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Abstract. This dissertation is primarily concerned with the estimation
of nonlinear communication systems that are modeled by Volterra series.
The major methods used for estimating the unknown channel parameters
can be classified into two main categories: training-based and blind.
First, orthobasis representation and training-based identification through
the respective Fourier series are investigated for most modulated signals
of interest. Next, higher order cumulants are used for the blind identi-
fication of nonlinear channels. The proposed algorithms for blind non-
linear channel estimation take advantage of the inherent sparseness of
the higher order cumulants of common communication signals. Then,
sparse Volterra channels are employed to mitigate the enormous compu-
tational complexity of the full Volterra channels. Sparse Volterra chan-
nels are approached by two newly developed sparse adaptive (greedy
and ℓ1-regularized) algorithms. Last, the problem of blind sparse chan-
nel estimation is formulated by modifying the Expectation-Maximization
framework to accommodate channel sparsity.

Keywords:Volterra sereis, Higher-Order-Statistics, Adaptive filters, Blind
identification, Nonlinear compressed channel sensing.

1 Introduction

Nonlinear behavior is observed in almost all digital communication systems in-
cluding satellite, telephone channels, mobile cellular communications, wireless
LAN devices, radio and TV stations, digital magnetic systems and so forth. In
those cases, possible remedies based on linear approximations degrade system
performance. Significant benefits in the performance of a digital communication
system are expected when appropriate nonlinear models, methods and algo-
rithms are developed, taking into account nonlinear effects.

Nonlinear systems have been systematically studied in the past [1], but they
have not been widely used in communications due to their computational com-
plexity. Computational complexity depends on several factors, including: (1)
dimension of the unknown parameter vector, (2) sparseness characteristics of
the parameter vector, (3) degree of nonlinearity, (4) number of available mea-
surements, and (5) the probability density function of the input. The motivation
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of this dissertation is to develop methods and algorithms that considerably re-
duce the computational complexity and increase the performance of existing
algorithms for nonlinear channel estimation, by using the above factors in a
beneficial manner.

We study nonlinearities in communication systems using polynomial filters,
a special class of which is Volterra series. More precisely, we propose new estima-
tion techniques and apply them to linear and nonlinear communication channels.
Our research efforts focus on two areas: (1) nonlinear channel estimation using
higher order statistics, and (2) adaptive and blind algorithms for sparse channel
estimation.

Initially, we develop training based algorithms for the identification of (pass-
band and baseband) Volterra channels modulated by QAM, PSK and OFDM
inputs [2]. When the Volterra channel is excited by QAM or PSK inputs, mul-
tivariate orthogonal polynomials are used to estimate the unknown parameters.
Closed form expressions are established for baseband Volterra channels driven
by i.i.d complex Gaussian (OFDM) signals.

Blind methods identify the unknown channel merely based on the received
signal, without consuming any of the available channel capacity. However, blind
nonlinear channel estimation is a hard problem and the development of blind
methods remains at a very preliminary stage dealing with special model sub-
classes. We investigate sparseness of the higher-order output cumulants in order
to simplify the blind identification problem of two different nonlinear models:
(1) passband and baseband Hammerstein channels excited by common com-
munication signals [3], and (2) linear-quadratic Volterra with complex random
inputs [4].

Volterra models employ a large number of parameters, to adequately repre-
sent many real-world systems, which increases exponentially with the order of
nonlinearity and memory length. For this reason, their applicability is limited
to weak nonlinearities, e.g. only up to third order. Therefore, there is a strong
need to decrease the parameter space by only considering those parameters that
actually contribute to the output. This observation lead us to the exploitation of
sparse Volterra models which constitute a major component of this dissertation.

