
Static and dynamic graph algorithms with
applications to infrastructure and content

management of modern networks

Gerasimos G. Pollatos?

National and Kapodistrian University of Athens
Department of Informatics and Telecommunications

gpol@di.uoa.gr

Abstract. This dissertation focuses on networks primarily used for the
dissemination of content. We model these networks using graph theory
and study algorithms for the replication of content as well as for their
infrastructure. In terms of infrastructure, we propose the first fully dy-
namic algorithm for maintaing a minimum spanning tree on a directed
graph. In terms of content replication and focusing on networks with
constant number of clients we propose optimal algorithms that solve the
basic problem of replicating data over a network of clients with con-
strained local storage and extend our results to various important exten-
sions. These algorithms constitute the first research work on networks
with non-metric distances among clients. In addition and in order to
study implications of the selfish behaviour of users participating in such
networks, we define an appropriate non-cooperative strategic game and
study existence of pure Nash equilibria as an indication of stabilization of
the networks performance. We provide tight bounds for the prices of an-
archy and stability, the standard measures of efficiency of such networks.
We identify conditions under which equilibria might not be expensive
and extend our results to more complex hierarchical networks.

1 Introduction

Typically speaking the term content network refers to a large-scale system of
computers containing copies of data, placed at various points in a network so
as to maximize bandwidth for access to the data from clients throughout the
network. A client accesses a copy of the data near to the client, as opposed to
all clients accessing the same central server, so as to avoid bottleneck near that
server. This maximization of the bandwidth dedicated for data access can also
be seen as a minimization of the access cost each client has to pay in order to
gain access to desired content.

Content types include ordinary downloadable objects, such as media files,
software and documents, as well as web objects and applications. Other compo-
nents of internet delivery, such as DNS queries, routes and database queries, can
? Dissertation Advisor: Vassilis Zissimopoulos, Professor

also be considered as content. In order to refer to such content, we will use the
abstract notion of a data object or simply object.

The most fundamental problem a designer of a large-scale content network
has to face is the quality of service. A system is meaningful if it achieves to
serve the purpose it was built for, and succesful if it manages to accomplish
that as best as possible. The quality of service relies among others, in two ma-
jor factors; reliability and performance. Reliability amounts to maintaining the
following invariant: ”problems arising in the system should have the smallest
possible impact, if any, on the offered services”. That is, the clients of a system
should ideally be unaware of problems related to server availability issues, or
sudden power failures in some of the system’s database locations. On the other
hand, performance is a more complicated issue which involves the basic aims
of the network. If speed of access is the aim, then optimization of performance
is equivalent to fast access rates, while if up-to-date content availability is the
goal, then performance amounts to be able to efficiently update content in all
cooperating locations.

In this thesis, we address from an algorithmic perspective both reliability
and performance in content networks. We utilize the field of dynamic graph
algorithms in order to surpass difficulties in terms of reliability. As for perfor-
mance, we turn our attention to cooperative caching of objects among distributed
computers and design algorithms for their coordination by external authorities
as well as study implications in their operability due to absence of any external
authority.

2 Infrastructure on content networks: the DMST
problem

In terms of infrastructure, we study connectivity issues among nodes of the con-
tent network. We use graph theory and model the content network as a graph,
with each vertex of the graph representing a single user and each edge represent-
ing a connection among two users. We assume that each edge is weighted and
directed.

In the environment of a content network, the derived graph is obviously
subject to discrete changes. Such changes happen if for example a user voluntarily
exits the content network, or if a sudden power or hardware failure forces the user
to abandon the network. Using graph theoretic terms this is a dynamic graph.
We focus on the classic problem of computing a directed minimum spanning tree
(DMST) on such a graph. Such a tree is a maximal subset of the edges of the
graph, with minimum cost that is (a) acyclic, i.e. does not contain directed cycles,
and (b) no vertex of the directed graph has more than one incoming edge in this
subset. The need for maintaining such a tree in content networks is apparent
due to the fact that the spanning tree essentially maintains a minimum set of
links among network nodes (i.e. the minimum requirements for connectivity of
all nodes).

The dynamic version of the problem amounts to exploting a previously com-
puted solution so that we can make use of it after a node failure, without having
to recompute the new solution from scratch. The problem is studied for the first
time here as opposed to the widely studied undirected version. A relevant result
proved in this thesis for the hardness of the problem is the following:

Theorem 1. [1] Dynamic maintenance of a DMST under edge deletions and/or
insertions is as hard as recomputing a DMST from scratch if only the DMST
information is retained and used between updates.

