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Abstract. In this thesis, error decoding probability bounds and achiev-
able rates for linear and nonlinear communications channels are pre-
sented. Gallager’s upper bound as well as its variations through the
Duman–Salehi bound are improved. The proposed technique relies on
the new inverse exponential sum inequality and designates a new desir-
able characteristic for linear codes, that is directly connected with the
concept of list decoding. The thesis also presents lower bounds on the
capacity of nonlinear channels represented with Volterra series, combin-
ing the random coding technique with the theory of martingales. The
proposed research follows the main ideas that dominate Shannon’s basic
work and properly utilizes exponential martingale inequalities in order
to bound the probabilities of erroneous decoding regions. The specific
analysis is also applied to cases where the noise statistical characteristics
(mean value, deviation) remain unknown. The present work improves
and extends the bound of Shulman–Feder for the family of binary, linear
codes that are permutation invariant under list decoding. A new up-
per bound on list error decoding probability is presented that combines
random coding techniques for non–random codes and decreases double
exponentially with respect to the code’s block length.

1 Introduction

Error probability evaluation and capacity are significant performance measures
of coded information transmission over various communication channels. The
high complexities involved in the calculation of error probability necessitates
the introduction of efficient bounding techniques. Classical treatments [1] as well
as modern approaches [2] provide tight bounds mostly for random and specific
families of codes (turbo codes [3], LDPC codes [4]), since the latter are treated
more easily than specific codes. Thus the existence of at least one optimum code
within these families is assured, but the respective characteristics of the optimum
code remain unknown. The development of new bounding techniques is crucial
to the accommodation of optimum specific codes, which can achieve arbitrarily
low error decoding probability with rates close to the channel’s capacity.
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This summary is organized as follows; First, Section 2 introduces the basic er-
ror bounding techniques and the presents an improvement for discrete channels.
Section 3 provides achievable rates for nonlinear channels under maximum like-
lihood and weakly typical set decoding. A new double exponential upper bound
on list error decoding probability is presented in Section 4. It applies to specific
codes while combines random coding techniques. Finally, concluding results are
given in Section 5.

2 Error probability bounds

Let C be a block code of length N and dimension k, over a field F with q
elements. Let also xi ∈ FN , i = 0, . . . , qk − 1 and Sd, d = dmin, . . . , N denote
respectively the codewords and the distance distribution of the code C, with dmin

its minimum distance. For a vector x ∈ FN , wt(x) denoted its corresponding
Hamming weight. For an arbitrary set of messages M with cardinality M , a
message m, 0 ≤ m ≤ M − 1, is mapped to a codeword xm of the above code
C and is transmitted over a discrete communication channel with transition
probability PN (y|xm). y is the received vector at the output of the channel, also
of length N . The set of received vectors is denoted by Y . Each received vector
y is decoded back onto the set of messages M, according to the maximum
likelihood (ML) rule. For the aforementioned transmission procedure, Gallager’s
upper bound [1] on the code’s error decoding probability yields

Pe|m ≤
∑

y∈Y

PN (y|xm)Km(y, C, λ, ρ) (1)

where

Km(y, C, λ, ρ) =





∑

m′ 6=m

(

PN (y|xm′)

PN (y|xm)

)λ




ρ

(2)

and λ, ρ ≥ 0. A modified version is provided by the DS2 technique [2, sec. 4.2.2].
Let Gm(y) be an arbitrary nonnegative function over Y , that may also depend
on the transmitted message m. Then, for λ ≥ 0 and 0 ≤ ρ ≤ 1,

Pe|m ≤





∑

y∈Y

PN (y|xm)Gm(y)





1−ρ

·





∑

m′ 6=m

∑

y∈Y

PN (y|xm)Gm(y)1−
1
ρ

(

PN (y|xm′)

PN (y|xm)

)λ




ρ

. (3)

The introduction of a tighter upper bound on the ML error decoding probability
is made possible by the following inverse exponential sum inequality.



Theorem 1 (Inverse exponential sum inequality [5]). For positive num-
bers, α1, α2, . . . , αN and β1, β2, . . . , βN

N
∑

i=1

βi ≤

(

N
∑

i=1

αi

)

ln

∑N
i=1 αie

βi
αi

∑N
i=1 αi

(4)

with equality if and only if βi

αi
=const.

The inverse exponential sum inequality of theorem 1 is used below in the error
decoding probability analysis.

