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Abstract

In this dissertation the statistical characteristics of the trivariate
and quadrivariate Weibull fading distribution with arbitrary corre-
lation, non-identical fading parameters and average powers are ana-
lytically studied. Novel expressions for important joint statistics are
derived using the Weibull power transformation. These expressions
are used to evaluate the performance of selection combining (SC) and
maximal ratio combining (MRC) diversity receivers in the presence of
such fading channels.

Multi-branch diversity, arbitrary correlation, Weibull fading.

I. Introduction

In recent years, the use of various telecommunication systems, their appli-
cations and usefulness to real - life has become significantly important. In
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today’s telecommunications era, new technologies are constantly being de-
veloped since nowadays there is a continuous need for instant access to in-
formation from a geographical point to another.

In telecommunications systems, the term ”communication channel”, or
simply ”channel”, refers to either a physical transmission medium such as
a wire, or to wireless connection over a physical medium such as a radio
channel. As far as wireless technologies are concerned, they are being used
to meet many needs such as span a distance beyond the capabilities of typical
cabling, link portable or temporary workstations, overcome situations where
normal cabling is difficult and/or financially impractical to remotely connect
mobile users or networks. As a consequence, there is a continuing demand
for increased capacity and integration of the provided services over radio
channels. The radio channel though is subject to multiple phenomena such
as fading that degrade the telecommunications system performance. Hence,
the determination and combat of fading effects constitute an important R&D
topic which is also the subject of this PhD thesis.

One of the most important effect of the fading interference is the small
scale fading which results in fluctuation of the received signal’s amplitude,
phase and angle of arrival. In order to combat this destructive effect, in this
PhD thesis diversity reception techniques are being employed. According to
this method, the receiver employs more than one antennae, in order to receive
multiple copies of the transmitted signal. These copies are being appropri-
ately combined in order to satisfy network administrator demands [1].There
are several diversity schemes, classified according to the combining technique
employed at the receiver, the most well-known being selection combining
(SC), maximal ratio combining (MRC) and equal gain combining (EGC).
In diversity reception studies, it is frequently assumed that the different
replicas of the same information signal are received over independent fading
channels. However, in many practical wireless system applications, e.g. for
small-size mobile units or indoor base stations, the receiving antennas are
not sufficiently wide separated and thus the received and combined signals
are correlated with each other. In order to model and analyze such realistic
wireless channels with correlated fading it is mathematically convenient to
use multivariate statistics [1], [2].

In the open technical literature there have been many papers published
concerning multivariate distributions in relation to performance analysis of
digital communication systems in the presence of correlated fading chan-
nels [3–9]. Most of these papers deal specifically with the so-called “constant”



and “exponential”correlation model. For the first one, correlation depends
on the distance among the combining antennas and thus this model is more
suitable for equidistant antennas [1, pp. 392]. The second one, corresponds
to the scenario of multichannel reception from equispaced diversity antennas.
This model has been widely used for performance analysis of space diversity
techniques [3] or multiple-input multiple-output (MIMO) systems. The arbi-
trary correlation model [4], used in our paper, is the most generic correlation
model available, since it allows for arbitrary correlation values between the
receiving branches. Clearly it includes the constant and exponential correla-
tion models as special cases.

Most of the published works concerning multivariate distributions with
arbitrary correlation deal with Rayleigh and Nakagami-m fading channels
[2, 4–6]. In [4], new infinite series representations for the joint probability
density function (PDF) and the joint cumulative distribution function (CDF)
of three and four arbitrarily correlated Rayleigh random variables have been
presented. In [5], expressions for multivariate Rayleigh and exponential PDFs
generated from correlated Gaussian random variables have been derived, as
well as a general expression in terms of determinants for the multivariate ex-
ponential characteristic function (CF). In [2] useful closed-form expressions
for the joint Nakagami-m multivariate PDF and CDF with arbitrary correla-
tion, were derived and the correlation matrix was approximated by a Green’s
matrix. In a recent paper [6], infinite series representations for the PDF, CDF
and CF for the trivariate and quadrivariate Nakagami-m distribution have
been presented.

