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Abstract. In the present PhD thesis, original methods of computational analysis 

are put forward, which focus on image analysis and processing. The proposed 

methods are applied in biomedical images, such as cDNA microarray images as 

well as 2D gels images that are obtained from two-dimensional electrophoresis 

of proteins. They exploit the intensity information of the images and convert 

basic problems of analysis and processing, such as the determination of grid 

structure (gridding) and spot segmentation, to optimization problems which are 

subsequently solved using the methodology of genetic algorithms. The 

proposed methods of gridding and spot-segmentation have been applied to 

synthetic images as well as to real ones. Their application results have showed 

that the proposed methods achieve higher accuracy in comparison to various 

well-known and broadly used techniques. 
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1   Introduction 

In terms of research, for the past ten years the analysis of biomedical images – such 

as cDNA microarray images as well as 2D gels images that are obtained from two-

dimensional electrophoresis of proteins – has been at the forefront of biomedical 

science. Indeed, these images are being increasingly applied in numerous fields of 

biomedical research such as cancer research, pharmaceutical research, toxicological 

research, infectious disease diagnosis and treatment, and agricultural development. 

The reason behind their broad use and success can be found in their main 

revolutionary feature: the ability to analyze the expression levels of thousands of 

genes over different samples simultaneously. 

The end product of either the microarray experiment or the two-dimensional 

electrophoresis of proteins is a high resolution digital image, containing thousands of 

spots, the intensities of which are proportional to the expression levels of specific 

genes. Consequently, image analysis is necessary for the detection of spots‟ 

boundaries and the calculation of their intensity.  

The process of analyzing a microarray image can be divided into three main phases 

namely: Gridding, Spot-Segmentation and Spot-Intensity Extraction. During the 1
st
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phase, the microarray image is segmented into numerous compartments, each 

containing one individual spot and background. During the 2
nd

 phase each 

compartment is individually segmented into a spot area and a background area, while 

during the 3
rd

 phase the brightness of each spot is calculated. The expression-levels of 

the genes in these spots result from their individual brightness. The analysis of the 2D 

gels includes only the latter two phases.  

There is a considerable number of software systems and techniques that have been 

developed and proposed to date, in order to analyze the aforementioned images. 

However, the currently available software packages have several limitations not least 

because of the poor quality of microarray images. Indeed, these images are 

contaminated with noise, and artifacts. Moreover, real spots vary significantly from 

the ideal ones; they are not always circular in shape and their intensity is not always 

high enough to be clearly visible. Human intervention is therefore necessary either for 

the initialization of their input parameters, or for the rectification of their incorrect 

results. Consequently, the analysis and processing of the aforementioned images 

becomes on the one hand time-consuming, since the users have to choose the 

appropriate values for their input parameters and rectify their results, and on the other 

hand subjective, since the users initialize and correct the software programs in an 

individual manner. This subjectivity can in turn affect the biological results. As a 

matter of fact, the biological results often differ from the real ones.   

In this chapter, accurate algorithms are presented that implement (i) the automatic 

gridding phase for microarray images and (ii) the spot-segmentation phase for both 

the microarray images and 2D gels. All these algorithms are based on the 

optimization technique of evolutionary algorithms and of genetic algorithms in 

particular. Consequently, prior to describing these methods, a brief introduction to the 

evolutionary genetic-algorithms technique is apposed. It should be noted that various 

aspects of this research have been published or submitted in two peer-reviewed 

international journals [1][2], in a chapter of a book [3], in the peer-reviewed 

proceedings of six international conferences [4]-[9], and in the peer-reviewed 

proceedings of one national conference [10]. The remainder of this chapter is 

organized in six sections: In section 2 a brief description of the evolutionary genetic-

algorithms optimization technique is provided. In Sections 3, 4 and 5 three advanced 

evolutionary genetic algorithms are presented which implement the automatic 

gridding phase for microarray images and the spot-segmentation phase for both 

microarray images and 2D gels. Section 6 illustrates the experimental results, while in 

section 7 conclusions are apposed. 

