
Query Processing in Distributed Environments
of Autonomous Data Management Systems⋆

Fragkiskos Pentaris⋆⋆

University of Athens, Deptartment of Informatics and Telecommunications
frank@di.uoa.gr

Abstract. In this thesis summary, inspired by e-commerce technology,
we recognize queries as commodities and model query optimization and
allocation as a trading negotiation process.

1 Introduction

Current requirements on scalability and availability of information foster the
formation of large networks of databases with large amounts of data distributed
among hundreds or even thousands of autonomous and possibly heterogeneous
Database Management Systems (DBMSs). In such environments, finding the
answer to a query requires splitting it into parts (sub-queries), retrieving the
answers of these parts from several remote “black-box” nodes, and merging the
results together to calculate the answer of the initial query. This poses significant
challenges to query processing and optimization. Autonomy is the main source
of the problem, as it results in lack of knowledge about any particular node
with respect to the information it can produce and its characteristics, e.g., cost
of production or quality of produced results. Earlier work [2, 8] has shown that
traditional query optimization techniques do not perform well in federations of
autonomous DBMSs. In [6,7] we further examined these techniques and most of
them were found to conflict with DBMS autonomy.

An additional problem related with query processing in disparate systems is
that two of their most important components, the distributed query optimizer
and the query (resources) allocation mechanism, often conflict with each other.
The optimizer tries hard to produce query execution plans that minimize the
query response time by selecting the fastest data access and join methods, by
maximizing the number of nodes (degree of parallelism) involved in the process-
ing of each query separately, and by making sure that the nodes selected are
the fastest available ones. Unfortunately, the first two of these three strategies
frequently achieve a Pyrrhic victory; they deplete the resources of the whole dis-
tributed system by increasing the average number of resources used per query.
At the same time, assigning processing to the fastest of the available nodes may
case substantial load imbalance among system nodes. In this case, not only will

⋆ The majority of this work appears in [6, 7] and in [5].
⋆⋆ Desertation advisor: Yannis Ioannidis, Professor



the performance of the whole distributed system suffer, but also the load dis-
tribution mechanism will intervene and conflict with the futile decisions of the
query optimizer.

In this thesis, we revisit the problem of query processing in autonomous dis-
parate systems, proposing four distributed query optimization and three query
allocation mechanisms. Our mechanisms are microeconomics-inspired and espe-
cially designed so as to run autonomously and to not conflict with each other.
More specifically, we propose a query trading mechanism where instead of trad-
ing goods, nodes trade answers of (parts of) queries and operator-execution jobs.
The market acts as an integrated distributed query optimization and allocation
mechanism. Not only does it find one of the best possible distributed query
execution plans for a single query, but also improves query throughput when
multiple, concurrent queries are evaluated. Our solution is especially efficient in
autonomous environments and, as far as the author is aware of, this is the first
time that query optimization and allocation is treated in an integrated way. It
is also one of the few cases that distributed query processing is considered end-
to-end, starting from the trivial case of optimizing a single query to the real-life
case of concurrently optimizing, allocating and running multiple distributed ones.

The remainder of this thesis summary goes as follows: In section 2, we for-
mally present the problem solved. In section 3, we describe our basic query
optimization and processing framework. In section 4 we present a query alloca-
tion mechanism. More details, additional algorithms and expremental analysis
can be found in thesis text.

2 Problem Definition

Throughout this thesis, we consider distributed systems consisting of autonomous
and possibly diverse database management systems (DBMSs) that are intercon-
nected using a fast, local or wide area, network. Nodes are heterogeneous in terms
of their software and hardware capabilities. They may use different DBMS config-
urations or products possibly supporting different access plans. The memory, I/O
and CPU resources offered to distant nodes can vary, dynamically being modi-
fied by node administrators. For simplicity, we only consider relational DBMSs,
though, many of our findings are data model independent. We allow nodes to
act in a cooperative or competitive manner towards each other.

