

Department of Informatics and Telecommunications

ABSTRACTS OF DOCTORAL DISSERTATIONS

Athens 2018
Volume 13

Department of Informatics and Telecommunications

ABSTRACTS OF DOCTORAL DISSERTATIONS

The Committee of Research and Development Activities

M. Koubarakis

E.S. Manolakos

T. Theoharis

ISSN: 1791-7948

Copyright © 2018

Volume 13

National and Kapodistrian University of Athens

Department of Informatics and Telecommunications

Panepistimiopolis, 15784 Athens, Greece

PREFACE

This volume includes extended abstracts of Doctoral Dissertations

conducted in the Department of Informatics and Telecommunications,

University of Athens, and completed from 1/2017 to 12/2017.

We publish this volume to demonstrate the breadth and quality of the

original research performed by our Ph.D. students and faculty and to facilitate

the dissemination of their innovative research results. We are happy to

present the 13th yearly collection of this kind and expect this initiative to

continue in the years to come. The submission of an extended abstract in

English is required by all graduating doctoral students in our Department.

We would like to thank all graduates who contributed to this volume

and hope that this was a positive experience for them. Finally, we would like

to thank PhD candidate Nikos Bogdos for his help and attention to detail in

putting together this volume.

The painting in the cover is called Sea and Cliffs (1885) by Auguste

Renoir (1841 - 1919).

The DiT Dept. Committee on Research and Development Activities

M. Koubarakis

E.S. Manolakos (publication coordinator)

T. Theoharis

Athens, June 2018

3

4

Table of Contents

Preface 3
Table of Contents

5

Doctoral Dissertations

George Balatsouras, Recovering Structural Information for Better Static
Analysis.

7

Aggelos Biboudis, Extensible and Efficient Streaming Libraries.

19

Michail Bourbos, Coupled semiconductor lasers and their applications in
telecommunications and networks.

31

Elias Konstantinidis, A GPU performance estimation model based on micro-
benchmarks and black-box kernel profiling.

43

Spiridoula Xenaki, Advances in Possibilistic Clustering with Application to
Hyperspectral Image Processing.

55

5

6

Recovering Structural Information for Better

Static Analysis

George Balatsouras?

National and Kapodistrian University of Athens
Department of Informatics and Telecommunications

gbalats@di.uoa.gr

Abstract. To reach a truly broad level of program understanding, static
analysis techniques need to create an abstraction of memory that covers
all possible executions. Such abstract models may quickly degenerate af-
ter losing essential structural information about the memory objects they
describe, due to the use of specific programming idioms and language fea-
tures, or because of practical analysis limitations. In many cases, some
of the lost memory structure may be retrieved, though it requires com-
plex inference that takes advantage of indirect uses of types. Such re-
covered structural information may, then, greatly benefit static analysis.
This dissertation shows how we can recover structural information, first
(i) in the context of C/C++, and next, in the context of higher-level
languages without direct memory access, like Java, where we identify
two primary causes of losing memory structure: (ii) the use of reflection,
and (iii) analysis of partial programs. We show that, in all cases, the
recovered structural information greatly benefits static analysis on the
program.

Keywords: Pointer Analysis; Object-Oriented Programming; Type Hi-
erarchy; Reflection

1 Introduction

The most promising and powerful of existing static analysis techniques rely on
the creation of some abstract memory model of the program. What objects will
the memory contain, at some state of execution? What will their structure be
like? A faithful abstract representation of the actual memory is, however, a
demanding task; its precision often decisive for the value of whatever the static
analysis is aiming to eventually compute (be it the identification of complex bug
patterns or the opportunities for e↵ective optimizations).

Thesis.

There is implicit structural information in the program, about the mem-
ory it will allocate, that can improve the quality of the abstract memory

? Dissertation Advisor: Yannis Smaragdakis, Professor

7

model constructed by static analysis. This structural information is not
readily available, but may be recovered via inference, primarily by track-
ing the use of types in the program.