The dynamic algorithm for the DMST is based on an appropriate data struc-
ture, which the algorithm utilizes for recording redundant edges and all vertices
during the execution of the only known algorithm for the static version of the
problem i.e. Edmonds’ algorithm [2], [3], [4]. The augmented data structure,
namely the Augmented Tree (ATree), appropriately encodes the redundant edge
set H along with all vertices (contracted vertices or c-vertices and simple ver-
tices) processed during execution of Edmonds’ algorithm. Simple vertices are
represented in the ATree by simple nodes while c-vertices are represented by
c-nodes.

Since a digraph can be always transformed to be strongly connected, all ver-
tices (simple and intermediate c-vertices) will be eventually contracted to a single
c-vertex by the end of the algorithm’s execution. This c-vertex is represented by
the root node of the ATree, which has no parent. The parent of each other node
N is the intermediate c-node N c to which it was contracted. The parent of each
node is unique, hence the described structure is indeed a tree.

The ATree has at most O(n) nodes since the algorithm handles at most O(n)
contractions. Construction of an ATree can be easily embedded into the func-
tionality of Edmonds’ algorithm, without affecting its complexity. Furthermore,
all intermediate c-vertices created by Edmonds’ algorithm are made explicit in
the ATree: For a given c-vertex vc, we can engage a Breadth-First Search (BFS)
starting from its representing c-node in the ATree and collect all encountered
simple nodes, hence we gather all vertices of the original digraph that were even-
tually contracted to vc. Since the ATree is of O(n) size, BFS takes O(n) time.

For any edge we want to delete from the original digraph, two cases must
be considered: (a) the edge does not belong to H, in which case only a simple
update on the recorded lists is needed, and (b) the edge belongs in H, in which
case we proceed by decomposing the ATree, initialize Edmonds’ algorithm w.r.t.
the remainders of the ATree and execute it.

The purpose of engaging a decomposition of the ATree is to identify surviving
c-nodes and hence surviving c-vertices. By this way we can re-execute Edmonds’
algorithm on a partially contracted digraph with less vertices, considering less
edges than re-evaluating all contractions from scratch.

The decomposition of the ATree begins from node N which is the head of
the deleted edge and follows a path from N towards the ATree root, removing
all c-nodes on this path except N . Each one of the children of a removed c-
node forms its own subtree. By the end of this procedure, the initial structure

 0.2 0.4 0.6 0.8 1 5
 20

 35
 50

 0
 20
 40
 60
 80

 100

Dense

% CPU Time Gain

density
|V|/100 10 15 20 25 30 35 40 45 50 5

 20
 35

 50
 60

 80

 100

Sparse

Iterations Gain

c
|V|/100

Fig. 1. Experimental evaluation of the dynamic algorithm for the DMST problem.

is decomposed into smaller ATrees, each corresponding to a contracted subset
of the original digraph’s vertices. All these ATrees remain intact after decom-
position. Having performed the decomposition of the ATree, we proceed with a
proper initialization and re-execution of Edmonds’ algorithm, on a new partially
contracted digraph.

We handle edge insertions by reducing them to edge deletions. We first check
whether the newly inserted edge should replace some edge encoded in the ATree.
This check involves only c-nodes of the ATree corresponding to c-vertices con-
taining the head of the new edge. Given that we have found a candidate node
N which should replace its current incoming edge with the new one, we proceed
by engaging a virtual deletion of the old edge and re-execution of the algorithm
on the remaining graph augmented with the newly inserted edge.

To analyze the theoretical performance of our algorithm we used the widely
known output complexity model [5]. If we denote by ρ the set of changes in a
previously computed solution (the number of affected constituents), made by an
algorithm as a response to an update in the dynamic graph, then Ω(|ρ|) is a
lower bound on the complexity of an update, where |ρ| is the cardinality of the
set ρ. In the output complexity model, the complexity of updates for a dynamic
algorithm is measured as an asymptotic upper bound of a function of |ρ|, where
the set of affected vertices is ρ, |ρ| being its size and the cardinality of affected
edges is denoted with ||ρ||. Our basic result is:

Theorem 2. [1] Fully dynamic maintenance of a directed minimum costs span-
ning tree can be achieved in O(n + ||ρ|| + |ρ| log |ρ|) output complexity per edge
operation.