The use of adaptive filtering is crucial in applications like communications
where channel measurements arrive sequentially and in many cases the channel
response is time-varying. All adaptive algorithms in the literature for nonlinear
channel estimation treat each parameter equally and identify the complete set of
parameters. The major drawback of estimating the complete set of parameters is
the large computational/implementation cost. In this dissertation, we investigate
the performance gains that can be achieved if insignificant parameters are ig-
nored. Two Novel adaptive algorithms are developed that recursively update the
parameters of interest. The first adaptive algorithm combines the Expectation-
Maximization and Kalman filtering [5], whereas the second one relies on greedy
methods [6]. Finally, using the Expectation-Maximization framework, we address
the problem of blind identification of sparse linear and nonlinear channels [7].

This summary is organized as follows. Firstly, Chapter 2 establishes the neces-
sary background needed in the sequential chapters. Section 3 deals with training-
based methods for the identification of Volterra channels. Sections 4 and 5 tackle
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Fig. 1. Nonlinear communication system

the problem of blind identification in Hammerstein channels and second order
Volterra systems, respectively, by making use of Higher-Order output Statistics.
Two different adaptive training-based algorithms for the estimation of sparse
channels are presented in Sections 6 and 7. Section 8 proposes a blind identifica-
tion algorithm for the estimation of sparse channels. Finally, Section 9 presents
the overall conclusion of this summary.

2 Background

Modern high-speed communication systems are frequently operated over non-
linear channels with memory. Most transmitters are equipped with Power Am-
plifiers (PAs) operating close to saturation to achieve power efficiency [8]. To
properly analyze a communication system, like the one of Fig. 1, the nonlinear
effects caused by the presence of PAs must be combined with the transmitting,
receiving and channel filters.

One of the most popular models that are applied for the description of nonlin-
ear phenomena are Volterra series [1] and allows us to capture these combined
effects. Causal discrete Volterra series of finite-order have the following form
(also referred to as passband Volterra):

y(n) =
P∑

p=1

Mp∑
τ1=0

· · ·
Mp∑
τp=0

hp(τ1, . . . , τp)

[
p∏

i=1

x(n− τi)

]
. (1)

where x(n) and y(n) are the system input and output respectively. The function
hp(τ1, . . . , τp) is called the pth-order Volterra kernel of the system. P is the
highest order of nonlinearity while Mp is the pth-order system memory, note
that the Volterra model of Eq. (1) becomes linear when P = 1.

In many communication systems the signal bandwidth is very carefully de-
fined depending on the application. The receiver filter is used to eliminate signal
components outside the desired bandwidth. Therefore the output signal only
contains spectral components near the carrier frequency ωc. This leads to the
baseband Volterra system [8, Ch. 14], given by

y(n) =

⌊P−1
2 ⌋∑

p=0

M2p+1∑
τ1=0

· · ·
M2p+1∑
τ2p+1=0

h2p+1(τ1, . . . , τ2p+1)

p+1∏
i=1

x(n− τi)

2p+1∏
j=p+2

x∗(n− τj)

(2)

where ⌊·⌋ denote the floor operation. The above representation only considers
odd-order powers with one more unconjugated input than conjugated input.



This way the output does not create spectral components outside the frequency
band of interest.

The key feature of Volterra series is that the nonlinearity is due to multiple
products of delayed input values, while the kernel coefficients appear linearly
in the output. This allows us to rewrite them as a linear regression model us-
ing Kronecker products. Indeed, consider the passband case of Eq. (1) and let

x
(1)
M1

(n) = [x(n), x(n− 1), · · · , x(n−M1)]
T and the pth-order Kronecker power

x
(p)
Mp

(n) = x⊗p
M1

(n). The Kronecker power contains all pth-order products of the

input. Likewise h =
[
h1(·), · · · ,hp(·)

]T
is obtained by treating the p-dimensional

kernel as a (Mp)
p column vector. We now rewrite the output of Eq. (1) as follows

y(n) =
[
xT
M1

(n) · · ·x(p)T
Mp

(n)
]h1

...
hp

 = xT (n)h. (3)

Because of this property, linear estimation techniques can be exploited in the
identification of Volterra coefficients.