Theorem 2 ([5]). Consider the transmission of an arbitrary set of messages
M over a discrete channel, through the utilization of an (N,R) code C. Let
Y b
m denote the set of erroneous received vectors given that the message m is

transmitted

Y b
m =

{

y ∈ Y : ∃ m′ ∈ M,m′ 6= m,PN (y|xm′) ≥ PN (y|xm)
}

and

Lm(C, λ, ρ) = min
y∈Y b

m

Km(y, C, λ, ρ).

Then the ML word error decoding probability for the specific code, given that the
message m is transmitted, is upper bounded for all λ, ρ ≥ 0 by

Pe|m ≤ Lm(C, λ, ρ)−1





∑

y∈Y

PN (y|xm)Km(y, C, λ, ρ)





≤
∑

y∈Y

PN (y|xm)Km(y, C, λ, ρ). (5)

Theorem 2 provides a bound on the ML word error decoding probability that is
tighter than Gallager bound, as noted from the second inequality in (5). More-
over, the DS2 technique can be applied to the second term of the first inequality
in (5) for all ρ ≤ 1, thus leading to a tighter version of the DS2 bound.

Theorem 3 ([5]). Under the assumptions of theorem 2, the ML word error de-
coding probability is upper bounded for all λ ≥ 0, 0 ≤ ρ ≤ 1 and any nonnegative
function Gm(y) by

Pe|m ≤ Lm(C, λ, ρ)
−1





∑

y∈Y

PN (y|xm)Gm(y)





1−ρ

·





∑

m′ 6=m

∑

y∈Y

PN (y|xm)Gm(y)1−
1
ρ

(

PN (y|xm′)

PN (y|xm)

)λ




ρ

. (6)



2.1 Special Cases of Theorems 2, 3

Discrete Channels and Coset Based Analysis Since the channel is memoryless
and output symmetric, it holds

(

PN (y|x†)

PN (y|x0)

)λ

=

(

(q − 1)
1− p

p

)λ(wt(y)−wt(y−x†))
(7)

where x0 the all zero codeword. Given a specific y∗ ∈ Yb
0, in analogy to [6,

eq.(33)], we define

deg(y∗|x0) =

∣

∣

∣

∣

∣

{

xm ∈ C,m 6= 0 : wt(y∗ − xm) ≤ wt(y∗)

}∣

∣

∣

∣

∣

(8)

where deg(y∗|x0) is the number of codewords whose Hamming distance from
y∗ is lower than or equal to wt(y∗). The corresponding ratio (7) for each of the
above codewords is greater or equal to 1 so that





∑

m′ 6=0

(

PN (y∗|xm′)

PN (y∗|x0)

)λ




ρ

≥ deg(y∗|x0)
ρ
. (9)

In analogy again to [6, eq.(43)], for every y∗ ∈ Yb
0,

deg(y∗|x0) =

jt
∑

w=1

Bt
w − 1,

⌈

dmin

2

⌉

≤ jt < N (10)

where t denotes the coset of y∗, jt = wt(y∗) and Bt
w is the number of words

of weight w in the coset t. In contrary to [6, eq.(43)], the term Bt
jt

contributes
to the sum in the right hand side of (10), since the inequality in (8) is not
strict. Moreover, the absence of codeword x0 in the previous definition justifies
reducing by 1 the aforementioned sum. Consequently, through (9) and (10),

min
y∗∈Y

b
0





∑

m′ 6=0

(

PN (y∗|xm′)

PN (y∗|x0)

)λ




ρ

≥ min
t∈T

(

min
⌈dmin/2⌉≤jt<N

jt
∑

w=1

Bt
w − 1

)ρ

(11)

where T is the set of all cosets t of the code C.

Theorem 4 ([5]). Under the assumptions of theorem 2, the ML word error de-
coding probability is upper bounded for all λ ≥ 0, 0 ≤ ρ ≤ 1 and any nonnegative
function g(y) by

Pe|0 ≤

(

min
t∈T

(

min
⌈dmin/2⌉≤j<N

j
∑

w=1

Bt
w − 1

)ρ)−1(
∑

y

Pr(y|0)g(y)

)N(1−ρ)

·

(

N
∑

d=dmin

Sd

(

∑

y

Pr(y|0)g(y)1−
1
ρ

)N−d(
∑

y

Pr(y|0)1−λ Pr(y|1)λg(y)1−
1
ρ

)d)ρ

.