In order to measure the practical performance, we employed our algorithm
on sequences of edge operations on digraphs of varying order and density and
recorded and compared the following two measures: (a) average CPU time,
needed to complete computation of the new DMST and (b) number of itera-
tions, performed by each one of the two algorithms. Sample experimental results
are depicted in figure 1.

Our dynamic algorithm substantially achieves an update time reduced by a
factor of more than 2 as opposed to solving the problem statically (from scratch)

on dense digraphs. However it is our belief that the case of sparse digraphs merits
further theoretical investigation from an average case complexity perspective,
since as the results indicate, there appears to be an asymptotic improvement on
average.

3 Cooperative content replication

One of the most fundamental techniques for improving the performance of a
large-scale content network is to cache popular objects close to the clients that
potentially request them. This enables requests to be satisfied by a nearby copy
and hence reduces not only the access latency but also the burden on the net-
work as well as the remote servers, offering the objects. In the simplest caching
scheme, nodes operating as caches never consult one another and when a cache
miss occurs, the server is contacted directly. Improvement of the effectiveness
of caching is usually accomplished through a powerful paradigm; cooperation.
Nodes cooperate both in serving each other’s requests as well as in making stor-
age decisions.

Roughly speaking, the problem we study is the following: given a set of coop-
erating nodes, the amount of local storage at each node, the network distances
between the nodes and the predictions of access rates from each node to a set of
objects, determine where to place the copies of each object in order to minimize
the total access cost over all nodes. We assume that an underlying mechanism
exists that can route each node to the closest other node on the network that
holds a replica of an object, when an object miss occurs.

From an optimization point of view, this problem is NP-hard since it is a
direct generalization of the well known uncapacitated facility location problem
where multiple different types of facilities are considered. In this dissertation
we focused on the case where the number of cooperating nodes is constant and
designed algorithms that efficiently address this problem.

The data placement problem ([6], [7]), is abstracted as follows: there is a
network N consisting of a set M of M = |M| users (also referred to as clients)
and a universe O of N = |O| objects. Each object o ∈ O has length lo and each
user j ∈ M has a local capacity Cj for the storage of objects. The distance
between the users can be represented by a distance matrix D, not necessarily
symmetric, where dij denotes the distance from j to i. The matrix D models
the underlying topology. In our work we do not assume any restrictions on the
distances, e.g. metric, which is usually the case in the literature.

Each user i requests access to a set of objects Ri ⊆ O, namely its request
set. For each object o in its request set, client i has a demand of access wio > 0.
This demand can be interpreted as the frequency under which user i requests
object o or even as the preference that i has for object o. The subset Pi of its
request set, that i chooses to replicate locally is referred to as its placement.
Obviously, |Pi| ≤ Ci for unit-sized objects. We assume an installation cost foi
for each object o and each cache (user) i.

The objective of the data placement problem is to choose placements of
objects for every client such as the total induced access and installation costs
for all objects and all clients is minimized. In the following, we will make the
reasonable assumption that each object o ∈ O is requested by at least one user.
If this is not the case, one can always formulate and solve an equivalent problem
which has an object set containing only requested objects.

Up to know, the only way to tackle this problem, was the 10-approximation
algorithm of [7] designed for the general case. When object lengths are uniform
(or equivalently unit) our algorithm finds the optimum solution in polynomial
time. When object lengths are non-uniform, our algorithm returns an optimum
solution which violates the capacities of the clients’ caches by a small, asymp-
totically tight additive factor.

We show how our results can be modified to handle various important ex-
tensions of the problem such as cases when bounds are imposed on the number
of maximum replicas allowed for each object (a k-median variant for DP), or
cases when upper and lower bounds are imposed on the number of users a single
replica of an object can serve. Furthermore, we describe ways to cope with a well
known generalization of DP, the page placement problem ([8]), in which bounds
are imposed on the number of clients that can connect to a client’s cache, as
well as cases where object updates are frequent and consistency of all replicas of
each object has to be guaranteed.

The latter problem is more commonly known as the connected data place-
ment problem [7]. Our algorithms are applicable with uniform and non-uniform
object lengths and can be employed independently of the underlying topology of
the network, thus giving the first non-trivial results for non-metric DP problems.
Most of the results described in the dissertation appear in [9].

Our basic result for objects of uniform (equivalently unit) length is the fol-
lowing:

Theorem 3. [9] The non-metric data placement problem with uniform length
objects and a fixed number of clients can be solved optimally in polynomial time
O(NM+1).

