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Abstract. In this thesis we investigate receiver techniques for maximum
likelihood (ML) joint channel/data estimation in flat fading multiple-
input multiple-output (MIMO) channels. The performance of iterative
least squares (LS) for channel estimation combined with sphere decoding
(SD) for data detection is examined for block fading channels, demon-
strating the data efficiency provided by the semi-blind approach. The
case of continuous fading channels is addressed with the aid of recur-
sive least squares (RLS). The observed relative robustness of the ML
solution to channel variations is exploited in deriving a block QR-based
RLS-SD scheme. For the multi-user MIMO scenario, the gains from ex-
ploiting temporal/spatial interference color are assessed. We also derive
the optimal training sequence for ML channel estimation in the pres-
ence of co-channel interference (CCI). In the second part of the thesis we
propose two new adaptive equalizers for direct sequence code division
multiple access (DS-CDMA) systems operating over time-varying and
frequency selective channels. The equalizers consist of a number of seri-
ally connected stages and detect users in an ordered manner, applying a
decision feedback equalizer (DFE) at each stage. Both the equalizer fil-
ters and the order in which the users are extracted are updated in a RLS
manner, efficiently realized through time- and order-update recursions.

1 Introduction

During the last two decades, there has been an explosion in the services offered by
wireless telecommunication networks, which is boosted from the relevant growth
of the technologies of Informatics and Telecommunications. At the same time,
there are new challenges for the development of the next generation telecommu-
nication systems. Two of the most basic technologies for the evolution of the new
services in the wireless networks are the multiple-input multiple-output (MIMO)
and the code division multiple access (CDMA) systems. In this PhD thesis, we
worked on the design and analysis of space-time signal processing algorithms for
this kind of systems.

Specifically, we investigate iterative and recursive least squares (LS) algo-
rithms for maximum-likelihood (ML) joint channel/data estimation, that are
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both data efficient and computationally attractive. The proposed schemes use
the sphere decoding (SD) algorithm for data detection, and short training se-
quences for an initial channel estimation. We studied three new algorithms [10]
for block- and continuous-fading frequency flat MIMO channels. Moreover, in
the case of DS-CDMA systems, we propose two new adaptive equalizers of the
successive interference cacellation (SIC) type operating over time-varying and
frequency selective channels. Their development relies on the formulation of a
DS-CDMA system as one with multiple inputs and multiple outputs and the
adoption of existing adaptive solutions of the BLAST-type for MIMO channel
equalization [1, 12, 7].

2 Semi-blind maximum-likelihood joint channel/data
estimation for correlated channels in multiuser MIMO
networks

2.1 Signal and System Model

Consider a MIMO communications system, with MT transmit and MR receive
antennas, where MR ≥ MT, and frequency flat fading channels. The received
signal vector at time n is given by

x(n) = H0(n)s0(n) + v(n) (1)

where H0(n) ∈ C
MR×MT is the channel matrix, assumed of full column rank,

s0(n) ∈ ΩMT×1 denotes the input signal vector taking values from a finite al-
phabet (FA) Ω with cardinality Q = |Ω|, and v(n) ∈ C

MR×1 is composed of
colored interference (CCI) and additive, temporally and spatially white, zero
mean Gaussian noise.

2.2 Single-User Case

Maximum Likelihood Estimation. In the absence of multiuser interference,
v(n) in (1) is only composed of white Gaussian noise. Thus, the problem of ML
estimation can be formulated as

min
s
0
(n)∈ΩMT×1,H

0
(n)∈CMR×MT

‖x(n)−H0(n)s0(n)‖2 (2)

It is clear that, given the input data s0(n), the solution for the channel H0(n) is
given by its least squares (LS) estimate. For a known channel, the ML-optimal
input vector is to be searched among all QMT candidate MT-tuples from ΩMT×1.
Sphere decoding (SD) [2] is known to be a computationally efficient alternative
to exhaustive enumeration [4]. The basic idea is to reduce the number of can-
didates by searching only within a hypersphere centered at x(n) using a QR
decomposition (QRD) of the channel matrix.