The Weibull distribution [10], although originally used in reliability and
failure data analysis, it has been recently considered as an appropriate dis-
tribution for modeling wireless communication channels [7–9]. The main
motivation of this choice is its very good fit to experimental fading channel
measurements for both indoor and outdoor terrestrial radio propagation en-
vironments. In [7] it was argued that the Weibull distribution could also been
considered as a generic channel model for land-mobile satellite systems. Re-
cently, expressions for the joint PDF, CDF and the moment-generating func-
tion (MGF) for the bivariate Weibull distribution have been presented [8].
In the same reference the multivariate Weibull distribution has also been
studied for the exponential and constant correlation case considering equal
average fading powers. In [9] a Green’s matrix approximation for the mul-
tivariate Weibull distribution with arbitrary correlation has been presented
and an analytical expression for the joint CDF has been derived. However,



the performance analysis presented in [9] is restricted to SC receivers and is
applicable only to the evaluation of outage probability (OP).

Motivated by the above, in this dissertation, we present a detailed and
thorough analytical study of the statistical characteristics of the arbitrary
correlated trivariate and quadrivariate Weibull fading distributions and their
applications to various diversity receivers. For both distributions we con-
sider the most general correlation model available, namely the arbitrary cor-
relation model, with non-identical fading parameters or average powers and
without making any approximation for the covariance matrix. In partic-
ular, novel expressions utilizing infinity series representations for the joint
PDF, CDF, MGF and moments of the arbitrary trivariate and quadrivariate
Weibull distributions will be presented. These analytical expressions are be-
ing conveniently used to evaluate the OP, the average bit error probability
(ABEP) and other significant performance metrics for the case of SC and
MRC diversity reception.

II. Results and Discussion

To investigate the trivariate and quadrivariate Weibull distributions, it is con-
venient to consider the multivariate Weibull distribution, ZL = {Z1, Z2, ...ZL}.
ZL is assumed to be arbitrarily correlated according to a positive definite co-
variance matrix ΨL, with elements ψiκ = E 〈GiG

∗
κ〉, where E 〈·〉 denotes ex-

pectation, ∗ complex conjugate, i, κ ∈ {1, 2, .., L} and GL = {G1, G2, ..., GL}
being joint complex zero mean Gaussian L RVs. Since ψiκ can take arbi-
trary values, the analysis presented in this section refers to the most general
correlation case.

A. Trivariate Weibull Distribution

For the case of the trivariate (i.e. L = 3) arbitrarily correlated1 Weibull
distribution and by applying the Weibull power transformation Z = R2/β [8,
eq. (2)] in the infinite series representation of the Rayleigh distribution [4,
eq. (5)], the novel joint PDF of Z3 = {Z1, Z2, Z3} has been derived as

1From now on and unless otherwise stated, it will be is assumed that the Weibull
distributions under consideration are arbitrary correlated.



follows [11], [12]

fZ3(z1, z2, z3) =
β1β2β3 det(Φ3)

z
(2−β1)/2
1 z

(2−β2)/2
2 z

(2−β3)/2
3

exp
[
−

(
zβ1

1 φ11 + zβ2

2 φ22 + zβ3

3 φ33

)]

×
∞∑

k=0

εk(−1)k cos(kχ)
∞∑

`,m,n=0

|φ12|2`+k

`!(` + k)!

|φ23|2m+k

m!(m + k)!

|φ31|2n+k

n!(n + k)!