2 Evolutionary Genetic-Algorithms Optimization Technique 

Genetic-Algorithm (GA) is a powerful optimization search methodology based on 

the principles of natural selection and evolution. A conventional GA [11] begins its 

search by constructing a finite number of potential solutions encoded as alpha-

numerical sequences called chromosomes. These chromosomes, which constitute an 

initial population Pop1, are evaluated using a fitness function. Subsequently, the 

population Pop1 evolves into a new population Pop2 using the following three genetic 



operators: reproduction, crossover, and mutation. This evolutionary cycle of a current 

population Popn to its next Popn+1 (where n stands for the consecutive number of 

populations) continues until a specific termination criterion is satisfied.  

The evolutionary genetic algorithms used in the gridding and the spot-segmenting 

phases enclose the same evolutionary cycle and termination criteria. More precisely, a 

new population Popn+1 is created from the current Popn by applying the following 

stages: (i) Reproduction stage: Pr% of the best chromosomes of the current 

population Popn are carried over to the new population Popn+1, and (ii) Crossover-

Mutation stage: The chromosomes needed to complete the new population Popn+1 are 

produced through iterations; four chromosomes of the population Popn are selected 

using the tournament selection method [12]. These chromosomes are subsequently 

subjected to the joint application of the BLX-a [13] and the dynamic heuristic 

crossover [13] operator, according to a Pc% probability and then to the wavelet 

mutation operator [14], according to a Pm% probability. The best two of the four 

resulting chromosomes advance to the new population Popn+1. Moreover, the 

genetic algorithms are executed up to a maximum number of populations GMax, or up 

to a maximum number of populations GFit for which the best fitness value has 

remained unchanged. 

2   Gridding of Microarray Images 

The proposed approach to the gridding of microarray images is divided into the 

following two main stages: (i) The microarray image is segmented into blocks, by 

determining (drawing) a set SB of line-segments whose members are the line-segments 

constituting the borders of adjacent blocks (Stage I), and (ii) Each block (from Stage 

I) is segmented into single-spot compartments, by determining (drawing) a set SS of 

line-segments whose members are the line-segments constituting the borders between 

adjacent spots (Stage II). 

Let G be a microarray image or block. Each of the SB or SS sets can be divided into 

the following two sub-sets: i) a sub-set SV of line-segments whose members are 

defined by the two vertical sides of G, and ii) a sub-set SH of line-segments whose 

members are defined by the two horizontal sides of G.  

2.1 The proposed Genetic Algorithm 

The determination of line-segments which are included in either the SV or the SH 

sub-sets can be viewed as an optimization problem which is tackled by using the 

proposed Genetic Algorithm which determines the exact values of the variables of all 

the line-segments included in both subsets, one sub-set at a time. 



2.1.1 Chromosome Representation 

Each chromosome m of the proposed Genetic Algorithm represents all line-

segments Li, i=1,…,N(m) belonging to the SV or SH sub-set, where N(m) is the number 

of the line-segments belonging to the respective sub-set. Therefore, it has been 

encoded as a string of real values containing two segments. The first one encodes the 

exact values of the parameters of one line-segment, while the second one encodes the 

distance d between two adjacent line-segments. In the case when the Genetic 

Algorithm searches for the exact values of the variables of the optimal line-segments 

belonging to the SV sub-set, its chromosome will encode the exact values of the 

parameters of lineV1 and dV (Fig. 1). In the case when the Genetic Algorithm searches 

for the exact values of the variables of the optimal line-segments belonging to the SH 

sub-set its chromosome will encode the exact values of the parameters of lineH1 and 

dH (Fig. 1). 

 
Fig. 1. Line-segments constituting the grid structure in a microarray image or block. 

2.1.2 Chromosome Evaluation 

A line-segment which is part of the grid is located in an area empty of spots. The 

pixels of this area are part of the background and their intensities are generally lower 

than the intensities of the pixels constituting spots. As a result, we define the 

probability P(Li) of a line-segment Li to be part of the grid by the following equation: 

( ) ( ) ( )Li LiR R

i B i S iP L f L f L
 

(1) 

RLi denotes the region of G which contains those pixels whose distance from the 

line-segment Li is less than a margin w. The real-valued function ( )LiR

B if L expresses 

the percentage of pixels of the region RLi whose intensity is lower than a value IB, 

while the real-valued function ( )LiR

S if L expresses the percentage of pixels of the 

region RLi whose intensity is higher than a value IB. IB is an intensity value which is 

defined as the value which is present in most pixels of G. Any pixel below this 

intensity value IB belongs to the background. 