We provide a number of techniques that recover such lost memory structure,
in two di↵erent settings: (1) in C/C++ programs, as a typical case of low-level
code with direct memory access, where the program’s memory structure is often
lost due to specific programming idioms and the inherent low-level nature of
the language, and (2) in Java programs, where, despite the high-level nature
of the language, structural information may be lost (a) for partial programs

(i.e., libraries or any programs that lack some of their parts), which, in the
form of Java Archives (JARs), constitute the main distributable code entity of
this managed language, or (b) due to Java’s reflection mechanism, which allows
runtime inspection of classes, interfaces, fields and methods, and can be used to
instantiate new objects, invoke methods, get/set field values, and so on, without
exact static type information (e.g., the name of the method to be invoked can
be created dynamically using plain string operations).

2 Structure-Sensitive Points-To Analysis for C and C++

Points-to analysis computes an abstract model of the memory that is used to
answer the following query: What can a pointer variable point-to, i.e., what can

its value be when dereferenced during program execution? This query serves as
the cornerstone of many other static analyses aiming to enhance program un-
derstanding or assist in bug discovery (e.g., deadlock detection), by computing
higher-level relations that derive from the computed points-to sets. In the lit-
erature, one can find a multitude of points-to analyses with varying degrees of
precision and speed.

One of the most popular families of pointer analysis algorithms, inclusion-
based analyses (or Andersen-style analyses [3]), originally targeted the C lan-
guage, but has been extended over time and successfully applied to higher-level
object-oriented languages, such as Java [6,7,21,25,29]. Surprisingly, precision-
enhancing features that are common practice in the analysis of Java programs,
such as field sensitivity or online call-graph construction are absent in many
analyses of C/C++ [12,15,30,14,8,13].

In the case of field sensitivity, the reason behind its frequent omission when
analyzing C is that it is much harder to implement correctly than in Java. As
noted by Pearce et al. [24], the crucial di↵erence is that, in C/C++, it is possible
to have the address of a field taken, stored to some pointer, and then dereferenced
later, at an arbitrarily distant program point. In contrast, Java does not permit
taking the address of a field; one can only load or store to some field directly.
Hence, load/store instructions in Java bytecode (or any equivalent IR) need
an extra field specifier, whereas in C/C++ intermediate representations (e.g.,
LLVM bitcode) load/store requires only a single address operand. The precise
field a↵ected is not explicit, but only possibly computed by the analysis itself.

8

The e↵ect of such di↵erence in the underlying IRs, as far as pointer analysis
is concerned, is far from trivial. In C, the computed points-to sets have an
expanded domain, since now the analysis must be able to express that a variable
p at some o↵set i may point-to another variable q at some o↵set j, with these
o↵sets corresponding to either field components or array elements.

The best-documented approach on how to incorporate field sensitivity in a
C/C++ points-to analysis is that of Pearce et al. [23,24]. The authors extend
the constraint-graph of the analysis by adding (positive) weights to edges; the
weights correspond to the respective field indices. For instance, the instruction
“q = &(p->fi)” would be encoded as a constraint q ◆ p + i. However, this
approach does not take types into account. In fact, types are not even statically
available at all allocation sites, since most standard C allocation routines are
type-agnostic and return byte arrays that are cast to the correct type at a later
point (e.g., malloc(), realloc(), calloc()). Thus, field i is represented with
no regard to the type of its base object, even when this base object abstracts a
number of concrete objects of di↵erent types. The lack of type information for
abstract objects is a great source of imprecision, since it results in a prohibitive
number of spurious points-to inferences.

We argue that type information is an essential part in increasing analysis
precision, even when it is not readily available. The abstract object types should
be rigorously recorded in all cases, especially when indexing fields, and used to
filter the points-to sets. In this spirit, we present a structure-sensitive analysis
for C/C++ that employs a number of techniques in this direction, aiming to
retrieve high-level structure information for abstract objects in order to increase
analysis precision:

1. First, the analysis records the type of an abstract object when this type is
available at the allocation site. This is the case with stack allocations, global
variables, and calls to C++’s new() heap allocation routine.

2. In cases where the type is not available (as in a call to malloc()), the analysis
deviates from the allocation-site abstraction and creates multiple abstract
objects per allocation site: one for every type that the object could have.
Thus, each abstract object of type T now represents the set of all concrete
objects of type T allocated at this site. To determine the possible types
for a given allocation site, the analysis creates a special type-less object and
records the cast instructions it flows to (i.e., the types it is cast to), using the
existing points-to analysis. This is similar to the use-based back-propagation

technique used in past work [17,19,27], in a completely di↵erent context—
handling Java reflection.