3 Nonlinear system identification using othogonal bases
and cumulants

In this section baseband and passband nonlinear channels featuring PSK, QAM
and OFDM modulation are considered. Channel estimation is performed using
multivariate orthogonal polynomials of complex variables.

An i.i.d complex valued signal is orthogonalizable [9] and there are various
ways to construct associated orthogonal bases. A common construction relies on
one dimensional orthogonal base and its separable extension to higher dimen-
sions. One dimensional polynomials constructed by the Gram-Schmidt procedure
is a notable case. Multidimensional orthogonal polynomials are formed as prod-
ucts of one dimensional orthogonal polynomials (Pk

(
xi

)
, where k is the degree

of the polynomial and xi ≡ x(n − i)) [9]. For the monomials (in one variable){
xi
n

}p

i=0
associated with passband Volterra models, we introduce a degree or-

dering 1 < xn < . . . < xp
n. For monomials in two variables (xnx

∗
n) related to

baseband models we apply the graded lexicographic ordering [2].

By definition the multivariate orthogonal polynomials, Q
(p)
i1:p

(x(n)) of degree

p, are orthogonal to all lower orders and to the same order. The passage to
the original Volterra kernels from the orthogonal coefficients is effected by the
following expression

E[y(n)P ∗
τ1(xi1) · · ·P

∗
τk(xik )] = π(i1:k)hk(i1, . . . , ik)∥Pτ1(xi1)∥

2
ℓ2 · · · ∥Pτk (xik)∥

2
ℓ2

+

⌊P−k
2

⌋∑
v=1

E
{
Hk+2v(zn)Q

(∗p)
i1...ik

(x(n))
}

where Hv(.) is the homogeneous term of order v. Similarly for the baseband
case. The identification process starts by estimating the highest order kernel
which has no contribution from other kernels and moving downwards.



If the input is approximately complex white Gaussian (OFDM case) the
relevant orthogonal polynomials are the Hermite polynomials. The method de-
scribed above is applicable. Alternately cumulant operators can be used. Expres-
sions invoking cumulants are much simpler because cumulants are equivalent to
multiples of Hermite moments.

Theorem 1 Consider the baseband Volterra model (2). The cross-cumulant of
y(n) with (p+1) conjugated copies of the input and p unconjugated copies of the
input is given by

cy,x∗
(p+1)

(p) (τ 1:p+1, τ p+2:2p+1) = p!(p+ 1)!γ2p+1
1,1 h2p+1(τ 1:p+1, τ p+2:2p+1)

+

⌊P−2p−1
2

⌋∑
v=1

(p+ 1 + v)!(p+ v)!

v!
γ2p+1+v
1,1

∑
k1

· · ·
∑
kv

h2p+1+2v(τ 1:p+1,k1:v, τ p+2:2p+1,k1:v)

γ1,1 represents the variance of x(n) and k1:v = (k1, . . . , kv).

Detailed proof of the above theorem is given in [2]. The algorithm identifies the
highest order kernel first. Then the lower order kernels are identified recursively
using the previous estimated kernels and cross-cumulants information.

4 Blind identification of Hammerstein channels

This section considers the blind identification problem of Hammerstein channels.
The Hammerstein model corresponds to a diagonal Volterra model, since all off-
diagonal elements are zero.

Baseband: The proposed method starts by expressing the baseband Ham-
merstein model (similarly for passband) as a linear multichannel system of the
form

y(n) =

q1∑
i=0

b(i)w(n− i) + η(n)

where

w(n) =
(
x(n) · · · |x(n)|2px(n)

)T
, b(i) =

(
h1(i) h3(i) · · · h2p+1(i)

)
and T denotes matrix transpose. We assume that the linear kernel has the largest
memory q1 > q2l+1 ∀ 1 ≤ l ≤ p. Moreover, we find it convenient to impose the
following normalization h1(q1) = 1.