The fitness function F(m) of a chromosome m that encodes a possible solution to 

the particular optimization problem is defined by the following equation: 

( ) ( ), ( )
( )

( ),

p LS Max

p

S m N m if f m f
F m

S m otherwise
 

(2) 



The real-valued function Sp(m) denotes a total sum of the probabilities P(Li) of the 

line-segments Li, i=1,…,N(m), that are represented by the chromosome m, and have a 

high probability P(Li) to be part of the grid. The real-valued function fLS(m) denotes 

the percentage of the line-segments Li, i=1,…,N(m), that are represented by the 

chromosome m, and have a low probability P(Li) to be part of the grid. A high 

probability P(Li) is the one which is higher than a threshold PMAX, while a low one is 

the one which is lower than a threshold PLOW, where PLOW < PMAX. N(m) denotes the 

total number of the line-segments Li which are represented by the chromosome m. 

2.2 The refinement procedure 

It is worth pointing out that due to the alignment of blocks inside the microarray 

image and the arrangement of spots inside the blocks, the line-segments – having the 

same direction and constituting the borders of blocks (or spots) – are ideally 

equidistant. However, this observation may not come true when rotations, 

misalignments and local deformations of the ideal rectangular grid exist. As a result, 

the determined line-segments may slightly vary from the optimal ones.  

In order to tackle this problem, each line-segment Li belonging to the SV or SH sub-sets 

is replaced with a new one, Li’, under the following two conditions: i) the line-

segment Li’ is located inside the region RLi of G, 2) the probability P(Li’), of the line-

segment Li’, to be part of the grid, is higher than the equivalent probability of Li 

(P(Li)), by more than a threshold Tp. An example of the refinement procedure is 

depicted in Fig. 2.  

 
Fig. 2. The line-segment lineV2A is replaced with the line-segment lineV2B. The high-lighted 

areas on either sides of the line-segments denote the regions RLi. 

3   Spot Segmenting in microarray images 

According to Kim et al [15], microarray spots can be classified into three 

categories according to their shape: peak-shaped, volcano-shaped, and doughnut-

shaped spots (Fig.3). Based on the aforementioned remark, our proposed 

segmentation method is conducted into two stages:  (i) The morphological spot shape 

is represented by a spot-model, and (ii) The spot contour is depicted in the image 

plane by drawing the contour of its spot-model. 



      
(a) (b) (c) 

Fig. 3.  Different morphological types of microarray spots in 2D and 3D dimensions: (a) a 

peak-shaped spot, (b) a volcano-shaped spot, (c) a doughnut-shaped spot. 

3.1 Morphological Models for a Microarray Spot and its Compartment 

All the aforementioned spots categories can be represented using: i) a 3D-curve 

representing the main-body SMB of the spot-model, and ii) a 3D-curve representing the 

inner-dip SID of the spot-model. Both the main-body and the inner-dip 3D curves 

resemble the 3D Gaussian or plateau curve. Moreover, their orientation is opposite; 

the base of the main-body of the spot-model is down and its peak is up, while the base 

of the inner-dip of the spot-model is up and its peak is down (Fig.4).  

The spot-model SModel(x,y) is constructed by combining the SMB(x,y) and SID(x,y) 

3D-curves as the following equation indicates: 

 ( , ) ( , ), ( , )MODEL MB IDS x y Min S x y S x y . (3) 

A graphical explanation of eq. 3 is depicted in Fig. 4. The resulting total-models 

(grey areas) depend on the 3D curves of their corresponding SMB and SID components. 

More precisely, in the case of the distance between the SMB and SID centers being 

large, the resulting total-model resembles a peak-shaped spot (Fig.4a). In the case of 

the distance between the SMB and SID centers being small, the resulting total-model 

resembles a volcano-shaped spot (Fig.4b) or a doughnut-shaped spot (Fig.4c), 

according to the height of the SID 3D curve. 