(12)



Example 1. Consider the perfect Hamming code of length 7 with its coset weight
distribution depicted in Table [7, p.170 ex. (1)]. Since the minimum distance of
the code is 3, all cosets with minimum weight at least ⌈1.5⌉ are examined. Then
for jt = 2, . . . , 7,

min
t∈T

(

min
2≤jt<7

jt
∑

w=1

Bt
w − 1

)ρ

= (3 + 1− 1)
ρ
. (13)

The minimum value is achieved for jt = 2, since for jt > 2, the sum over T in
the right hand side of (11) increases. Actually, since the minimum distance of
the code is an odd number, there will always exist a term in the left hand side
of (11) strictly greater than one.

3 Achievable rates for nonlinear channels

Random coding theorems and achievable rates for nonlinear additive noise chan-
nels are presented in this section both under ML and weakly typical decoding.
Consider the transmission of an arbitrary set of messages M with cardinality M
over the nonlinear channel

y = Dx+ ν. (14)

where x, y the corresponding input–output sequences of the channel and ν the
noise vector. The nonlinear behavior of the channel is represented by the Volterra
system D applied to the channel’s input sequence Dx. The components of the
latter vector satisfy

[Dx]i = h0 +
d
∑

j=1

µ
∑

i1=0

. . .

µ
∑

ij=0

hj(i1, . . . , ij)xi−i1 . . . xi−ij (15)

where it holds

‖Dx‖∞ ≤ gD(‖x‖∞) ≤ gD(r) (16)

and

gD(x) = |h0|+
d
∑

j=1

‖hj‖x
j , x ≥ 0, ‖hj‖ =

µ
∑

i1=0

. . .

µ
∑

ij=0

|hj(i1, . . . , ij)|. (17)

In the sequel we assume input causality i.e. xi = 0 for all i ≤ 0, and that the
noise vector ν is i.i.d gaussian with zero mean and variance σ2

ν . An ML error
occurs if, given the transmitted message m and the received vector y, another
message m′ 6= m exists such that

‖y −Dxm′‖22 ≤ ‖y −Dxm‖22. (18)



Under the random coding setup of Gallager [8, Chap. 5], the average ML error
decoding probability P e,m, given the transmitted message m, satisfies

P e,m ≤ ME

[

exp

(

−ρ
‖Dx−Dx′‖22

4σ2
ν

)]

. (19)

Suppose that xj , x
′
j are the j–th components of the corresponding random vec-

tors x,x′. Let

∅ = F0 ⊂ F1 ⊂ · · ·FN , Fi = {x1, . . . , xi, x
′
1, . . . , x

′
i} (20)

and

Yi = Xi −Xi−1, 1 ≤ i ≤ N, Xi = E
[

‖Dx−Dx′‖22
∣

∣Fi

]

X0 = E
[

‖Dx−Dx′‖22
]

, XN = ‖Dx−Dx′‖22. (21)

We refer to the sequence {Yi}Ni=1 as the martingale difference sequence [9] of the
random variable XN with respect to the joint filter {Fi}Ni=0 in (20). The mean
values appearing in (21) are with respect to all codewords the random variables
x,x′ can be assigned to. Under the previous setup, we note that

N
∑

i=1

Yi = XN −X0 = ‖Dx−Dx′‖22 − E
[

‖Dx−Dx′‖22
]

(22)

and thus (19) is equivalently expressed as

P e,m ≤ M exp

(

−
ρ

4σ2
ν

E
[

‖Dx−Dx′‖22
]

)

E

[

exp

(

−
ρ

4σ2
ν

N
∑

i=1

Yi

)]

. (23)

Due to the random coding setup and the independency of the ensemble’s code-
words, it holds

E
[

‖Dx−Dx′‖22
]

= 2





N
∑

j=1

E
[

([Du]j)
2
]

− E [[Du]j ]
2



 = 2NDv (24)

where Dv = E
[

([Du])2
]

−E [[Du]]
2
. Finally, combining (23) and (24), we obtain

P e,m ≤ exp

(

NR−
ρ

2σ2
ν

NDv

)

E

[

exp

(

−
ρ

4σ2
ν

N
∑

i=1

Yi

)]

. (25)

3.1 Random Coding Theorem

The development of exponential upper bounds for the mean value in the right
hand side of (25) requires bounds on the conditional deviations dev+(Yi) and
conditional variances var(Yi|Fi−1), where according to [9, pp. 24]

dev+(Yi) = max
xi,x′

i

Yi

var(Yi|Fi−1) = E
[

(Xi −Xi−1)
2 |Fi−1

]

. (26)

Appropriate bounds are derived in the lemma that follows.