3. The field components of abstract objects are represented as abstract objects
themselves, as long as their type can be determined. That is, an abstract
object SO of struct type S will trigger the creation of abstract object SO.fi,
for each field fi in S. (The aforementioned special objects trigger no such
field component creation, since they are typeless.) Thus, the recursive cre-

9

ation of subobjects is bounded by the type system, which does not allow the
declaration of types of infinite size.

4. Finally, the analysis treats array elements similarly to field components (i.e.,
by representing them as distinct abstract objects, if we can determine their
type), as long as their respective indices statically appear in the source code.
That is, an abstract object AO of array type [T⇥N] will trigger the creation of
abstract object AO[c], if the constant c is used to index into type [T⇥N]. The
object AO[*] is also created, to account for indexing at unknown (variable)
indices.

The last point o↵ers some form of array-sensitivity as well and is crucial for
analyzing C++ code, lowered to an intermediate representation such as LLVM
bitcode, in which all the object-oriented features have been translated away. To
be able to resolve virtual calls, an analysis must precisely reason about the exact
v-table index that a variable may point to, and the method that such an index
may itself point-to. That is, a precise analysis should not merge the points-to
sets of distinct indices of v-tables.

We o↵er an implementation of our approach over the full LLVM bitcode
intermediate language, in the form of a new static analysis tool, cclyzer1. We
show that our approach yields much higher precision than past analyses, allowing
accurate distinctions between subobjects, v-table entries, array components, and
more. Especially for C++ programs, this precision is invaluable for a realistic
analysis. Compared to the state-of-the-art past approach, our techniques exhibit
substantially better precision along multiple metrics and realistic benchmarks
(e.g., 40+% more variables with a single points-to target).

3 More Sound Static Handling of Java Reflection

Moving to higher-level languages, like Java, we note that essential structural
information is often lost in Java programs too, yet for di↵erent reasons. A source
of analysis imprecision, especially in determining the types of abstract objects
constructed by the analysis, lies in the use of Java’s reflection mechanism: the
ability to inspect and dynamically retrieve classes, methods, attributes, etc. at
runtime.

By using the Reflection API, Java programs can encompass dynamic be-
havior. However, statically reasoning about the behavior of software that uses
reflection can be especially cumbersome. Unfortunately, reflection is ubiquitous
in large Java programs. When a Java program accesses a class by supplying its
name as a run-time string, via the Class.forName library call, the static anal-
ysis has very few available courses of action: It needs to either conservatively
over-approximate (e.g., assume that any class can be accessed, possibly limiting
the set later, after the returned object is used), or to perform a string analysis
that will allow it to infer the contents of the forName string argument. Both

1 cclyzer is publicly available at https://github.com/plast-lab/cclyzer

10

Class.forName
https://github.com/plast-lab/cclyzer

options can be detrimental to the scalability of the analysis: the conservative
over-approximation may never become constrained enough by further instruc-
tions to be feasible in practice; precise string analysis is impractical for programs
of realistic size. It is telling that no practical Java program analysis framework

in existence handles reflection soundly [18], although other language features are
modeled soundly.2

Full soundness is not practically achievable, but it can still be approximated
for the well-behaved reflection patterns encountered in regular, non-adversarial
programs. Therefore, it makes sense to treat soundness as a continuous quan-
tity: something to improve on, even though we cannot perfectly reach. To avoid
confusion, we use the term empirical soundness for the quantification of how
much of the dynamic behavior the static analysis covers. Computable metrics of
empirical soundness can help quantify how close an analysis is to the fully sound
result. Based on such metrics, one can make comparisons (e.g., “more sound”)
to describe soundness improvements.

The second challenge of handling reflection in a static analysis is scalability.
The online documentation of the IBM Wala library [10] concisely summarizes
the current state of the practice, for points-to analysis in the Java setting.