Tables may be mirrored to multiple nodes or be horizontally partitioned, yet,
we require all local node schemas to be a subset of a ”global” one. Mirrors of
non-partitioned tables have the same name and are assumed to hold the same
data. We allow (and encourage) partitions of a single table to be displaced.
Similarly to the case of non-partitioned tables, we assume that mirrors of the
same partition always hold the same data. Each node may have different indexes
or materialized views; the solution proposed will automatically use them.

The workload of the distributed system consists of select-join-project queries
that reference only global schema tables. A query can be submitted, if allowed,
to any node of the network, and any node, if it wants to, can offer to assist in the



evaluation of some parts of this query. The answer is expected to be delivered
to the initial node where the query was submitted. We allow any number of
queries to be concurrently evaluated. Node autonomy and diversity forces us to
treat distant DBMSs as black boxes that can only evaluate queries expressed
in SQL. Distributed queries are evaluated by splitting them into pieces (sub-
queries) expressed in SQL, assigning these pieces to distant nodes and then
post-processing and merging the results to produce the answers of the initial
distributed queries.

Given the environment just described, our objective is to construct a dis-
tributed algorithm that minimizes the average response time of all concurrently
executed queries, while respecting node autonomy.

3 The Query Trading Algorithm

3.1 Query Trading Overview

The idea of the basic query trading (QT) algorithm is to consider queries and
query-answers as commodities and the query optimization procedure as a trad-
ing of query-answers between nodes holding information that is relevant to the
contents of these queries. Buying nodes are those that are unable to answer some
query, either because they lack the necessary resources (e.g. data, I/O, CPU), or
simply because outsourcing the query is better than having it executed locally.
Selling nodes are the ones offering to provide data relevant to some parts of
these queries. Each node may play either role (buyer and seller) depending on
the query been optimized and the data that each node locally holds.

Before proceeding with the presentation of the optimization algorithm, we
should note that no query or part of it is physically executed during the whole
optimization procedure. The buyer simply asks from seller for assistance in eval-
uating some queries and sellers make offers which contain their estimated prop-
erties of the answer of these queries (query-answers). These properties can be
the total time required to execute and transmit the results of the query back
to the buyer, the time required to find the first row of the answer, the average
rate of retrieved rows per second, the total rows of the answer, the freshness of
the data, the completeness of the data, and possibly a charged amount for this
answer.

The buyer ranks the offers received using an administrator-defined weighting
aggregation function and chooses those that minimize the total cost/value of the
query. In the remaining of this section, the valuation of the offered query-answers
will be the total execution time (cost) of the query, thus, we will use the terms
cost and valuation interchangeably.

3.2 The Query-Trading Algorithm

The execution plans produced by the query-trading (QT) algorithm consist of the
query-answers offered by remote sellers together with the processing operations



required to construct the results of the optimized queries from these offers. The
task of the algorithm is to find the combination of data offers and buyer and seller
processing operations that minimize the valuation (cost) of the final answer. For
this reason, it runs iteratively, progressively selecting the best execution plan.
In each iteration, the buyer asks (Request for Bids - RFBs) for some queries
and the sellers reply with offers that contain the estimations of the properties of
these queries (query-answers). Since sellers may not have all the data referenced
in a query, they are allowed to give offers for only the part of the data they
actually have. At the end of each iteration, the buyer uses the received offers to
find the best possible execution plan, and then, the algorithm starts again with
a possibly new set of queries that might be used to construct an even better
execution plan.

Buyer-side algorithm Sellers-side algorithm

B0. Initialization, set Q = {{q, C}}
B1. Make estimations of the values of the queries in set Q, using a
trading strategy.
B2. Request offers for the queries in set Q

S1. For each query q in set Q do the following:
S2.1. Find sub-queries qk of q that can be an-
swered locally.
S2.2. Estimate the cost ck of each of these sub-
queries qk.
S2.3. Find other (sub-)queries that may be of
some help to the buyer.