The output cumulant of order (k + l), with k unconjugate and l conjugate
output lags, is given by:

cy
(l)
(k) (τ1, . . . , τk+l−1) =

q1∑
i=0

b(i)⊗ b(i+ τ1)⊗ · · · ⊗ b∗(i+ τk+l−1) Γw
(l)
(k) ,



where Γw
(l)
(k) is the input intensity vector (zero lag cumulant) of order k + l

of w(n). Then, parameter estimation relies on the following equation and the
solution of a system of linear equations

c̃y
(l)
(k) (q1, τ) = cy

(l)
(k) (q1, . . . , q1, τ) = b∗(τ)

(
Γw

(l)

(k)

)
s×s

bT (0), s = p+ 1.

For PSK inputs we always consider cumulants with an equal number of conju-
gate/unconjugate copies of the output. Whereas, for QAM inputs we may employ
output cumulants with unequal number of unconjugate/conjugate entries of the
output. In this manner we reduce significantly the order of the output cumulants.

Passband: Prakriya et al. [10] have proved that if the order of nonlinearity is

p, then the only non-zero multilinear function of cy
(1)
(p) (τ1, . . . , τp) will be the one

which includes the linear part p times and the pth-order term one time. Based
on this remark, we can estimate the linear and the pth-order kernel as follows:

h1(τ) = c̃y
(1)
(p) (τ, qp)/ c̃y

(1)
(p) (q1, qp)

hp(τ) = c̃y
(1)
(p) (q1, τ)/

(
h1(0) cum{x(n), . . . , x(n)︸ ︷︷ ︸

p copies of x(n)

, x∗p(n)}
)
.

So far we have estimated the first and last kernel of the passband Hammerstein
channel by combining the techniques in [11, 10]. The kernels sandwiched between
the linear kernel and the pth-order term can be obtained through the following
recursion.

Theorem 2 Consider a passband Hammerstein model. For 2 ≤ k ≤ p, the
following equation holds:

c̃y
(1)
(k) (q1, τ) =

p−k∑
µ=0

cum{x1+µ(n), x(n), . . . , x(n)︸ ︷︷ ︸
k copies of x(n)

, x∗(k+µ)(n)}h1+µ(0)hk+µ(τ).

The proof is supplied in [3]. Theorem 2 is based on the fact that the linear kernel
and the pth-order kernel are identified first then the kernel of order k = p− 1 is
calculated. This process is iterated until k = 2. The above technique is applicable
to Hammerstein channels excited by PSK inputs of arbitrary order. However
when the channel is excited by QAM inputs, the procedure is limited to quadratic
Hammerstein channels.

5 Blind identification of second order Volterra systems
with complex random inputs

In this section blind identification methods for second order Volterra systems
excited by complex valued random variables are developed. The proposed blind
identification method relies on output cumulants of order up to 4. The compu-
tation of these cumulants and the resulting expressions are provided in [4]. If



Table 1. Algorithms for blind Volterra identification

Algorithm 1 (q1 > q2)

Require : h1(0) = 1

1: γ4,0 =
cy

(0)

(4) (q1, 0, 0)
2

cy
(0)

(4) (q1, q1, 0)

2: γ1,1 =
cy

(1)

(1) (q1) cy
(0)

(4) (q1, 0, 0)

cy
(0)

(4) (q1, q1, 0)

3: h1(τ) =
cy

(0)

(4) (q1, τ, 0)

cy
(0)

(4) (q1, 0, 0)
,

cy
(0)

(3) (q1, q1) = h2(0, 0)γ4,0h
2
1(q1)

4: h2(τ, τ) =
cy

(0)

(3) (q1, τ)− γ4,0h2(0, 0)h1(q1)h1(τ)

γ4,0h1(q1)
5: for h2(τ1, τ2) use Eq. below with q = q1

Algorithm 2 (q1 = q2 = q)

Require : h1(0) = 1, h2(0, 0) = 0

1: γ4,0 =
cy

(0)

(4) (q, q, 0)
3

cy
(0)

(4) (q, q, q)
2

2: γ1,1 =
cy

(1)

(1) (q) cy
(0)

(4) (q, q, 0)

cy
(0)