The algorithm we designed is based on dynamic programming algorithm and
is in fact pseudo-polynomial, since the complexity depends on the maximum
cache size. In the case of unit-sized objects we are able to bound it by the total
number of objects and thus obtain a polynomial time algorithm. In the case of
objects of arbitrary length the same bound does not hold and the algorithm
remains pseudo-polynomial. To tackle this issue, we let α = εlmax/N where
ε is an arbitrarily small positive constant and modify the object lengths and
cache sizes appropriately as l′o =

⌊
lo
α

⌋
and C ′j =

⌊
Cj

α

⌋
respectively. To compute

a solution we use the same algorithm with the modified sizes and obtain the
following result:

Theorem 4. [9] The non-metric data placement problem, with non-uniform ob-
ject lengths and a fixed number of clients, can be solved optimally in polynomial

Known results In this paper

arbitrary M , metric fixed M , no metric

uniform lengths DP APX-hard, 10-approx optimal
[6, 7, 10]

uniform lengths with APX-hard, 10-approx optimal
installation costs DP [6, 7, 10]

connected DP 14-approx [7] optimal

k-median DP 10-approx [6, 7] optimal

page placement 13-approx [10] ∗ optimal
with cache augmentation ∗∗ εlmax

non-uniform lengths DP 10-approx with cache optimal
augmentation lmax [7] with cache augmentation εlmax

Table 1. The main known results on the DP problem (∗non-uniform lengths with
constant blow-up on both capacities, ∗∗on cache capacity only).

time using εlmax augmentation on the machines’ capacity, where ε is an arbi-
trarily small positive constant and lmax is the length of the largest object.

We note that the augmentation in each user’s cache stated in the above
theorem is asyptotically tight. Furthermore, our results can be modified to handle
well-known and important extensions of the DP problem with constant number
of clients. The extensions we consider are the following: (1) existense of a distant
server (user) whose cache can hold all the objects, (2) there is an upper bound
ko imposed on the number of copies of an object o that are replicated in the
network, (3) each user j has a set RJj of rejected objects that cannot be placed
on its cache, (4) the number of users uoi

served by a single copy oi of object o
is lower bounded by kminoi

and upper bounded by kmaxoi
, (5) there is an upper

bound kj on the number of users that can access a given user j’s cache, (6)
objects updates are frequent and all copies of an object must be up-to-date. We
summarize the main results on the DP problem and these extensions, in table 1.

4 Distributed selfish replication

While cooperation of nodes is an attractive and reasonable paradigm in envi-
ronments where machines trust one another, such as within an Internet service
provider, a cache service provider or even a corporate intranet, there are numer-
ous content networks under which this assumption is not valid. For example, file
sharing or peer-to-peer networks, that have become extremely popular nowa-
days, are formed by users that participate voluntarily and have no knowledge of
the motives and goals of other participants.

In such networks, one cannot a-priori assume that a participant will volun-
tarily offer it’s local storage for the replication of content that is of no interest to
it. On the contrary the most logical assumption is that such users upon joining
the network behave selfishly, i.e. aim to maximize their own benefit and thus

the total access cost depends on their selfish replication decisions. The two ba-
sic questions that arise under this setting are: (a) does the performance of the
network ever stabilize? (b) what is the overall performance of a stable network,
in absence of a central optimizing authority?

Using tools from the field of algorithmic game theory, we studied implications
of this user behaviour in content networks. We formulated the basic problem of
data replication as a strategic non-cooperative game and study this game in order
to analyze the performance of these networks. We use the standard quantification
measures, the prices of anarchy [11] and stability [12], [13], in order to measure
the performance loss due to the lack of coordination.

The modelled strategic game is as follows [14], [15]:

Definition 1. An instance of the Distributed Selfish Replication (DSR) game
is specified by the tuple 〈N, {Pi}, {ci}〉, where:

– N is the set of the n players, which in our case are the nodes.
– {Pi} is the set of strategies available to player i. Each strategy corresponds to

a different placement which means that there is one strategy for each sizei-
cardinality subset.

– {ci} is the set of utilities for the players. The utility for each player is the
access cost that the player wishes to minimize.

A placement X is then a strategy profile (or configuration) for the DSR game.
DSR is a n-player, non-cooperative, non-zerosum game [16]. For the DSR game,
we investigate configurations that are pure Nash equilibria.

Definition 2. A pure Nash equilibrium (N.E.) for the DSR game is a placement
X∗, such that for every node i ∈ N ,

ci(X∗) ≥ ci({P ∗1 , . . . , P ∗i−1, Pi, P
∗
i+1, . . . P

∗
n}

for all Pi ∈ {Pi}.