Reflection usage and the size of modern libraries/frameworks make it

very di�cult to scale flow-insensitive points-to analysis to modern Java

programs. For example, with default settings, Wala’s pointer analyses

cannot handle any program linked against the Java 6 standard libraries,

due to extensive reflection in the libraries.

The same caveats routinely appear in the research literature. Multiple published
points-to analysis papers analyze well-known benchmarks with reflection dis-
abled [28,16,1,2].

A representative quote [28] illustrates:

Hsqldb and jython could not be analyzed with reflection analysis enabled

[...] —hsqldb cannot even be analyzed context-insensitively and jython

cannot even be analyzed with the 1obj analysis. This is due to vast im-

precision introduced when reflection methods are not filtered in any way

by constant strings (for classes, fields, or methods) and the analysis in-

fers a large number of reflection objects to flow to several variables. [...]

For these two applications, our analysis has reflection reasoning disabled.

Since hsqldb in the DaCapo benchmark code has its main functionality

called via reflection, we had to configure its entry point manually.

We describe an approach for handling reflection with improved empirical sound-
ness (as measured against prior approaches and dynamic information), again, in
the context of a points-to analysis. Our approach is based on the combination of
string-flow and points-to analysis from past literature augmented with (a) sub-
string analysis and modeling of partial string flow through string builder classes;

2 In our context, sound = over-approximate, i.e., guaranteeing that all possible be-
haviors of reflection operations are modeled.

11

(b) new techniques for analyzing reflective entities based on information avail-
able at their use-sites. In experimental comparisons with prior approaches, we
demonstrate a combination of both improved soundness (recovering the majority
of missing call-graph edges) and increased performance. Our approach requires
no manual configuration and achieves significantly higher empirical soundness
without sacrificing scalability, for realistic benchmarks and libraries (DaCapo
Bach and Java 7).

In experimental comparisons with the recent Elf system [17] (itself improv-
ing over the reflection analysis of the Doop framework [7]), our algorithm dis-
covers most of the call-graph edges missing (relative to a dynamic analysis) from
Elf’s reflection analysis. This improvement in empirical soundness is accompa-
nied by increased performance relative to Elf, demonstrating that near-sound
handling of reflection is often practically possible. Concretely, our work for re-
flection:

· introduces key techniques in static reflection handling that contribute greatly
to empirical soundness. The techniques generalize past work from an intra-
procedural to an inter-procedural setting and combine it with a string analysis;

· shows how scalability can be addressed with appropriate tuning of the above
generalized techniques;

· thoroughly quantifies the empirical soundness of a static points-to analysis,
compared to past approaches and to a dynamic analysis;

· is implemented and evaluated on top of an existing open framework (Doop [7]).

4 Class Hierarchy Complementation for Java

Whole-program static analysis is essential for clients that require high-precision
and a deeper understanding of program behavior. Modern applications of pro-
gram analysis, such as large scale refactoring tools [9], race and deadlock detec-
tors [22], and security vulnerability detectors [20,11], are virtually inconceivable
without whole-program analysis.

For whole-program analysis to become truly practical, however, it needs to
overcome several real-world challenges. One of the somewhat surprising real-
world observations is that whole-program analysis requires the availability of
much more than the “whole program”. The analysis needs an overapproxima-
tion of what constitutes the program. Furthermore, this overapproximation is
not merely what the analysis computes to be the “whole program” after it has
completed executing. Instead, the overapproximation needs to be as conservative
as required by any intermediate step of the analysis, which has not yet been able
to tell, for instance, that some method is never called.

Consider the example of trying to analyze a program P that uses a third-
party library L. Program P will likely only need small parts of L. However, other,
entirely separate, parts of L may make use of a second library, L0. It is typically
not possible to analyze P with a whole program analysis framework without
also supplying the code not just for L but also for L0, which is an unreasonable
burden. In modern languages and runtime systems, L0 is usually not necessary in

12

order to either compile P or run it under any input. The problem is exacerbated
in the current era of large-scale library reuse. In fact, it is often the case that
the user is not even aware of the existence of L0 until trying to analyze P .

Our research consists precisely of addressing such need in full generality.
Given a set of Java class and interface definitions, in bytecode form, we compute

a “program complement”, i.e., skeletal versions of any referenced missing classes

and interfaces so that the combined result constitutes verifiable Java bytecode.