(4) (q, q, q)

3: h1(τ) =
cy

(0)

(4) (q, q, τ)

cy
(0)

(4) (q, q, 0)
, h2(q, q) =

cy
(0)

(3) (q, q)

2γ4,0h1(q)

4: h2(τ, τ) =
cy

(0)

(3) (q, τ)− γ4,0h2(q, q)h1(τ)

γ4,0h1(q)
5: for h2(τ1, τ2) use Eq. below

h∗
2(τ1, τ2) =

1

2γ2
1,1h

2
1(q)

cy
(1)

(2) (q − τ1, q − τ2)−
τ1−⌊ j

τ2
⌋∑

i=0

τ2∑
j=0

h̃2(i, j)h1(i+ q − τ1)h1(j + q − τ2)



these expressions are evaluated at suitably chosen lags, sparse equations with
respect to the Volterra kernels result. To proceed with the Volterra kernel iden-
tification algorithms, we distinguish two different cases: q1 > q2 and q1 = q2 = q.
Appropriate normalization constraints are imposed for each case.

The proposed methods involve four steps carried out in the following se-
quence:

1. Compute the linear kernel using fourth order cumulants and a q-slice formula
2. Compute the input intensities γ4,0 and γ1,1
3. Compute the diagonal elements of the second order kernel using third order

cumulants and a q-slice formula
4. Compute the off-diagonal elements of the second order kernel using third

order cumulants and linear system solvers.

The above four steps are implemented by the algorithms of Table 1. Note that
all relevant expressions are exact and hence the Volterra system is uniquely
identifiable.

6 Sparse adaptive ℓ1-regularized algorithm

In this section, we propose a family of sparse adaptive ℓ1-regularized algorithms
that can be used for sparse parameter estimation. The derived family of sparse
adaptive algorithms is based on the Expectation Maximization (EM) framework.
Let us start by considering a model that captures the dynamics of the unknown
parameter vector h(n) (at time n). A popular technique in the adaptive filtering



Table 2. EM-KALMAN filter for sparse adaptive tracking

Algorithm description

Initialization : h0 = h̄0, P 0 = δ−1I with δ =const.
For n := 1, 2, . . . do

1: k(n) =
P (n− 1)x∗(n)

σ2
η + xT (n)P (n− 1)x∗(n)

2: ψ(n) = h(n− 1) + k(n)ε(n)
3: P (n) = P (n− 1) + rnI − k(n)xT (n)P (n− 1)

4: h(n) = sgn
(
ψ(n)

)[
|ψ(n)| − γ(σ2

ψn−1
+ rn)I

]
+

end For

literature is to describe parameter dynamics by the first-order model [12]

h(n) = h(n− 1) + q|Λ0
(n) = h0 +

n∑
i=1

q|Λ0
(i); h0 ∼ N(h0, σ

2
0I |Λ0

) (4)

where Λ0 denotes the true support set of h0, i.e. the set of the non-zero coef-
ficients. The noise term q(n) is zero outside |Λ0

and zero-mean Gaussian inside

|Λ0
with diagonal covariance matrix R|Λ0

(n) = diag
(
σ2
q1(n), . . . , σ

2
qd
(n)

)
, where

d is the ℓ0-norm of h0. The variances {σ2
qi(n)}

d
i=1 are in general allowed to vary

with time. The stochastic processes η(n), q(n) and the random variable h0 are
mutually independent.