The definition essentially states that, under such a placementX∗, no node can
modify its individual placement unilaterally and benefit from this modification.
In what follows we use the terms node and player interchangeably. Let

X−i = {P1, . . . , Pi−1, Pi+1, . . . , Pn}

refer to the strategy profile of all players but i. For the DSR game, it is easy to
see that given a strategy profile X−i, player i can determine optimally in polyno-
mial time its best response Pi to the other players’ strategies. This computation
amounts to solving a special 0/1 Knapsack problem, in which player i chooses
to replicate the sizei objects with the greatest value wiodi(o).

The network topologies we consider and the results we obtained are the
following. The minimum and maximum distances appearing in the network are
also referred to with dmin = dk and dmax = d0.

Ultrametric Replication Group: this is a network model that generalizes
the one introduced by Leff,Wolf and Yu in [17] and studied in [18], involving k
origin servers, instead of 1. The distance of every node i from server l is dl for
l = 0 . . . k− 1, while two nodes i and j are at distance dij = dk. In our study we
assume that distances form an ultra-metric 1 such that dk < dk−1 < · · · < d0.
We designed a distributed protocol that upon finishind guarantees convergence
to pure Nash equilibria.

Theorem 5. [14] Pure strategy Nash equilibria exist for the DSR game on
LWY(k) networks, and can be found in polynomial time.

Furthermore we studied the quality of such equilibria obtaining the following
results:

Theorem 6. [14] The price of anarchy for the DSR game is upper bounded
by dmax

dmin
. The Price of Stability for the DSR game has a lower bound arbitrarily

close to dmax/dmin in the worst-case, even for 1 server and 0/1 demand weights.

We should note that both results are valid even when the maximum experi-
enced access cost by a user is measured instead of the sum of all access costs.
Furthermore we studied networks with modestly demanding participants, that
is participants offering storage capacity to the network asyptotically equal to
their demand, and identified that in such networks pure equilibria can be of
significantly less cost.

Balanced Hierarchies: this is a network model with distances that also form
an ultrametric. The network’s nodes are clustered hierarchically, so that at each
clustering level the maximum distance between any two nodes in the same cluster
is given and is smaller than the distance of any two nodes in different clusters.
We designed an extension of our basic distributed protocol that also achieves
convergence to pure Nash equilibria. Our main result on the quality of the pure
equilibria is the following.

Theorem 7. [15] The Price of Anarchy of the DSR game with 0/1 preference
weights on balanced hierarchical networks is O

(
lnn

ln lnn

)
. The Price of Stability of

the DSR game on hierarchical networks with 0/1 preferences is Ω
(

lnn
ln lnn

)
.

General Networks: in this case the distance matrix [dij] can be arbitrary. Our
study shows that pure equilibria are not guaranteed to always exist when such
network topologies are considered.

Theorem 8. [15] The DSR game on general networks is not a potential game.
1 An ultrametric is a metric which satisfies the strengthened version of the triangle

inequality, d(x, z) ≤ max{d(x, y), d(y, z)} for all x, y, z. This essentially states that
at least two of the d(x, z), d(x, y) and d(y, z) are the same.

5 Conclusions

This thesis investigated problems arising in content networks and described ways
to effectively cope with them. Focusing on infrastructure problems arising in
content networks and using tools from the field of dynamic graph algorithms we
studied the problem of maintaining a directed minimum spanning tree on a graph
that changes dynamically under edge insertions and deletions. After analyzing
the hardness of maintaining such a tree, we described the first fully dynamic
algorithm that maintains the DMST under edge updates and analyzed it in the
output complexity model. The results of the extensive experimental evaluation,
revealed the practical efficiency of the proposed algorithm. An important aspect
of further research is to resolve the complexity of updates, a small step to which
has been made in this thesis.

In terms of content replication we addressed the basic problem of replicating
data among users of a content network, the problem most commonly referred to
as the data placement problem. We focused on the case of constant number of
users and described polynomial time algorithms that solve optimally the basic
problem when the objects in consideration have uniform size. When object sizes
are not uniform we described an algorithm that also finds the optimum solu-
tion to the problem, albeit a small and asymptotically tight augmentation in
each user’s local storage. The proposed technique was extended to handle vari-
ous other common extensions of the basic problem such as the page-placement
problem and the connected data placement problem among others. A significant
characteristic of this technique is its ability to solve these problems indepen-
dently of the underlying topology of the network thus giving the first non-trivial
results for non-metric topologies. A challenging aspect of future work involves
employing our results to models involving payments.