To see why the problem has interesting depth and complexity, consider a
simple fragment of Java bytecode and the constraints it induces. Our convention
here is that single-letter class names at the lower end of the alphabet (A, B, ...)
correspond to known types, while class names at the high end of the alphabet
(X, Y, Z) denote phantom types. We present bytecode in a slightly condensed
form, to make clear what method names or type names are referenced in every
instruction.

public void foo(X, Y)
0: aload_2 // load on stack 2nd argument (of type Y)
1: aload_1 // load on stack 1st argument (of type X)
2: invokevirtual X.bar:(LA;)LZ; // method 'Z bar(A)' in X
3: invokevirtual B.baz:()V; // method 'void baz()' in B
...

Although the above fragment is merely four bytecode instructions long, it
induces several interesting constraints for our phantom types X, Y, and Z:

– X has to support a method bar accepting an argument of type A and returning
a value of type Z.

– Y has to be a subtype of A, since an actual argument of declared type Y is
passed to bar, which has a formal parameter of type A. This constraint also
means that if A is known to be a class (and not an interface) then Y is also a
class.

– Z has to be a subtype of B, since a method of B is invoked on an object of
declared type Z (returned on top of the stack by the earlier invocation).

Our goal is to satisfy all such constraints and generate definitions of phantom
types X, Y, and Z that are compatible with the bytecode that is available to
the tool (i.e., exists in known classes). Compatibility with existing bytecode is
defined as satisfying the requirements of the Java verifier, which concern type
well-formedness.

Note that such definitions will contain essential parts of missing structural
information for the phantom types: method and field members, as well as super-
types. Any subsequent static analysis that will operate on the types produced by
complementation will create abstract objects that are much closer, in structure,
to reality.

Of these constraints, the hardest to satisfy are those involving subtyping.
Constraints on members (e.g., X has to contain a “Z bar(A)”) are easy to sat-
isfy by just adding type-correct dummy members to the generated classes. This

13

means that the core of the general program complementation problem is solving
the class hierarchy complementation problem: given a partial type hierarchy and
a set of subtyping constraints, compute a complete type hierarchy that satisfies
the subtyping constraints without changing the direct parents of known types.

Solving the hierarchy complementation problem, constitutes the main novelty
of our approach. The problem appears to be fundamental, and even of a certain
interest in purely graph-theoretic terms. For a representative special case, con-
sider an object-oriented language with multiple inheritance (or, equivalently, an
interface-only hierarchy in Java or C#). A partial hierarchy, augmented with
constraints, can be represented as a graph, as shown in Figure 1a. The known
part of the hierarchy is shown as double circles and solid edges. Unknown (i.e.,
missing) classes are shown as single circles. Dashed edges represent subtyping
constraints, i.e., indirect subtyping relations that have to hold in the resulting
hierarchy. In graph-theoretic terms, a dashed edge means that there is a path
in the solution between the two endpoints. For instance, the dashed edge from
C to D in Figure 1a means that the unknown part of the class hierarchy has a
path from C to D. This path cannot be a direct edge from C to D, however: C
is a known class, so the set of its supertypes is fixed.

B

D

E

F G

A

C

(a) Constraint Graph

A

B

D

E C

FG

(b) Solution

Fig. 1: Example of constraints in a multiple inheritance setting. Double-circles
signify known classes, single circles signify unknown classes. Solid edges (“known
edges”) signify direct subtyping, dashed edges signify transitive subtyping.

14

In order to solve the above problem instance, we need to compute a directed
acyclic graph (DAG) over the same nodes,3 so that it preserves all known nodes
and edges, and adds edges only to unknown nodes so that all dashed-edge con-
straints are satisfied. That is, the solution will not contain dashed edges (indirect
subtyping relationships), but every dashed edge in the input will have a matching
directed path in the solution graph. Figure 1b shows one such possible solution.
As can be seen, solving the constraints (or determining that they are unsatisfi-
able) is not trivial. In this example, any solution has to include an edge from B
to E, for reasons that are not immediately apparent. Accordingly, if we change
the input of Figure 1a to include an edge from E to B, then the constraints
are not satisfiable—any attempted solution introduces a cycle. The essence of
the algorithmic di�culty of the problem (compared to, say, a simple topolog-
ical sort) is that we cannot add extra direct parents to known classes A and
C—any subtyping constraints over these types have to be satisfied via existing
parent types. This corresponds directly to our high-level program requirement:
we want to compute definitions for the missing types only, without changing ex-
isting code. For a language with single inheritance, the problem is similar, with
one di↵erence: the solution needs to be a tree instead of a DAG. (Of course, the
input in Figure 1a already violates the tree property since it contains known
nodes with multiple known parents.)