To apply the Expectation-Maximization method we have to specify the com-
plete and incomplete data. The vector h(n) at time n is taken to represent the
complete data vector, whereas y(n − 1) accounts for the incomplete data [13].
In this context the conditional density p(h(n)|y(n− 1)) plays a major role. This
density is Gaussian with mean ψ(n) = E[h(n)|y(n − 1)]. Under broad condi-
tions the maximizer of the incomplete likelihood is obtained by maximizing the
complete likelihood function through successive application of the following two
steps:

E-step : computes the conditional expectation

Q
(
θ, θ̂(n− 1)

)
= Ep(h(n)|y(n−1);θ̂(n−1)) [log p(h(n);θ)]

M-step : maximizes the Q-function minus the ℓ1-penalty with respect to θ

θ̂(n) = argmax
θ

{
Q
(
θ, θ̂(n− 1)

)
− γ∥θ∥ℓ1

}
Note that p(h(n);θ) ∼ N(ψn(θ),Σ(n)) and hence the Q-function takes the form

Q(θ, θ̂n−1) = const. + θΣ−1(n)ψ(n)− 1

2
θHΣ−1(n)θ (5)

where the constant incorporates all terms that do no involve θ and hence do not
affect the maximization.



The parameter ψ(n) is recursively computed by the Kalman filter [12], see
Table 2 steps 1 − 3, which in the special case of the time-varying random walk
model Eq. (4) takes an RLS type appearance. Note that ε(n), in Table 2, denotes
the prediction error given by ε(n) = y(n)− xT (n)h(n− 1).

Maximization of the Q function leads to the soft thresholding function, see
Table 2 step 4. This operation shrinks coefficients above the threshold in mag-
nitude value. The complete algorithm is presented in Table 2.

7 Sparse Adaptive Orthogonal Matching Pursuit
algorithm

This section converts a powerful greedy scheme developed in [14] into an adap-
tive algorithm. Greedy algorithms form an essential tool for sparse parameter
estimation. However, their inherent batch mode discourages their use in time-
varying environments due to significant complexity and storage requirements.

The proposed algorithm relies on three modifications to the CoSaMP struc-
ture [14]: the proxy identification, estimation, and error residual update. The
error residual is now evaluated by

v(n) = y(n)− xT (n)h(n). (6)

The above formula involves the current sample only, in contrast to the CoSaMP
scheme which requires all the previous samples. Eq. (6) requires s complex mul-
tiplications, whereas the cost of the sample update in the CoSaMP is sn multi-
plications. A new proxy signal that is more suitable for the adaptive mode, can
defined as:

p(n) =

n−1∑
i=1

x∗(i)v(i) (7)

and is updated by p(n) = p(n − 1) + x∗(n − 1)v(n − 1). The last modification
attacks the estimation step. The vector h(n) is updated by standard adaptive
algorithms such as the LMS and RLS.

LMS is one of the most widely used algorithm in adaptive filtering due to its
simplicity, robustness and low complexity. Hence, for reasons of simplicity and
complexity we focus on the LMS algorithm. At each iteration the current regres-
sor h(n) and the previous estimate w(n− 1) are restricted to the instantaneous
support originated from the support merging step. The resulting algorithm is
presented in Table 3, where h|Λ and w|Λ denote the sub-vectors corresponding
to the index set Λ, max(|a|, s) returns s indices of the largest elements of a and
Λc represents the complement of set Λ. The following Theorem establishes the
steady state Mean Square Error (MSE) error performance of the SpAdOMP
algorithm:



Table 3. SpAdOMP Algorithm

Algorithm description Complexity

h(0) = 0,w(0) = 0,p(0) = 0 {Initiliazation}
v(0) = y(0) {Initial residual}
0 < λ ≤ 1 {Forgetting factor}
0 < µ < 2λ−1

max {Step size}
For n := 1, 2, . . . do

1: p(n) = λp(n− 1) + x∗(n− 1)v(n− 1) {Form signal proxy} M

2: Ω = supp(p2s(n)) {Identify large components} M

3: Λ = Ω ∪ supp(h(n− 1)) {Merge supports} s

4: ε(n) = y(n)− xT
|Λ(n)w|Λ(n− 1) {Prediction error} s

5: w|Λ(n) = w|Λ(n− 1) + µx∗
|Λ(n)ε(n) {LMS iteration} s

6: Λs = max(|w|Λ(n)|, s) {Obtain the pruned support} s

7: h|Λs(n) = w|Λs(n), h|Λc
s
(n) = 0 {Prune the LMS estimates}

8: v(n) = y(n)− xT (n)h(n) {Update error residual} s

end For O(M)