B3. Select the best offers {qi, ci} using one of the three methods
(bidding, auction, bargaining) of the query trading framework

S3. Using the query trading framework, make
offers and try to sell some of the subqueries of
step S2.2 and S2.3.

B4. Using the best offers, find possible execution plans Pm and
their estimated cost Cm
B5. Find possible sub-queries qe and their estimated cost ce that,
if available, could be used in step B4.
B6. Update set Q with sub-queries {qe, ce}.
B7. Let P∗ be the best of the execution plans Pm. If P∗ is better
than that of the previous iteration of the algorithm, or if step B6
modified the set Q, then go to step B1.
B8. Inform selling-nodes, which queries are used in the best execu-
tion plan P∗, so that they start executing these queries.

Fig. 1. The query trading (QT) algorithm.

The optimization algorithm is actually a kind of bargaining between the
buyer and the sellers. The buyer asks for certain queries and sellers counter-offer
to evaluate some (modified parts) of these queries at different values. In each
iteration of this bargaining the negotiated queries are different, as the buyer and
sellers progressively identify additional queries that may help in the optimization
procedure. This difference, in turn, makes necessary to change selling nodes in
each step of the bargaining, as these additional queries may be better offered by
other nodes.

Figure 1 presents the details of the distributed optimization algorithm. The
input of the algorithm is a query q with an initially estimated cost of C. If no
estimation using the available local information is possible, then C is a predefined
constant (zero or something else depending on the type of cost used). The output
is the estimated best execution plan P∗ and its respective cost C∗ (step B8). The
algorithm, at the buyer-side, runs iteratively (steps B1 to B7). Each iteration
starts with a set Q of pairs of queries and their estimated costs, which the buyer



would like to purchase from remote nodes. In the first step (B1), the buyer
strategically estimates the values it should ask for the queries in set Q, and then
asks for bids (RFB) from remote nodes (step B2). The (candidate) sellers after
receiving this RFB make their offers, which contain query-answers concerning
parts of the queries in set Q (step S2.1 - S2.2) or other relevant queries that could
be of some use to the buyer (step S2.3). The winning offers are then selected
using a small nested trading negotiation procedure (steps B3 and S3). The buyer
uses the contents of the winning offers to find a set of candidate execution plans
Pm and their respective estimated costs Cm (step B4), and an enhanced set Q of
queries-costs pairs (qe, ce) (steps B5 and B6) which they could possibly be used
in the next iteration of the algorithm for further improving the plans produced
at step B4. Finally, in step B7, the best execution plan P∗ out of the candidate
plans Pm is selected. If P∗ is not better than that produced in the previous
iteration (i.e., no further improvement is possible) and step B5 did not find any
new query, then the algorithm is terminated.

4 Query Allocation

Many query allocation mechanisms, (e.g., [1]), including ours, classify queries
into a large number of disjoint classes, e.g., few 1000s. We assume a set Q of K
query templates/classes, Q = {q1, q2, . . . , qK}, where each template represents a
family of queries differing only in some selection constant(s) in their qualification.
If a query can be derived from template qk, it is a qk-class query.

Let I be the number of nodes in the system and K be the number of different
query classes. During a small time period τ with duration T , the behavior of
each node i (1 ≤ i ≤ I) can be completely captured using the query demand,
consumption, and supply vectors.

The demand vector di = (di1, di2, . . . , diK) ∈ NK contains the number of
queries (q1, q2, . . . , qK) posed to node i during τ . The respective consumption
vector ci = (ci1, ci2, . . . , ciK) contains the number of those queries that are
actually evaluated by the system, either locally or at a distant node (cik ≤
dik, 1 ≤ i ≤ I, 1 ≤ k ≤ K). Finally, the supply vector si = (si1, si2, . . . , siK) ∈
NK contains the number of queries (q1, q2, . . . , qK) evaluated by node i during
τ (whether initiated at i or elsewhere). The set of all feasible supply vectors si
of node i depends on its available hardware resources and is the supply set (Si)
of node i.