Block Fading. Assuming block fading and dropping time indices, (1) can be
re-written as

X = H0S0 + V (3)

where X denotes the MR ×N output matrix, S0 is the MT ×N input matrix,
and V ∈ C

MR×N is the noise matrix. N denotes the length of the data block,

over which the channel matrix is assumed constant. Let H
(0)
0 denote the esti-

mate of H0 that may have resulted from a (short) training period. This can
be improved, and as a consequence the data estimates as well, via an iterative
procedure consisting of alternately optimizing the data estimate based on the
current channel estimate and vice versa. Table 1 summarizes the general ALS

ML scheme, where H
(i)
0 and S

(i)
0 are the channel and data estimates in the i-th

Table 1. ALS for joint ML channel estimation/data detection.

Given: X,H
(0)
0

Step 0 i = 0
Repeat until convergence

Step 1 i = i+ 1

Step 2 S
(i)
0 = argmin

S
0
∈Ω

MT×N ‖X −H
(i−1)
0 S0‖

2

Step 3 H
(i)
0 = XS

(i)†
0

iteration. Two well-known examples are iterative least squares with projection
(ILSP) and iterative least squares with enumeration (ILSE) [16]. ILSP is a sim-
ple approach, where the ML solution is only approximated, by projecting onto

the FA each of the entries of the soft LS data estimate, H
(i−1)†
0 X. In ILSE, full

enumeration is performed, thus obtaining the exact ML solution but at a very
high computational cost. An exact ML ALS scheme of lower expected complex-

ity would result if SD were utilized instead to detect each of the columns of S
(i)
0

in Step 2 above. This algorithm will henceforth be referred to as iterative least
squares with SD (ILS-SD).

Continuous Fading. For continuous fading channels an online version of the
ILS-SD algorithm is employed using the recursive least squares (RLS) algorithm.
Considerable computational savings would result if the Q, R factors were tracked
instead of the channel matrix itself [8]. An additional reduction in the compu-
tational burden of the receiver can be achieved by performing the Q, R update
once in every T samples instead of on a sample by sample basis. Between two
consecutive updates, SD is based on the available QRD as if the channel re-
mained constant in the meantime. This ‘sub-sampled’ channel tracking scheme
is suggested by the observed robustness of the ML solution to mild changes in
the channel [10] and leads to significant computational savings with little or
no performance loss. The proposed algorithm, will be referred to hereafter as
RLS-SD.



2.3 Multi-User Case

Interference Color. Here, we consider the case where the interference com-
ponent, {v(n)}, may be correlated both in time and space. Therefore the re-
ceived signal process {x(n)} is also temporally correlated. To exploit this fact,
we employ more than one consecutive received samples to jointly detect the cor-
responding input vectors [14]. Stacking N consecutive received samples together
we can write:







x(n)
x(n− 1)

...
x(n−N + 1)








︸ ︷︷ ︸

x̄

=








H0 0 · · · 0
0 H0 · · · 0
...

...
. . .

...
0 0 · · · H0








︸ ︷︷ ︸

H̄
0








s0(n)
s0(n− 1)

...
s0(n−N + 1)








︸ ︷︷ ︸

s̄
0

+








v(n)
v(n− 1)

...
v(n−N + 1)








︸ ︷︷ ︸

v̄

or

x̄ = H̄0s̄0 + v̄ (4)

All the interferers’ channels are assumed to obey the well-known Kronecker
model [13, 18], with the same receive fading correlation matrix. Assume, more-
over, an interference-limited environment, where CCI overwhelms background
noise [14]. One can then show that the interference correlation matrix is given
by [17]

Rv̄ = E(v̄v̄H) = R
⋆
t ⊗Rs (5)

where R
⋆
t and Rs are the temporal and the spatial interference colors, respec-

tively.