We provide algorithms to solve the hierarchy complementation problem in
the single inheritance and multiple inheritance settings. We also show that the
problem in a language such as Java, with single inheritance but multiple subtyp-
ing and distinguished class vs. interface types, can be decomposed into separate
single- and multiple-subtyping instances. We implement our algorithms in a tool,
JPhantom,4 which complements partial Java bytecode programs so that the re-
sult is guaranteed to satisfy the Java verifier requirements. In a sense, JPhan-
tom aims to recover structural information for phantom classes, via inference,
by tracking their use in existing code. JPhantom is highly scalable and runs in
mere seconds even for large input applications and complex constraints (with a
maximum of 14s for a 19MB binary).

5 Conclusions

To summarize, we advocate that there are many opportunities in recovering
implicit structural information about memory that can improve static analysis
of programs, but require complex inference that takes advantage of indirect uses
of types. We have examined three di↵erent scenarios to test and evaluate our
thesis, regarding generic C/C++ programs, and Java programs that either use
reflection or are missing parts of their code. In all cases, we where able to improve
static analysis, by recovering memory structure that was not previously evident.

3 Inventing extra nodes does not contribute to a solution in this problem.
4 JPhantom is available online at https://github.com/gbalats/jphantom

15

https://github.com/gbalats/jphantom

6 Publications

The contents of this doctoral dissertation are based on the following published
papers:

– Structure-Sensitive Points-To Analysis for C and C++ [5]
– More Sound Static Handling of Java Reflection [27]
– Class Hierarchy Complementation: Soundly Completing a Partial Type Graph [4]
– Pointer Analysis [26]

References

1. Ali, K., Lhoták, O.: Application-only call graph construction. In: Proc. of the
26th European Conf. on Object-Oriented Programming. pp. 688–712. ECOOP
’12, Springer (2012)

2. Ali, K., Lhoták, O.: Averroes: Whole-program analysis without the whole program.
In: Proc. of the 27th European Conf. on Object-Oriented Programming. pp. 378–
400. ECOOP ’13, Springer (2013)

3. Andersen, L.O.: Program Analysis and Specialization for the C Programming Lan-
guage. Ph.D. thesis, DIKU, University of Copenhagen (May 1994)

4. Balatsouras, G., Smaragdakis, Y.: Class hierarchy complementation: Soundly com-
pleting a partial type graph. In: Proc. of the 28th Annual ACM SIGPLAN Conf. on
Object Oriented Programming, Systems, Languages, and Applications. pp. 515–
532. OOPSLA ’13, ACM, New York, NY, USA (2013)

5. Balatsouras, G., Smaragdakis, Y.: Structure-sensitive points-to analysis for C and
C++. In: Proc. of the 23rd International Symp. on Static Analysis. SAS ’16,
Springer (2016)

6. Berndl, M., Lhoták, O., Qian, F., Hendren, L.J., Umanee, N.: Points-to analysis
using BDDs. In: Proc. of the 2003 ACM SIGPLAN Conf. on Programming Lan-
guage Design and Implementation. pp. 103–114. PLDI ’03, ACM, New York, NY,
USA (2003)

7. Bravenboer, M., Smaragdakis, Y.: Strictly declarative specification of sophisticated
points-to analyses. In: Proc. of the 24th Annual ACM SIGPLAN Conf. on Ob-
ject Oriented Programming, Systems, Languages, and Applications. OOPSLA ’09,
ACM, New York, NY, USA (2009)

8. Das, M.: Unification-based pointer analysis with directional assignments. In: Proc.
of the 2000 ACM SIGPLAN Conf. on Programming Language Design and Imple-
mentation. pp. 35–46. PLDI ’00, ACM, New York, NY, USA (2000)