Given the nodes’ demand vectors di for a time period τ and supply sets
Si, (i = 1, 2, . . . , I), a query allocation mechanism finds consumption and sup-
ply vectors that satisfy certain optimality criteria or other constraints. Such a
solution is denoted as <[si], [ci]>, where si ∈ Si, ci ∈ NK , 1 ≤ i ≤ I. Gener-
ally, if the distributed system is not overloaded, we expect from query allocation
mechanisms to find solutions having di = ci, i = 1, 2, . . . , I, i.e., nodes getting
answers for all queries within τ . Otherwise, some queries will be delayed and will
be counted in the demand vectors of subsequent time periods as well.



In addition to individual nodes’ vectors, we also use system-wide aggregate
demand (d), supply (s), and consumption (c) vectors defined as:

d =

I∑
i=1

di, s =

I∑
i=1

si, c =

I∑
i=1

ci (1)

In the same spirit, one may obtain the aggregate supply set S capturing the
capabilities of all nodes of the system, by combining the individual supply sets
of the nodes, each time summing up one supply vector from each node:

S = {s ∈ NK : s =
I∑

i=1

si, si ∈ Si} (2)

Based on the semantics of aggregate vectors, at any time period τ , the aggregate
query supply is equal to the aggregate query consumption, which is at most equal
to the aggregate query demand:

s = c ≤ d, s ∈ S (3)

Sometimes, there is no feasible way for the system to evaluate all queries
requested in a time period. In such cases, each node i selects its consumption
vector based on a preference relation (≼i) over the set of all possible such vectors.
The semantics of ≼i is that, if ci, ci

′ ∈ NK and ci ≽i ci
′, then node i prefers

the ci query consumption vector over ci
′. In the remainder of this thesis sum-

mary and without loss of generality, we assume that all nodes prefer to evaluate
as many queries as possible, independent of what these queries are: ci ≽i ci

′

iff
∑K

k=1 cik ≥
∑K

k=1 c
′
ik. Using this preference relation, our algorithm will find

solutions that maximize the number of queries evaluated in each time period.
The role of preference relations in optimizing the choice of consumption vec-
tors by query allocation mechanisms is formalized through the notion of Pareto
optimality.

Definition 1 (Pareto Optimality). A solution <[si], [ci]> (1 ≤ i ≤ I)
Pareto dominates a solution <[si

′], [ci
′]> iff

∀ 1 ≤ i ≤ I : ci ≽i ci
′, and

∃ g, 1 ≤ g ≤ I : cg ≻g cg
′

That is, all nodes prefer their consumption vector ci to ci
′ (ci ≽i ci

′) and at
least one of them (i.e., node g) strictly prefers cg to cg

′ (cg ≻g cg
′). A solution

is Pareto optimal if it is not Pareto dominated by any other solution.

Since node preferences maximize the number of queries evaluated per time
period, a Pareto optimal allocation is one that no node can further increase the
number of queries consumed without reducing those of another node.

Based on all the above, the problem presented in the introduction of this
chapter is formally stated as follows:



Problem 1 (Query Allocation (QA)). Given a federation of autonomous database
systems with supply sets Si, preference relations ≽i (i = 1, 2, . . . , I), and for a
time period τ of length T , query demand vectors di (i = 1, 2, . . . , I), Query Al-
location (QA) seeks to find a Pareto optimal solution <[si], [ci]>, i = 1, 2, . . . I,
for τ .

The goal of our work is to solve the QA problem in a completely decentralized
and autonomous way. The feasibility of this attempt steams from the First Theo-
rem of Welfare Economics (FTWE) [3]. According to FTWE, market economies
composed of self-interested consumers and firms achieve allocations of resources
and goods that are Pareto optimal. Moreover, the behavior of consumers and
firms is such as if an invisible hand is guiding their actions toward a state ben-
eficial to all.

Table 1. Mapping between microeconomics theory entities and entities of the
QA problem.