Maximum-Likelihood Estimation. Under the assumption of Gaussianity for
{v(n)} [15], the ML joint channel estimation / data detection problem for (4)
can be formulated as

min
s̄
0
,H̄

0

[

R
−1/2
v̄

(
x̄− H̄0s̄0

)]H [

R
−1/2
v̄

(
x̄− H̄0s̄0

)]

where R
−1/2
v̄ is a Hermitian square root of R−1

v̄ . Utilizing the relation R
−1/2
v̄ =

R
−⋆/2
t ⊗ R

−1/2
s , resulting from (5), the ML problem for H0 and S0 is now

formulated as

min
S

0
,H

0

∥
∥
∥R

−1/2
s XR

−1/2
t −R

−1/2
s H0S0R

−1/2
t

∥
∥
∥

2

(6)

where x̄ = vec(X) and s̄0 = vec(S0). Hence, the solution is given by the Gauss-
Markov estimator (GME) [5]:

Ĥ0 = XR
−1
t S

H
0

(

S0R
−1
t S

H
0

)−1

(7)



from which we can observe that the channel estimate involves only the temporal
correlation of the interference. Note also, that this is an unbiased estimate of
H0, that is, E(Ĥ0) = H0 and the corresponding covariance matrix is given by
[5]:

C
Ĥ

0

= E

[(

Ĥ0 −H0

)(

Ĥ0 −H0

)H
]

=
(

S̃0S̃
H

0

)−1

=
(

S0R
−1
t S

H
0

)−1

.(8)

Optimal Training for Channel Estimation. To save bandwidth, one would
like to devote as few as possible symbols to training the channel estimator. Thus,
given a fixed training sequence length, Nt, we want to compute the MT × Nt

training matrix S0 that minimizes tr
(

C
Ĥ

0

)

, subject to a constraint on the total

energy consumed for training. Formally:

min
S

0

tr

[(

S0R
−1
t S

H
0

)−1
]

(9)

s.t. tr(S0S
H
0 ) ≤ ET (10)

The solution to this problem is provided in the following:

Theorem 1 The class of training matrices optimizing the criterion (9), (10)
is given by

S
opt
0 = U








σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σMT







G

H
MT

(11)

where U can be any unitary MT ×MT matrix and

σi =

√
√
√
√

√
λi

∑MT

j=1

√
λj

ET, i = 1, 2, . . . ,MT, (12)

with λ1 ≤ λ2 ≤ · · · ≤ λMT
being the MT smallest eigenvalues of Rt and GMT

the Nt ×MT matrix of corresponding (orthonormal) eigenvectors, in that order.

Iterative Joint Channel / Data Estimation. In practice, due to the highly
increased complexity that the detection of a longer sequence entails, detection
is performed in pairs of vectors (N = 2). The ML data detection problem will
then be written as in (6):

min
s
0
(n−1),s

0
(n)

∥
∥
∥R

−1/2
s

[
x(n) x(n− 1)

]
R

−1/2
t

−
(

R
−1/2
s H0

) [
s0(n) s0(n− 1)

]
R

−1/2
t

∥
∥
∥

2

(13)



or

min
s̄
0
∈Ω2MT×1

∥
∥
∥

(

R
−⋆/2
t ⊗R

−1/2
s

)

x̄−
(

R
−⋆/2
t ⊗R

−1/2
s H0

)

s̄0

∥
∥
∥

2

(14)

In the training period, Rt is of size Nt × Nt, with Nt being the training
sequence length as above. However, in the detection phase, described by (14),
the temporal correlation matrix is 2 × 2. One can simply compute these two
matrices separately, with the aid of sample averaging.

Then, the ML channel estimation problem can be written as

min
H

0

∥
∥
∥R

−1/2
s X

(

IN/2 ⊗R
−1/2
t

)

−R
−1/2
s H0S0

(

IN/2 ⊗R
−1/2
t

)∥
∥
∥

2

(15)

with a 2×2 matrix R
−1/2
t . Solving for H0, we obtain an estimate as in (7) where

R
−1
t should be replaced by IN/2 ⊗R

−1
t . The proposed iterative procedure will

be henceforth referred to as ILS-SD-R.