Likewise, the morphological compartment-model can be defined as: 

 ( , ) , ( , )MODEL AV MODELI x y Max B S x y  (4) 

where BAV denotes the average background intensity of the compartment-model and it  

corresponds to a threshold of the lowest values of the SMODEL(x,y). Pixels whose 

values are lower than BAV belong to the background and their values are set equal to 

BAV. A graphical explanation of eq. 4 for a volcano-shaped spot is depicted in Fig. 5. 

   
(a) (b) (c) 

Fig. 4.  SMB and SID components of the morphological models of: (a) a peak-shaped spot, (b) a 

volcano-shaped spot, (c) a doughnut-shaped spot. The total morphological models are the grey 

areas.  



 
Fig. 5.  Morphological model for a compartment containing a volcano-shaped spot. 

3.2 Optimum Spot-Model Representation and Definition of Real-Spot Contour 

A genetic algorithm determines the compartment-model which optimally 

represents the real-one. In order to achieve this, it searches for the optimal values of 

the parameters of the morphological compartment-model defined by eq. (4).  

3.2.1 Chromosome Representation 

Each chromosome m represents a morphological compartment-model m

MODELI . 

Consequently, it is encoded as a numerical sequence consisting of three segments: 

The first segment encodes the value of the average background intensity m

AVB  of the 

compartment-model. The second segment encodes the values of the variables of the 

main-body m

MBS , while the third segment encodes the values of the variables of the 

inner-dip m

IDS of the spot-model m

MODELS . 

3.2.2 Chromosome Evaluation 

The higher the resemblance of the morphological compartment-model 
m

MODELI  

(represented by the chromosome m) to the real-compartment IREAL is, the higher the 

value of the fitness function of a chromosome m becomes. As a result, the genetic 

algorithm can progressively assign – from left to right – a higher fitness value to the 

chromosomes representing the compartment-models in Fig. 6. 

4 Spot Segmenting in 2D gel images 

The methodology which was developed resembles the aforementioned one. The 

segmentation process is based on the possibility of the diffusion model to represent 

the three-dimensional morphology of the spots and is tackled by using genetic 

algorithms. However, in the present approach the original genetic algorithm takes 

under consideration possible overlaps of adjacent spots and determines in parallel the 

parameters of multiple diffusion models that optimally represent them. The detection 

and segmentation of the overlapping spots is conducted by the superposition of two or 



Fig. 6.  2D illustrations of 4 chromosomes (dashed curve) and real-compartment (dotted curve). 

more diffusion models representing adjacent spots. The real spots are segmented by 

drawing the contours of the spot-models. 

5 Results 

Several experiments were conducted in order to evaluate the proposed methods. In 

this respect, we used four different datasets: (i) D1: A set of real microarray images 

from the Stanford Microarray Database (SMD) [16]- which is publicly available and 

broadly used,(ii) D2: A set of real and synthetic microarray images of the collection 

of Blekas et al [17] which has already been used for the evaluation of other gridding 

algorithms, (iii) D3: A set of synthetic microarray images of the collection of 

Lehmussola et al [18] which have already been used for the comparison of various 

established spot-segmentation techniques for microarray images, and (iv) D4: A set of 

real 2D gel images of the collection of the IIBEAA [19]. The results of the 

experiments are apposed in the following sections. 

5.1 Results of the gridding method 

The D1 and D2 datasets were used in the conducted experiments for the evaluation 

of the proposed approach. The efficiency of the proposed method was evaluated by 

means of the statistical analysis described by Blekas et al [17]. More precisely, each 

microarray spot was classified in one of the following three categories: „perfectly‟, 

„marginally‟ and „incorrectly‟ gridded. A spot was „perfectly‟ gridded if the entire 

spot area was contained inside the equivalent compartment of the grid. A spot was 

„marginally‟ or „incorrectly‟ gridded - respectively - if more or less than 80% of the 

entire spot area was contained inside the equivalent compartment of the grid. 

Using the proposed gridding method, 95.1% of spots were perfectly placed inside 

the compartment, 4.3% were very nearly gridded, while only 0.6% were gridded 

incorrectly. It should be pointed out that our gridding method outperforms established 

techniques, such as the one proposed by Blekas et al, as well as popular software 

programs such as ScanAlyze and SpotFinder. Fig. 7 depicts the gridding results of a 

noisy and a rotated microarray sub-image containing several spots of various 

intensities and sizes. These examples indicate that the effectiveness of the proposed 

method is not influenced by spot intensities and sizes, neither by rotations and 

misalignments of the ideal rectangular grid nor by artifacts.  
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Fig 7. Gridding results of a rotated (a) and noisy (b) microarray sub-image. 