Microeconomics QA problem

Commodities markets Query processing framework
Commodities Queries
Buyers ⇐⇒ Client nodes
Sellers (Firms) Server nodes
Commodity value: Monetary units Query value: Virtual monetary units

Mapping Between QA and Microeconomics

We have already discussed the mapping between client/servers of the QA prob-
lem and buyer/sellers of the respective Microeconomics problem. A central con-
struct of all competitive markets is that commodities have values(prices) mea-
sured using a monetary unit. This is a microeconomics mechanism designating
the importance of each piece of commodity to the society. In the QA problem
there is no such mechanism, therefore, we use a virtual monetary unit and assign
a virtual value pk ∈ R+ (1 ≤ k ≤ K) to each qk query. The resulting virtual
query prices are only used by our solution and are otherwise useless.

If we use vector notation, then the price vector p = (p1, p2, . . . , pK) ∈ RK
+ will

describe the (virtual) value of a unit of each of the K query classes. The value

of a consumption vector ci can be calculated as
∑K

k=1 pkcik, which is written in
vector notation as p ·ci. Similarly, the value of a supply vector of seller i is p ·si.

Table 1 summarizes the way we mapped the entities of the QA problem to
microeconomics.

4.1 Query Market Definition

What remains for FTWE to hold is to make nodes act as if they participate in
traditional competitive commodity markets. We do so in this section and show



that this behavior implicitly leads clients and servers to make Pareto optimal
allocations of queries to nodes.

In competitive markets, each seller is assumed selfish and selects to supply
the vector s⋆i ∈ Si with the largest (virtual) value. That is, sellers/servers solve
the following problem:

p · si⋆ = maxsi∈Si(p · si) i = 1, 2, . . . , I (4)

In general commodities markets, the purchasing power of buyers (i.e., client
nodes in our problem) is limited by their wealth. In our case, we want to max-
imize the number of queries evaluated per time period. Therefore, we put no
consumption limit to nodes, apart from the fact that the resulting aggregate
supply (s⋆ =

∑I
i=1 s

⋆
i ) and consumption (c⋆ =

∑I
i=1 c

⋆
i ) vectors should be

equal.
If we choose a random price vector p and solve equation (4) we end up

with demand and supply vectors that do not satisfy (3). This is captured in
microeconomics using the notion of excess demand defined below:

Definition 2 (Excess demand). Given prices p, the excess demand zk(p) for
qk-queries is given by

zk(p) =

I∑
i=1

dik − sik (5)

The excess demand of all query classes will be denoted by the vector

z(p) = (z1(p), z2(p), . . . , zK(p))

The sign of the excess demand zk(p) for qk reveals whether they supply of qk by
server (seller) nodes is larger (zk(p) < 0) or smaller (zk(p) > 0) than what the
current client (buyer) workload demands.

We can now formally define the term market equilibrium that was first men-
tioned in FTWE.

Definition 3 (Market competitive equilibrium). A market is in a compet-
itive equilibrium iff commodities prices p⋆ are such that z(p⋆) = 0.

FTWE asserts that in equilibrium the resulting distribution of queries is Pareto
optimal. Thus, if we calculate the equilibrium price vector p⋆, the resulting
virtual query market will solve the QA problem. This is shown in the next
section.

4.2 The Pricing Mechanism

Traditionally, microeconomic theory finds equilibrium prices using a tâtonnement
process (TP) which iteratively adjusts prices until the excess demand is zero for
all commodities. It assumes that there is a single entity called umpire that has
the role of market coordinator. It iteratively announces to all entities a single
market price (per commodity), collects their consumption and supply vectors



for these commodities, adjusts prices, and then a new iteration is started by
announcing the new prices. The iteration is stopped when consumption equals
supply. It is possible to modify the tâtonnement process in such a way that no
centralized authority is required and trading takes place before equilibrium is
reached. Examples of such modifications are given in [4].