Lemma 1 ([10]). Under the assumptions that the components of all codewords
xm, 0 ≤ m ≤ M − 1 are mutually independent, and r is chosen as in (3), the
martingale differences Yi (21) satisfy

dev+(−Yi) ≤ 4(µ+ 1)gD(r)2, var(−Yi|Fi−1) ≤ 16(µ+ 1)2gD(r)4. (27)

The bounds provided by Lemma 1 lead to random coding upper bounds on
the average ML error decoding probability. Tighter bounds can be obtained
analytically for Volterra systems D of short memory.

Theorem 5 ([10]). Consider the transmission of an arbitrary set of messages
M over a nonlinear Volterra additive gaussian noise channel (14). The com-
ponents of the noise vector are i.i.d. random variables with 0 mean value and
variance σ2

ν . For each message m, 0 ≤ m ≤ M − 1, an N–length codeword xm

is selected from the ensemble C of (N,R) block codes with probability Q, inde-
pendently from all other codewords, and is transmitted over the channel. If ML
decoding is performed at the receiver and the assumptions of Lemma 1 about the
codewords’ components are valid, then the average error decoding probability P e

is upper bounded as

P e ≤ e−N(Ec(Q,D,σ2
ν)−R) (28)

where

Ec(Q,D, σ2
ν) =











1
2σ2

ν
Dv −

(

exp
(

κ
4σ2

ν

)

− 1− κ
4σ2

ν

)

, Dv > κ
2

(

exp
(

κ
4σ2

ν

)

− 1
)

1
κ

(

−2Dv + (κ+ 2Dv) ln
(

1 + 2Dv

κ

))

, otherwise

(29)

and κ = 4(µ+ 1)gD(r)
2
.

Corollary 1. All rates below maxQ Ec(Q,D, σ2
ν) (29) are achievable for trans-

mission of information over a nonlinear additive gaussian noise channel under
ML decoding.

3.2 Weakly Typical Set Decoding for Nonlinear Systems

In this section, decoding rules for nonlinear channels are interpreted as concen-
tration measures, and martingale theory is utilized. The analysis can be applied
to cases where the channel’s transition probability law is generally unknown or
a suboptimum decoding algorithm is adopted. The nonlinear model (14) is un-
dertaken using the correlation measure W (x,y) = (Dx)Ty = (Dx)T (Dx+ ν).
The input output pair (x,y) is called weakly ǫ–typical, if

W (x,y) ≥ EPr(x,y) [W (x,y)]−Nǫ. (30)

Under the weakly typical decoding rule and the random coding setup, an error
occurs given that message m is transmitted, either if codeword xm is selected



form the ensemble C such that (xm,y) does not satisfy (30) or if there exists
another message m′ 6= m for which xm′ is selected independently of xm such
that (xm′ ,y) satisfies (30). Thus, the average error decoding probability, given
that m is transmitted, equals

P e,m = Pr



(xm,y) not ǫ–typical
⋃

m′ 6=m

(xm′ ,y) ǫ–typical



 (31)

and is upper bounded due to the union bound and the Chernoff bound [8, eq.
(5.4.11)] for λ1, λ > 0 as

P e,m ≤ E [exp (λ1 (E [W (x,y)]−Nǫ−W (xm,y)))]

+
∑

m′ 6=m

EQ(xm′ )PN (y) [exp (λ (W (xm′ ,y)− E[W (x,y)] +Nǫ))] . (32)

The product probability Q(xm′)PN (y) in the innermost term in the right hand
side of (32) is a direct consequence of the random coding setup. Indeed, xm′

is independent of xm and consequently of y. Noting that x′
m,xm are dummy

variables in the above mean values, (32) satisfies

P e,m ≤ E [exp (λ1 (E [W (x,y)]−Nǫ−W (x,y)))]

+MEQ(x′)PN (y) [exp (λ (W (x′,y)− E[W (x,y)] +Nǫ))] . (33)

The following lemma is crucial in the development of exponential martingale
inequalities and is used in the proof of the random coding theorem under the
weakly typical decoding rule.