Finally, we studied implications on the process of replicating data over a con-
tent network when the users are autonomous and selfish and participate volun-
tarily. We formulated a proper strategic game that modeled the data replication
problem and studied conditions under which the network stabilizes. We proved
inability to converge to pure Nash equilibria for general underlying topologies.
For simple hierarchical networks and balanced hierarchical networks with mul-
tiple servers we described an algorithm that reaches pure Nash equilibria and
admits a distributed implementation. Furthermore, we analyzed the quality of
achieved equilibria by computing the prices of anarchy and stability for the game
and identified conditions under which these ratios can be different. The most sig-
nificant aspect of future work is investigation of whether part or all of our results
can be extended in the case of arbitrary-sized objects.

References

1. Gerasimos G. Pollatos, Orestis Telelis, and Vassilis Zissimopoulos. Updating di-
rected minimum cost spanning trees. In Workshop on Experimental Algorithms
(WEA), pages 291–302, 2006.

2. F. Bock. An algorithm to construct a minimum spanning tree in a directed network.
Developments in Operations Research, pages 29–44, 1971.

3. Y.J. Chu and T.H. Liu. On the shortest arborescence of a directed graph. Scientia
Sinica, 14:1396–1400, 1965.

4. J. Edmonds. Optimum branchings. Journal of Research of the National Bureau
for Standards, 69(B):125–130, 1967.

5. G. Ramalingam and Thomas W. Reps. On the computational complexity of dy-
namic graph problems. Theoretical Computer Science, 158(1&2):233–277, 1996.

6. I. Baev and R. Rajaraman. Approximation algorithms for data placement in arbi-
trary networks. In Proceedings of the ACM-SIAM Annual Symposium on Discrete
Algorithms (SODA), pages 661–670, 2001.

7. Ivan D. Baev, Rajmohan Rajaraman, and Chaitanya Swamy. Approximation al-
gorithms for data placement problems. SIAM Journal on Computing, 38(4):1411–
1429, 2008.

8. Adam Meyerson, Kamesh Munagala, and Serge Plotkin. Web caching using ac-
cess statistics. In Proceedings of the ACM-SIAM Annual Symposium on Discrete
Algorithms (SODA), pages 354–363, 2001.

9. Eric Angel, Evripidis Bampis, Gerasimos G. Pollatos, and Vassilis Zissimopoulos.
Optimal data placement on networks with constant number of clients. Submitted
to COCOON 2010, 2010.

10. Sudipto Guha and Kamesh Munagala. Improved algorithms for the data placement
problem. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 106–107, 2002.

11. Elias Koutsoupias and Christos H. Papadimitriou. Worst-case Equilibria. In Pro-
ceedings of the Symposium on Theoretical Aspects of Computer Science (STACS),
pages 404–413, 1999.

12. E. Anshelevich, A. Dasgupta, E. Tardos, and T. Wexler. Near-optimal network
design with selfish agents. In Proceedings of the ACM Annual Symposium on
Theory of Computing (STOC), pages 511–520, 2003.

13. E. Anshelevich, A. Dasgupta, J. M. Kleinberg, E. Tardos, T. Wexler, and T. Rough-
garden. The Price of Stability for Network Design with Fair Cost Allocation.
In Proceedings of IEEE Annual Symposium on Foundations of Computer Science
(FOCS), pages 295–304, 2004.

14. Gerasimos G. Pollatos, Orestis Telelis, and Vassilis Zissimopoulos. On the social
cost of distributed selfish content replication. In Proceedings of IFIP-TC6 Net-
working, pages 195–206, 2008.

15. Gerasimos G. Pollatos, Orestis Telelis, and Vassilis Zissimopoulos. The social cost
of distributed selfish content replication. Submitted to Computer Communications,
2010.

16. M. J. Osborne and A. Rubinstein. A course in game theory. MIT Press, 1994.
17. A. Leff, J. Wolf, and P. S. Yu. Replication Algorithms in a Remote Caching

Architecture. IEEE Transactions on Parallel and Distributed Systems, 4(11):1185–
1204, 1993.

18. N. Laoutaris, O. A. Telelis, V. Zissimopoulos, and I. Stavrakakis. Distributed
Selfish Replication. IEEE Transactions on Parallel and Distributed Systems,
17(12):1401–1413, 2006.