QA-NT: Non-tâtonnement price adjustment algorithm (runs at each server node i)

1 Repeat for ever
2 Given the current prices p of queries, solve (4) (first order conditions). This will calculate the optimal

supply vector si ∈ NK of the node.
3 While a time period τ has not elapsed do.
4 If a client node asks to evaluate a query qk and sik > 0 then
5 Offer to evaluate the query.
6 If offer is accepted set sik = sik − 1.
7 Else
8 Do not offer to evaluate query qk.
9 Set pk = pk + λpk.
10 End If
11 End while
12 For each k s.t. sik > 0 do
13 Set pk = pk − sikλpk
14 End For
15 End Repeat

Fig. 2. The QA-NT algorithm

Figure 2 presents the our query alloocation algorithm (QA-NT). This is based
on a non-tâtonnement process where no centralized authority is needed. Query
prices are never disclosed or exchanged over the network. Each node calculates
its own set of prices and uses them only to calculate its own supply vector (step
2 of the QA-NT algorithm). Thus, there is no need for all nodes to use the same
K query classes, which is difficult to calculate in a decentralized way. The only
restriction is that for each node, queries belonging to the same query class should
require similar resources for their evaluation on that node.

Step 4 of the non-tâtonnement algorithm describes the negotiation strategy
of servers, i.e., they do not try to be fair and immediately accept a request to
evaluate query qk iff sik > 0. If all available servers reject a request for a query,
the respective client resubmits it in the next time period.

Proposition 1. If the non-tâtonnement algorithm is left running for a long
time period, then limt→∞ z(p) = 0.

Proof. The proof is quite complicated and is given for the general case of non-
tâtonnement processes in [4].

5 Conclusion

In this thesis we discuss a novel query optimization and allocation algorithm
suitable for networks of autonomous data management systems. Our algorithms
are inspired by Microeconomics.



References

1. P. E. Drenick and E. J. Smith. Stochastic query optimization in distributed
databases. ACM Trans. Database Syst., 18(2):262–288, 1993. 4

2. Donald Kossmann. The state of the art in distributed query processing. ACM
Computing Surveys, 34(4):422–469, September 2000. 1

3. Andreu Mas-Colell, Michael D. Whinston, and Jerry R. Green. Microeconomic
Theory. Oxford University Press, New York, 1995. 4

4. Anjan Mukherji. Competitive equilibria: Convergence, cycles or chaos, The seventh
Int. meeting of the society for social choice and welfare, discussion papers. Technical
report, Institute of Social and Economic Research, Osaka University, Japan, July
2003. 4.2, 4.2

5. Fragkiskos Pentaris and Iannis Ioannidis. Autonomic query allocation based on
microeconomics principles. In Rada Chirkova, Asuman Dogac, Tamer Ozsu, and
Timos Sellis, editors, Proceedings of the 2007 IEEE 23rd International Conference
onData Engineering, April 15-20, 2007, Istanbul, Turkey. IEEE Computer Society,
2007. ⋆

6. Fragkiskos Pentaris and Yannis E. Ioannidis. Distributed query optimization by
query trading. In Elisa Bertino, Stavros Christodoulakis, Dimitris Plexousakis,
Vassilis Christophides, Manolis Koubarakis, Klemens Böhm, and Elena Ferrari, ed-
itors, EDBT, volume 2992 of Lecture Notes in Computer Science, pages 532–550.
Springer, 2004. 1, ⋆

7. Fragkiskos Pentaris and Yannis E. Ioannidis. Query optimization in distributed net-
works of autonomous database systems. ACM Transactions on Database Systems,
31(2):537 – 583, June 2006. 1, ⋆

8. Michael Stonebraker, Paul M. Aoki, Witold Litwin, Avi Pfeller, Adm Sah, Jeff Sidell,
Carl Staelin, and Andrew Yu. Mariposa: A wide-area distributed database system.
VLDB Journal, 5(1):48–63, 1996. 1


	Query Processing in Distributed Environments of Autonomous Data Management Systems
	Fragkiskos Pentaris

