of the first least d1/µe
of them, each multiplied with the corresponding coefficient imposed by Theorem
2. This is illustrated in Figure 4.

Summarizing, the computation of the minimum projection of a RCH onto a
given direction, entails the following steps:

1. Compute the projections of all the points of the original set.
2. Sort the projections in ascending order.
3. Select the first (smaller) d1/µe projections.
4. Compute the weighted sum of these projections, with weights suggested in

Theorem 2.

Proposition 7. A linearly non-separable SVM problem can be transformed to
a linearly separable one through the use of RCHs (by a suitable selection of the
reduction factor µ for each class) if and only if the centroids of the classes do
not coincide. [3]
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The minimum projection p of the RCH R (P3.3/5), gen-
erated by 3 points and having µ = 3/5 , onto the di-
rection w2 − w1 belongs to the point (01), which is
calculated, according to Theorem 2, as the ordered
weighted sum of the projection of only d5/3e = 2
points ((0) and (1)) of the 3 initial points. The mag-
nitude of the projection, in lengths of ‖w2 − w1‖ is
(3/5) 〈x0,w2 − w1〉 + (2/5) 〈x1,w2 − w1〉.
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2.3 Geometric SVM Algorithms

The framework that we have developed and presented in the previous Subsection
2.2 around the notion of RCH, paves the way to adapt existing geometric algo-
rithms, solving NPPs or the equivalent Minimum Norm Problems (MNPs), for
the solution of the general (nonlinear, non-separable) SVM optimization task.
This approach presents many clear advantages, compared to the algebraic ap-
proach used until now, as, the geometric algorithms are very intuitive in the way
they work, have been extensively and rigorously examined regarding the con-
vergence to the solution and do not rely on obscure and some times inefficient
heuristics.

In the course of this dissertation, we have chosen to apply our theoretical
results concerning the RCHs to adapt two of the well-known geometric NPP
algorithms, namely a) Schlesinger-Kozinec’s and b) Gilbert’s algorithms, which
will be presented in the sequel.

2.4 Schlesinger - Kozinec’s Algorithm

An iterative, geometric algorithm for solving the linearly separable SVM problem
has been presented recently in [5]. This algorithm, initially proposed by Kozinec
for computing a separating hyperplane and improved by Schlesinger for searching
for an ε-optimal separating hyperplane, can be described by the following three
steps4 (given and explained in [5]).
4 assuming that the training classes consist of the sets X+ and X− of I+ and I−

elements respectively



Step 1 Initialization: Set the vector w− to any vector x ∈X− and w+ to any
vector x ∈X+.

Step 2 Stopping condition: Find the vector xt closest to the hyperplane
as xt = arg mini∈I−

S
I+ m (xi) where

m (xi) =

{ 〈xi−w+,w−−w+〉
‖w−−w+‖ , for i ∈ I−

〈xi−w−,w+−w−〉
‖w−−w+‖ , for i ∈ I+

. (2)

If the ε-optimality condition ‖w− −w+‖ −m (xt) < ε holds, then the vec-
tor w = w− − w+ and b = 1/2

(
‖w−‖2 − ‖w+‖2

)
defines the ε-solution;

otherwise, go to step 3.
Step 3 Adaptation: If xt ∈X− set wnew

+ = w+ and compute wnew
− = (1− q)w−+

qxt, where q = min
{

1, 〈w−−w+,w−−xi〉
‖w−−xt‖2

}
; otherwise, set wnew

− = w− and

compute wnew
+ = (1− q)w+ + qxt, where q = min

{
1, 〈w+−w−,w+−xi〉

‖w+−xt‖2

}
.

Continue with step 2.

The modified Schlesinger-Kozinec’s algorithm to solve the general SVM op-
timization problem is described in [18,17].

2.5 Gilbert’s Algorithm

Another well known (well studied and applied) geometric algorithm, is the MNP
algorithm proposed originally by Gilbert [9]. Although Gilbert’s algorithm is a
MNP algorithm, while the SVM optimization task corresponds to a NPP, the
two formulations are equivalent, as it has already been proved, e.g., in [11].
Hence, the general (non-separable) SVM optimization task can be formulated
as a MNP as follows: Find z∗ such that z∗ = arg minz∈Z (‖z‖), where Z =
{z|z = x+ − x−, x− ∈ R (X−, µ) , x+ ∈ R (X+, µ)}.

Obviously, the restriction that the RCHs do not overlap means equivalently
that ‖z‖ > 0, ∀z ∈ Z, i.e., the null vector does not belong to Z.