2.4 Simulation Results

The effectiveness of ILS-SD, as compared to SD detection based on the trained
channel estimate can be seen in Fig. 1(a) for uncorrelated Rayleigh block fading
channels. The performance of ILSP is also shown. As expected, both trained SD
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Fig. 1. (a) Comparing ILS-SD with SD based on training only and ILSP. Uncorrelated
Rayleigh flat fading channels with MT = MR = 4 and QPSK input. (b) Computational
requirements for convergence of the ILS-SD algorithm as compared to ILSE.

and ILS-SD perform much better than ILSP. ILS-SD is seen to greatly outper-
form trained-only SD. Moreover, we have seen [10] that ILS-SD converges faster
than ILSP on the average, with the difference being more noticeable for low and
medium values of the (per antenna) SNR. The computational savings in ILS-SD
as compared to exhaustive enumeration (ILSE) are significant, as can be seen in
the example of Fig. 1(b).
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Fig. 2. Performance of RLS-SD. Results of simulation over uncorrelated Rayleigh flat
fading channels using ten training symbols and for two mobile speeds: (a) 10 m/s and
(b) 30 m/s. Probability of outage: 5%.

Some representative results from simulating RLS-SD for uncorrelated Ray-
leigh channels are shown in Fig. 2. For the sake of comparison, the results of
employing SD with no channel tracking are also included. The loss in perfor-
mance for RLS-SD when the update is done every T > 1 symbol periods is seen
to be insignificant for sufficiently small values of T . It is worthwhile to notice
that, similar results with that of Figs. 1(a), 2 have been also obtained [10] for
correlated Rayleigh and Ricean channels.

The results for the multiuser case are demonstrated in Figs. 3, 4. The training-
based SD scheme is also evaluated in Fig. 3. The results of ignoring the interfer-
ence colors (temporal [9] and spatial/temporal) are also included. A considerable
reduction in SER is seen to be achievable by employing optimal training in esti-
mating the channel, especially for moderate to high SINR values compared with
orthogonal (DFT) training. One can conclude that exploiting CCI color can re-
sult in significant performance gains. Moreover, as expected [14], it appears that
the interference spatial correlation accounts for most of this benefit.

Using ILS-SD-R iterations results in Fig. 4. One can see that the gain from
employing optimal training in ILS-SD-R initialization is now canceled by the iter-
ative improvement procedure, especially for sufficiently long training sequences.
Note, however, that, as seen in Fig. 4(b), optimal training can still result in
faster convergence, at least in the moderate to low SINR regime.

3 Adaptive BLAST-type Decision-Feedback Equalization
Schemes for Wideband DS-CDMA Systems

In the second part of the thesis we study adaptive equalization algorithms for DS-
CDMA systems. We propose two new adaptive equalizers [11] for time-varying
and frequency selective channels.
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Fig. 3. Performance of SD scheme based on training only, with orthogonal and opti-
mal training. Interference-limited environment (INR=20 dB) with (weakly) correlated
Rayleigh channels. The effects of not taking the temporal and the spatial/temporal
interference colors into account are also shown. (a) 8 training symbols (b) 12 training
symbols.
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Fig. 4. Performance of the ILS-SD-R in the setup of Fig. 3. (a, b) 8 training symbols.



3.1 System Model

We consider the uplink of a symbol-synchronous DS-CDMA system with a
spreading factor of P chips per symbol, K single-antenna users, and a single-
antenna receiver. The users transmit independently symbol sequences which are
spread through a short P -periodic spreading code ci = [ci(0) ci(1) · · · ci(P − 1)]

T
.

The spreading codes are assumed to be known at the receiver. The transmission
is through time-varying frequency selective channels, of length L with L ≤ P .

Sampling at chip rate and collecting P successive measurements of the re-
ceived signal x in a P × 1 vector, a multiple-input multiple-output (MIMO)
formulation with K inputs and P outputs [19] results for the DS-CDMA sys-
tem. Similarly, collecting P + L− 1 successive samples of x instead of P , a new
MIMO formulation with K inputs and P + L− 1 outputs results.

3.2 An Adaptive BLAST-type Equalization Scheme

An adaptive MIMO DFE detection scheme with variable detection order was
proposed in [1] for flat time-varying channels. It was shown that the proposed
technique performs similarly to V-BLAST algorithm with RLS channel tracking
but at a reduced computational complexity. At each time instant, the receiver
carries out the equalization inK serially connected stages. The users are detected
in an ordered manner, applying a DFE at each stage. The stronger users are
detected first, allowing easier detection for the weaker users [3]. The equalizer
filters and the order of detection are updated at each stage by minimizing a set
of LS cost functions for all candidate users. The user which attains the minimum
cost is selected to be the next detected user.