Theorem 3 (SpAdOMP)1. The proposed algorithm, for large n, produces an
s-sparse approximation h(n) that satisfies the following steady-state error bound

∥h− h(n)∥ℓ2 . C1(n)∥η(n)∥ℓ2 + C2(n)∥x|Λ(n)∥ℓ2 |eo(n)|,

where eo(n) is the estimation error of the optimum Wiener filter and C1(n),
C2(n) are constants independent of h (given explicitly in [6]) and are only func-
tions of the restricted isometry constants, λmin (the minimum eigenvalue of the
input covariance matrix) and the step-size µ.

8 Blind Identification of sparse channels via the EM
algorithm

The purpose of this section is to develop a blind identification algorithm for
the estimation of sparse channels, under the assumption that the transmitted
symbols are i.i.d. and take values in a finite alphabet set. A batch algorithm
for blind channel estimation is reported in [15] using the iterative nature of
the Expectation Maximization (EM) algorithm. We propose exploitation of the
sparse nature of the channel by regularizing the cost function of the blind EM
algorithm via the use of the ℓ1 norm constraint.

In blind identification, the EM algorithm can be used to iteratively maxi-
mize log p(y(n);θ) (where θ = h̄)), without explicitly computing it. To use the
EM algorithm, we consider the observations y(n) as the incomplete data and

1 Proof is omitted due to space limitations.



Table 4. The Sparse BW Algorithm

Algorithm description

α1(i) = πibi(y1), i := 1, . . . ,ML, βN (i) = 1, i := 1, . . . ,ML, σ2
η = 1 {Initiliazation}

For ℓ := 0, 1, . . . , do

1: αn+1(j) =
ML∑
i=1

αn(i)pijbj(yn+1), n := 1, . . . , N − 1, j := 1, . . . ,ML {Forward Recursion}

2: βn(i) =
ML∑
j=1

βn+1(j)pijbj(yn+1), n := N − 1, . . . , 1, i := 1, . . . ,ML {Backward Recursion}

3: γn(i|θ(ℓ)) =
αn(i)βn(i)∑ML

j=1 αn(j)βn(j)
, n := 1, . . . , N, i := 1, . . . ,ML {Posterior probabilities}

4: h
(ℓ+1)
i =

sgn(r
(ℓ)
i )

R
(ℓ)
i,i

[
|r(ℓ)i | − τ

]
+

{Channel estimation}

5: σ
(ℓ+1)2
η = (N + 1)−1

N∑
n=1

|yn − x̂(ℓ)T
n h(ℓ)|2 {Noise Variance est.}

end For

(y(n),X(n)) as the complete data. The EM algorithm is a two-step iterative
procedure which under mild conditions converges to a local maximum. The pro-
posed variant of the EM algorithm for blind sparse channel estimation iterates
between the following two steps until convergence is reached:

1) E-step: Compute Q(θ, θ̂
(ℓ)

) = E
{
log p(y(n),X(n)|θ)|y(n); θ̂

(ℓ)}
2) M-step: Solve θ̂

(ℓ+1)
= argmax

θ
{Q(θ, θ̂

(ℓ)
)− 2τ∥θ∥ℓ1}.

The E-step is a symbol detector and is carried out by the forward-backward
recursions of Table 4 steps 1-2. Maximization of the penalized Q-function with
respect to h at the M-step, has a closed form expression to each component of

h(ℓ+1) and is given by the soft-thresholding function, see Table 4 step 4. The
method outlined above is summarized in Table 4.

9 Conclusions

This dissertation aimed to develop new methods and algorithms for the estima-
tion of nonlinear communications systems that are modeled by Volterra series.
The estimation is achieved either with the help of a training signal or by blind
identification methods. Moreover, the estimation performance depends on the
pattern of channel (sparse or dense). Thus, the developed methods take into
account the pattern of the channel, and simply estimate those parameters that
actually contribute to the output
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