Lemma 2 ([10]). Suppose that all noise samples νi, i ∈ [1, N ] are normally
distributed N (0, σ2

ν). Then for any λ > 0 and 0 < k < 1

Exi,x′
i

[

exp (λY ′
i ) |F

′
i−1

]

≤ exp

(

λ2

2k
gD(r)

2
σ2
ν

)

·

(

1

2
exp

(

−
λ

1− k
b′
)

+
1

2
exp

(

λ

1− k
b′
))

. (34)

Theorem 6 ([10]). Let the transmission of an arbitrary set of messages M over
an additive noise nonlinear channel, under the same random encoding setup of
Theorem 5. Let also the noise samples be i.i.d. and normally distributed N (0, σ2

ν),
independent from the channel input. Then, for any ǫ, ǫ1 > 0 arbitrarily small
constants, the average error decoding probability P e is upper bounded as

P e ≤ ǫ1 + e−N(E′
c(Q,D,σ2

ν)−R) (35)

where

E′
c(Q,D, σ2

ν) = max
0<k<1

max
0<λ

λ(2Dv − ǫ)−
λ2

2k
gD(r)

2
σ2
ν−

ln

(

1

2
exp

(

−
λ

1− k
b′
)

+
1

2
exp

(

λ

1− k
b′
))

> 0. (36)



Corollary 2. Considering the transmission of information over a nonlinear
Volterra additive gaussian noise channel, all rates below maxQ E′

c(Q,D, σ2
ν) (36)

are achievable for the weakly typical set decoding rule.

The tightness of the random coding exponent, given by Theorem 6, depends on
lower bounds for the error decoding probability of the form provided in [11], for
the specific functions W (x,y).

4 Random coding techniques for nonrandom codes

In this section, a new double exponential upper bound on the list error decod-
ing probability of specific classes of codes over binary input symmetric output
memoryless channels is derived.

When list decoding is performed at the output of the channel with list size
L, the conditional error decoding probability of C, given the transmission of
message 0, satisfies

PL
e|0,C =

∑

y∈Y L
0,C

PN (y|x0, C) (37)

where

Y L
0,C =

{

y ∈ J N : ∃{li}
L
i=1, li 6= 0 : PN (y|xli , C) ≥ PN (y|x0, C), ∀ i ∈ [1, L]

}

.

(38)

Moreover, if for λ, ρ ≥ 0 we set

ΩL(y, C, λ, ρ) =
LρPN (y|x0, C)

λρ

(

∑

m 6=0 PN (y|xm, C)λ
)ρ (39)

then, due to the definition in (38), the error decoding probability PL
e|0,C in (37)

is upper bounded as

PL
e|0,C ≤

∑

y∈Y L
0,C

PN (y|x0, C)e
1−eΩL(y,C,λ,ρ)−1

. (40)

The current work is confined to the following L–list permutation invariant codes.

Definition 1 ([12]). An (N,R) linear binary code C with coset weight distri-
bution matrix Γ is L-list permutation invariant if both the following proporties
are satisfied:
L1 : there exists a wopt ≥ ⌈dmin/2⌉ such that

L = min
κ∈[1,K],Γκ,wopt 6=0

Γκ,wopt
− 1 > 0 and max

κ∈[1,K],w<wopt

Γκ,w < L+ 1.

L2 : For all κ ∈ [1,K], there exists a wL
κ > wopt such that

Γκ,wopt+1 = . . . = Γκ,wL
κ−1 = 0 and Γκ,wL

κ
≥ L+ 1



From an L–list permutation invariant code C, we construct an ensemble of
codes E by considering all possible symbol position permutation N×N matrices
P . A position permutation matrix P has a single 1 in every row and every column
and is orthogonal, PPT = PTP = I. I is the N ×N identity matrix and PT the
transpose matrix of P . The lemma provided below is crucial in the derivation of
the double exponential bound on the list error decoding probability.

Lemma 3 ([12]). For an (N,R) binary linear block code C that is L-list per-
mutation invariant, all codes in the permuted ensemble E have the same error
decoding region Y L

0 .