× z
β1(`+n+k)+β1/2
1 z

β2(`+m+k)+β2/2
2 z

β3(m+n+k)+β3/2
3

(1)

where εk is the Neumann factor (ε0 = 1, εk = 2 for k = 1, 2, · · · ), χ =
χ12 + χ23 + χ31 and Φ3 is the inverse covariance matrix given by
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where φiκ = |φiκ| exp(χiκ) with i, κ ∈ {1, 2, 3} and |·| denoting absolute.
By integrating (1), an infinite series representation for the CDF of Z3 is

derived as [11], [12]
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where C3 = [`!(` + k)!m!(m + k)!n!(n + k)!]−1, νiκ = |φiκ|2/φiiφκκ, δ1 = ` +
n + k + 1, δ2 = m + ` + k + 1, and δ3 = n + m + k + 1 with γ(·, ·) denoting
the incomplete lower Gamma function [13, eq. (3.381/1)].

The joint MGF of Z3 can expressed as MZ3(s1, s2, s3) = E〈exp(−s1Z1 −
s2Z2− s3Z3)〉. From (1) and following the integral solutions using the Meijer
G-function presented in [8, pp. 3610], the following novel expression has been
obtained [11], [14]
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where Υ(·) is given in [8, eq. 8].

B. Quadrivariate Weibull Distribution

For the case of the quadrivariate (i.e. L = 4) Weibull distribution, we con-
sider the inverse covariance matrix, Φ4, expressed as

Φ4 = Ψ−1
4 =




φ11, φ12, φ13, 0
φ∗12, φ22, φ23, φ24

φ∗13, φ∗23, φ33, φ34

0, φ∗24, φ∗34, φ44


 (5)

where the φiκ i, κ ∈ {1, 2, 3, 4} can take arbitrary values with the restriction
of φ14 = φ∗14 = 0. Although this restriction is a mathematical assumption,
necessary for the derivation of the equivalent statistics and does not corre-
spond to a physical explanation, it is underlined that our approach is more
general than of [15] for the multivariate Rayleigh distribution. More specifi-
cally, the statistical properties derived in [15] hold only under the assumption
that Ψ is tridiagonal, i.e. when φiκ = 0 for |i− κ| > 1. The same assump-
tion was used in [9], where the correlation matrix was approached by the
tridiagonal Green matrix.

In principle, an expression for the joint PDF of Z4 = {Z1, Z2, Z3, Z4}
can be derived using [4, eq. (16)] and by applying the power transformation
described in [8, eq. (2)] as a product of the modified Bessel function of the
first kind In(u). However, this approach will not be adopted since expres-
sions containing modified Bessel functions are difficult to be mathematically



manipulated, e.g. performing integrations. Instead, a more convenient ap-
proach is to use its infinite series expansion [13, eq. (8.447/1)]. Thus, the
following PDF has been obtained [11]
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where C4 = [`!(` + j)!m!(m + j)!n!(n + |k|)!p!(p + |k|)!q!(q + |k + j|)!]−1, A =
j(χ12+χ23+χ31)+k(χ23+χ34+χ42), J1 = `+n+q+(j + |k|+ |j + k|)/2+1
and J2 = m + p + q + (j + |k|+ |j + k|)/2 + 1.

Following a similar procedure as before and by using (6), the correspond-
ing CDF and MGF have also been obtained [11], [16].

C. Performance Analysis

In this section important performance criteria for diversity receivers with
three or four arbitrarily correlated diversity branches operating over Weibull
fading and additive white Gaussian noise (AWGN) channels will be pre-
sented. In particular, by using the previously derived expressions for the
statistical characteristics of the trivariate and quadrivariate Weibull distri-
bution, the performance of MRC and SC diversity receivers have been studied
and their OP and ABEP have been derived.