5.2 Results of the spot-segmentation method for microarray images 

The D1 and D3 datasets were used in the conducted experiments for the evaluation 

of the proposed approach. In order to compare objectively the proposed segmentation 

method with established methods, we used the dataset D3 of synthetic microarray 

images and we examined the pixel-level accuracy of our segmentation‟s method by 

using the following two measures: The first one is the probability of error PE and the 

second one is the discrepancy distance D.  

The comparable results between the proposed method (last row) and other eight 

established segmentation techniques (first eight rows) – as they are reported by 

Lehmussola et al – are shown in table I. By comparison, it becomes obvious that the 

proposed method is radically more successful than the other eight techniques, 

indicating its high performance. Moreover, it is evident that the proposed method can 

 

TABLE I 

PROPOSED METHOD VS ESTABLISHED TECHNIQUES  

COMPARISON ON SYNTHETIC MICROARRAY IMAGES 

Algorithm Probability of error Discrepancy distance 

 GQI LQI GQI LQI 

Fixed Circle  0.049 0.049 0.027 0.027 

Adaptive Circle 0.019 0.192 0.017 0.074 

Seeded region growing 0.099 0.114 0.037 0.048 

Mann-Whitney 0.165 0.162 0.066 0.074 

Hybrid k-means 0.017 0.020 0.016 0.029 

Markov random field 0.154 0.053 0.063 0.039 

Matarray  0.004 0.031 0.008 0.068 

Model-based segmentation 0.094 0.101 0.052 0.067 

Proposed method 0.000 0.012 0.000 0.018 

 



optimally segment the spots of good quality images (GQI) while it can very 

efficiently segment the spots of low quality images (LQI). The significant number of 

spots which are contained in the used dataset additionally supports these arguments. 

Indeed, the evaluation of all methods has been statistically calculated in 50000 

artificial microarray spots for which the ground truth is given, which means that the 

correct segmentation result is known. 

Fig. 8a illustrates the segmentation result of a microarray block taken from a good-

quality synthetic image, while Fig. 8b illustrates the segmentation result of a 

microarray block taken from a low-quality synthetic image. On these segmentation 

results, one can observe that the proposed approach has optimally segmented all the 

microarray spots of Fig.8a and most of the microarray spots of Fig.8b. Moreover, the 

proposed method has not segmented any spurious spot. 

Fig. 9 illustrates four magnified microarray compartments which have been isolated 

from real microarray blocks obtained from the Stanford Microarray Database. The 

first two compartments contain a peak-shaped spots, the third one a volcano-shaped 

spot and the fourth one a doughnut spot. The proposed method has very efficiently 

segmented the real microarrays spots. 
 

  
(a) (b) 

Fig. 8.  Spot-segmentation result of a block in a good and low quality Artificial Microarray 

Image. 

    
(a) (b) 

    
(c) (d) 

Fig. 9.  Spot-segmentation results of several magnified Real Microarray Compartments. 



5.3 Results of the spot-segmentation method for microarray images 

The D4 dataset was used in the conducted experiments for the evaluation of the 

proposed approach. An example of spot-segmentation result in a 2D gel image is 

depicted in Fig. 10. This figure shows that the proposed method did not find any 

spurious spot whereas Melanie found 6 spurious spots. Both methods detected all the 

19 real spots contained in the image. It should be noted that the two points appearing 

at the upper left corner of Fig. 10a indicate that two spots have been detected, but 

their boundaries have not been developed enough to capture the whole region of the 

spot. 

  
(a) (b) 

Fig.10.  Protein spot detection results of the: (a) proposed approach, (b) Melanie 5 software 

package.  

5 Conclusions 

In this PhD thesis original image analysis methods have been proposed and applied on 

real and synthetic biomedical images. The developed ideas lead to satisfying solutions 

of various issues in image segmentation. Moreover, they bring research one step 

closer to the objectification of the experimental process since they outperform other 

well-established techniques and software systems. Last but not least they are fully 

automatic thus excluding any human intervention that can affect the biological results. 
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