Due to the channel symmetry, the average list error decoding probability PL
e

of any code C, over all messages in M, equals PL
e|0,C [13, Appendix C]. Thus,

any bound on PL
e|0,C is also a bound on PL

e . Moreover, for a L-list permutation
invariant code C, in all codes of the ensemble E , message 0 is encoded into the
all–zeros vector x0. Thus, PN (y|x0, C) = PN (y|x0). Consequently, if we take
the average over E on both sides of (40), then due the error decoding region
invariance property stated in lemma 3, we have

PL
e|0 ≤

∑

y∈Y L
0

PN (y|x0)E
[

e1−eΩL(y,C,λ,ρ)−1
]

. (41)

Note that the function exp(1− exp(x− 1)) is concave for 0 ≤ x ≤ 1 since

de1−ex−1

dx2
= e−1−e−1+x+x (−e+ ex) ≤ 0, for 0 ≤ x ≤ 1.

Moreover, for any y ∈ Y L
0 , ΩL(y, C, λ, ρ) ≤ 1. Therefore, application of Jensen’s

inequality to the right hand side of (41) gives

PL
e ≤

∑

y∈Y L
0

PN (y|x0)e
1−eE[ΩL(y,C,λ,ρ)]−1

. (42)

The following technical lemma is useful in the derivation of a closed form upper
bound on PL

e .

Lemma 4 ([12]). The mean value of the double exponent in (42) is lower
bounded for all ρ′ ≥ 0 as

E [ΩL(y, C, λ, ρ)] ≥ Lρ′P PN (y|x0)
ρ′

1+ρ′

·



(M − 1)
ρ′P

(

N
∑

l=0

bl

(

vl
bl

)Q
)ρ′ P

Q
(

∑

x∈IN

2−NPN (y|x)
1

1+ρ′

)ρ′



−1

(43)

where

bl =

(

N
l

)

2N
, vl =

Sl

M − 1
, 0 ≤ l ≤ N,

1

P
+

1

Q
= 1, P,Q ≥ 1. (44)



Combining lemma 4 with (42) and passing from Y L
0 to the set of all received

vectors Y , we get the following theorem.

Theorem 7 ([12]). Consider an (N,R) binary linear block code C which is
L–list permutation invariant with distance spectrum Sl, 0 ≤ l ≤ N and coset
weight distribution matrix Γ . C is utilized in the transmission of an arbitrary
set of messages M, with cardinality M = 2NR, over a binary input, symmetric
output discrete memoryless channel. If p/(q−1) is the error transition probability
of the channel, then the average list error decoding probability, over all messages
in M, PL

e of C is upper bounded for all ρ′ ≥ 0 as

PL
e ≤

N
∑

h=0

(

N

h

)

(1− p)
N−h

(

p

q − 1

)h h
∑

k=δ(q−2)h

(

h

k

)

(q − 2)
h−k

exp(1)·

· exp













− exp













2ρ
′N (M − 1)

−ρ′P
Lρ′P

(

(1− p)
N−h

(

p
q−1

)h
)

ρ′

1+ρ′

(

∑N
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






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









(45)

where

K1(p, q, ρ
′) =

(

(1− p)
1

1+ρ′ +

(

p

q − 1

)
1

1+ρ′

)ρ′

, K2(p, q, ρ
′) =

(

p

q − 1

)
ρ′

1+ρ′

1

P
+

1

Q
= 1, P,Q ≥ 1 and δ(q − 2) =

{

1, q = 2
0, otherwise

. (46)

We note that the upper bound of theorem 7 fails to reproduce the random
coding exponent for an L–list permutation invariant code C, as in [14, Th.1].
Additionally, it does not admit a closed form expression for continuous output
channel. Nevertheless, since

e1−ex−1

≤
1

x
, x > 0 (47)

(45) is tighter than the generalized version of Shulman-Feder bound in [15,
eq.(A17)],[13, Cor.8], Moreover, for L-list permutation invariant codes, appli-
cation of (47) in (45) provides a new version of the generalized SFB, which
nicely complements the one presented in [15, eq.(A17)].

5 Conclusions

This thesis deals with issues regarding reliable and efficient information trans-
mission over linear and nonlinear communication channels. For discrete linear



symmetric channels, improved upper bounds are developed under maximum like-
lihood decoding. Furthermore, double exponential upper bounds on the list de-
coding error probability of specific codes are presented that combine random
coding techniques. Finally, the thesis presents achievable rates for nonlinear
channels both under maximum likelihood and weakly typical set decoding, uti-
lizing properly the theory of martingales.
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