An algorithm which exhibits the same BER performance as the above method
but with reduced computationally complexity and favourable numerical be-
haviour was proposed in [12], based on the updating of the inverse Cholesky
factor of the input autocorrelation matrix. An extension of this method to in-
clude frequency selective channels was developed in [7], where expanded input
and weight vectors are used in order to eliminate both MAI and ISI.

Viewing a frequency selective DS-CDMA system as a MIMO system, as
referenced in Section 3.1, the efficient square root LS algorithm of [7] can be
straightforwardly applied for multiuser data detection. The resulting scheme
will henceforth be referred to as the square root multiuser detection (SR-MUD)
algorithm.

3.3 A RAKE-based Adaptive SIC Scheme

It is important to notice that, in the course of the SR-MUD algorithm, knowledge
of users’ code sequences is not required. An improved version of the SR-MUD
algorithm can be developed, through incorporating knowledge of the code se-
quences by exploiting the RAKE receiver concept.

The structure of the new adaptive scheme is similar to SR-MUD. In this
scheme the second MIMO formulation of the DS-CDMA system, presented in



Section 3.1, is used. However, a modified input signal is applied to the feedfor-
ward filter, utilizing the RAKE receiver idea. Specifically, the received signal is
multiplied by a convolution matrix containing one-chip shifts of ci and the out-
put of this product consists the input of the feedforward filter. Hence, we take
advantage of the known code sequences to lessen the effect of the other users.
However, due to the non-orthogonality of the distorted code sequences, the feed-
back filter is necessary so as to eliminate the effect of the residual ISI and MAI.
Moreover, based on the fact that the equalizer input vector can be expressed
in an order-recursive manner an efficient order-update relation for the equalizer
weights and the LS error energies can be obtained. Finally, through time- and
order-update equations, we efficiently calculate the weights of the equalizers and
determine the detection ordering. The proposed algorithm will henceforth be
referred to as RAKE-RLS.

3.4 Simulation Results

The performance of the proposed adaptive schemes is compared with the RAKE
receiver, the ASIC algorithm, and the linear receiver adapted via the exponen-
tially weighted conventional RLS. The single user bound (SUB), is also shown
as a benchmark. In our experiments, we simulate a near-far scenario, where the
received amplitude of each user is determined such that 10 log10(Ai/Ai+1)

2 =
N dB, and the amplitude of the first user is set to 1.

The BER performance versus Eb/N0 (dB) is depicted in Fig. 5 for K = 7,
L = 6, N = 2 dB, and for different values of spreading factor P . The superiority
of the proposed schemes is evident in the higher Eb/N0 regime. Specifically, for
small values of P (P = 8) and at high Eb/N0, SR-MUD outperforms RAKE-RLS,
while for large values of P (P = 128) RAKE-RLS attains the best performance.
The superiority of the proposed schemes have also been demonstrated [11] for
different values of the channel length and the number of users.
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Fig. 5. BER vs. Eb/N0 (dB) for K = 7, L = 6, N = 2 dB and spreading factor (a)
P = 8 (b) P = 128.



4 Conclusions

Semi-blind schemes for ML joint channel estimation and data detection in MIMO
flat fading channels were examined in this thesis. Both block-iterative and recur-
sive algorithms were considered, to address block and continuous fading scenar-
ios, respectively. The multiuser MIMO scenario, resulting in temporally/spatially
colored CCI, was also addressed and the gains from exploiting CCI were as-
sessed. The presented simulation results demonstrated the practical applicabil-
ity of the investigated schemes in realistic environments. Moreover, two new
adaptive equalization algorithms for time-varying and frequency selective chan-
nels in a DS-CDMA system were derived, based on the BLAST idea. The first
algorithm results from a straightforward application of the idea of [1] to a MIMO-
formulated DS-CDMA system, while the second one arises by incorporating the
RAKE receiver concept to the first scheme. Both the equalizer filters and the op-
timum detection ordering are efficiently updated through time- and order-update
equations. Improved BER performance is offered compared to existing adaptive
DS-CDMA equalizers, in a near-far mobile environment and over a wide range
of spreading factors, channel lengths and numbers of users.
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