A brief description of the standard Gilbert’s algorithm, (provided that Z is
a convex set, of which we need to find the minimum norm member z∗ ), is given
below:

Step 1 Choose w ∈ Z.
Step 2 Find the point z ∈ Z with the minimum projection onto the direction

of w. If ‖w‖ u ‖z‖ then z∗ ← w; stop.
Step 3 Find the point wnew of the line segment [w, z], with minimum norm

(closest to the origin). Set w← wnew and go to Step 2.

The idea behind the algorithm is very simple and intuitive and the elements
involved in the above steps of the algorithm are illustrated in Figure 5. The
modified Gilbert’s algorithm to solve the general SVM optimization problem is
described in [15,16].



Results The results of the new geometric algorithm presented in [15,18,17,16],
compared to the most popular and fast algebraic ones, are very impressive, differ-
ing even to order(s) of magnitude: Their advantage with respect to the number of
kernel evaluations, for the same level of accuracy, compared to the most popular
algebraic techniques, is readily noticeable. The enhanced performance is justi-
fied by the fact that, although the algebraic algorithms (especially SMO with
improvements described in [11]) make a clever utilization of the cache, where
kernel values are stored, they cannot avoid repetitive searches in order to find
the best couple of points (working set selection) to be used in the next iteration
of the optimization process. Furthermore, the enhanced performance of the new
geometric algorithms against its algebraic competitors can be explained from
the fact that they are straightforward optimization algorithms, with a clear op-
timization target at each iteration step, always aiming at the global minimum
and at the same time being independent of obscure and sometimes inefficient
heuristics. Besides, they are well studied concerning convergence, a property
that is hardly proved for the algebraic algorithms.

3 Application to Medical Image Analysis –
Mammography

The field of Medical Image Analysis and Diagnosis (and particularly of Mammog-
raphy, studied in this work) is very crucial for social reasons5 and very demanding
from the computational point of view. In this thesis, a set of qualitative [13] and
quantitative mammographic textural [12,14] and morphological [8,7] features
have been assessed (using methods of statistical and fractal analysis); besides,
several machine learning paradigms, e.g., Artificial Neural Networks (ANNs) and
SVMs, have been used to discriminate benign from malignant mammographic
masses. SVMs outperformed the other classifiers.

4 Conclusions
The work accomplished in the context of this Ph.D. dissertation, was mainly
twofold: First, the exploration of the SLT field through its most well-known
derivative, i.e., the SVM learning, and the investigation of the effect of the geo-
metric interpretation of the SVM framework for the derivation of more effective
algorithms; and, second, to apply SVM classification algorithms to the field of
Medical Analysis, compare the results with other state-of-the-art classification
tools, e.g., Artificial Neural Networks and derive new image statistical features
that can be helpful in the Computer Aided Detection and Diagnosis of masses
on mammographic images.

The first objective has been met through the creation of a mathematical
toolbox around the notion of RCHs and the derivation of several theoretical
5 Breast cancer remains a major cause of death among female population and mam-

mography the main tool of its early diagnosis.



corollaries that made possible the incorporation (through adaptation) of geo-
metric (nearest point) algorithms for the solution of the general, i.e., non-linear,
non-separable SVM classification task, without the penalty of the combinato-
rial complexity that such approaches suffered until now. As a practical result of
this novel theoretical framework, the transformation and adaptation of two well-
known geometric NPAs, namely Gilbert’s and Schlesinger-Kozinec’s algorithms,
has been accomplished. Both converted algorithms (to work with RCHs and,
hence, being appropriate for the SVM classification task) have been implemented
(in Matlab) and compared to other state-of-the-art algebraic implementations,
using several publicly available benchmark datasets. The results that have been
obtained from these comparisons were highly encouraging, as the geometric algo-
rithms impressively outperformed their algebraic counterparts in terms of speed
and (sometimes also) of accuracy.

The second objective was accomplished through the implementation of a ro-
bust image feature set, which was compared to the qualitative feature set that
experienced radiologists use, in order to diagnose mammographic images. This
feature set include textural and morphological features, that describe both the
textural content of mammographic masses and its deviation from the textural
content of normal tissue, as well as the morphology of the mass boundary, that
is informative of the benignancy or malignancy of the particular mass. The in-
formation content of the datasets, that were produced from a mammographic
image database which was created for this purpose in the context of this work,
has been assessed through fractal analysis and comparison with the qualitative
information available to the experienced physicians when proceeding to a mam-
mographic diagnosis.

Besides, several classification schemes and architectures have been used, in-
cluding SVMs (that have been implemented during the first objective of this
study), ANNs and k-NN; as it was expected, SVMs presented the best overall
performance regarding the success rate of the classification results.
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