For the system model considered, the equivalent baseband signal received
at the `th branch can be mathematically expressed as ζ` = wh` +n` where w
is the complex transmitted symbol having average energy Es = E〈|w|2〉, h`

is the complex channel fading envelope with its magnitude Z` = |h`| being a
Weibull distributed RV and n` is the AWGN with single-sided power spectral
density N0. The instantaneous, per symbol SNR, of the `th diversity channel
is γ` = Z2

` Es/N0, while its average is γ` = E〈Z2
` 〉Es/N0 = Γ(d2,`)Ω

2/β`

` Es/N0

where dτ,` = 1 + τ/β` with τ > 0. Note that it is straightforward to obtain
expressions for the statistics of γ` by replacing at the previously mentioned
expressions for the fading envelope Z`, β` with β`/2 and Ω` with (α`γ`)

β`/2 [8].
Thus, denoting γL={γ1, γ2, ...γL}, and since the CDF FγL(γ1, γ2, ..., γL) and
the MGF MγL(s1, s2, ..., sL) of the SNR for the trivariate and quadrivariate



Weibull distribution can be easily obtained, but will not be presented here
due to space limitation.

1) Performance of MRC Receivers

For MRC receivers the output, per symbol, SNR (SNRo), is γmrc =
∑L

`=1 γ`

[1]. To obtain the ABEP performance it is convenient to use the MGF-based
approach. Hence, the MGF of the L-branch MRC output can be derived as
Mγmrc(s) = MγL(s, s, .., s). By using the MGF-based approach, the ABEP of
noncoherent binary frequency-shift keying (NBFSK) and binary differential
phase-shift keying (BDPSK) modulation signaling can be directly calculated.
For other types of modulation formats, numerical integration is needed in
order to evaluate single integrals with finite limits.

2) Outage Probability of SC Receivers

The instantaneous SNR at the output of a L-branch SC receiver, will be the
SNR with the highest instantaneous value between all branches, i.e. γsc =
max{γ1, γ2, ..., γL} [17]. Since the CDF of γsc, Fγsc(γsc) = Fγ(γsc, γsc, ..., γsc),
Pout can be easily obtained as Pout(γth) = Fγsc(γth) for both trivariate and
quadrivariate cases.

D. Performance Evaluation Results

Using the previous mathematical analysis, in this section performance evalu-
ation results for the SC and MRC receivers will be presented. Non-identical
distributed Weibull channels, i.e., γ` = γ1 exp[−(`− 1)δ] where δ is the power
decay factor are considered and for the convenience of the presentation, but
without any loss of generality, β` = β ∀ ` will be assumed. Considering a
triple-branch diversity receiver with the linearly arbitrary normalized covari-
ance matrix2 given in [2, pp. 886] and SC diversity, the OP has been obtained
as a function of the first branch normalized outage threshold γth/γ1 for differ-
ent values of β and δ. The performance evaluation results, illustrated in Fig.
1, indicate that Pout degrades with increasing γth/γ1 and δ and/or decreasing
β. Note that for β = 2 and δ = 0 the obtained results are in agreement with
previously known performance evaluation results presented in [9].

2Note that the covariance matrix specifies the fading correlation between two complex
Gaussian RVs.
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Figure 1: Outage probability of triple-branch SC receiver as a function of
the first branch normalized outage threshold for different values of β and δ.

For MRC receiver and BDPSK signaling, the ABEP has been obtained
and is illustrated in Fig. 2 for four receiving branches, assuming the covari-
ance matrices presented in [4, eq. (34)]. As expected, the ABEP improves as
the first branch average input SNR γ1 increases, while for a fixed value of γ1,
similar to the SC diversity, a decrease of β and/or an increase of δ degrades
the ABEP. Furthermore, performance evaluation results obtained by means
of computer simulation also shown in Fig. 2 and have verified the accuracy
of the analysis. It is finally noted that for the four-branch diversity reception
and γ1 > 5 dB, only one term is required to achieve accuracy better than
10−5.
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Figure 2: ABEP of four-branch MRC receiver as a function of the first branch
average input SNR per bit for different values of β.

III. Conclusions

In this dissertation the novel statistical characteristics of the trivariate and
quadrivariate Weibull fading distribution with arbitrary correlation, non-
identical fading parameters and average powers have been derived using in-
finite series representations. The theoretical analysis has been also applied
in order to evaluate the performance of SC and MRC diversity receivers.
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