9. Dig, D.: A refactoring approach to parallelism. IEEE Software 28(1), 17–22 (2011)
10. Fink, S.J., et al.: WALA UserGuide: PointerAnalysis. http://wala.sourceforge.

net/wiki/index.php/UserGuide:PointerAnalysis
11. Guarnieri, S., Livshits, B.: GateKeeper: mostly static enforcement of security and

reliability policies for Javascript code. In: Proc. of the 18th USENIX Security
Symposium. pp. 151–168. SSYM’ 09, USENIX Association, Berkeley, CA, USA
(2009), http://dl.acm.org/citation.cfm?id=1855768.1855778

12. Hardekopf, B., Lin, C.: The ant and the grasshopper: fast and accurate pointer
analysis for millions of lines of code. In: Proc. of the 2007 ACM SIGPLAN Conf.
on Programming Language Design and Implementation. pp. 290–299. PLDI ’07,
ACM, New York, NY, USA (2007)

16

http://wala.sourceforge.net/wiki/index.php/UserGuide:PointerAnalysis
http://wala.sourceforge.net/wiki/index.php/UserGuide:PointerAnalysis
http://dl.acm.org/citation.cfm?id=1855768.1855778

13. Hardekopf, B., Lin, C.: Exploiting pointer and location equivalence to optimize
pointer analysis. In: Proc. of the 14th International Symp. on Static Analysis. pp.
265–280. SAS ’07, Springer (2007)

14. Heintze, N., Tardieu, O.: Ultra-fast aliasing analysis using CLA: A million lines of
C code in a second. In: Proc. of the 2001 ACM SIGPLAN Conf. on Programming
Language Design and Implementation. pp. 254–263. PLDI ’01, ACM, New York,
NY, USA (2001)

15. Hind, M., Burke, M.G., Carini, P.R., Choi, J.: Interprocedural pointer alias anal-
ysis. ACM Trans. on Programming Languages and Systems 21(4), 848–894 (1999)

16. Kastrinis, G., Smaragdakis, Y.: Hybrid context-sensitivity for points-to analysis.
In: Proc. of the 2013 ACM SIGPLAN Conf. on Programming Language Design
and Implementation. PLDI ’13, ACM, New York, NY, USA (2013)

17. Li, Y., Tan, T., Sui, Y., Xue, J.: Self-inferencing reflection resolution for Java. In:
Proc. of the 28th European Conf. on Object-Oriented Programming. pp. 27–53.
ECOOP ’14, Springer (2014)

18. Livshits, B., Sridharan, M., Smaragdakis, Y., Lhoták, O., Amaral, J.N., Chang,
B.Y.E., Guyer, S.Z., Khedker, U.P., Møller, A., Vardoulakis, D.: In defense of
soundiness: A manifesto. Communications of the ACM 58(2), 44–46 (Jan 2015)

19. Livshits, B., Whaley, J., Lam, M.S.: Reflection analysis for Java. In: Proc. of the
3rd Asian Symp. on Programming Languages and Systems. pp. 139–160. APLAS
’05, Springer (2005)

20. Madsen, M., Livshits, B., Fanning, M.: Practical static analysis of JavaScript appli-
cations in the presence of frameworks and libraries. In: Proc. of the ACM SIGSOFT
International Symp. on the Foundations of Software Engineering. pp. 499–509. FSE
’13, ACM (2013)

21. Milanova, A., Rountev, A., Ryder, B.G.: Parameterized object sensitivity for
points-to and side-e↵ect analyses for Java. In: Proc. of the 2002 International
Symp. on Software Testing and Analysis. pp. 1–11. ISSTA ’02, ACM, New York,
NY, USA (2002)

22. Naik, M., Aiken, A., Whaley, J.: E↵ective static race detection for Java. In: Proc.
of the 2006 ACM SIGPLAN Conf. on Programming Language Design and Imple-
mentation. pp. 308–319. PLDI ’06, ACM, New York, NY, USA (2006)

23. Pearce, D.J., Kelly, P.H.J., Hankin, C.: E�cient field-sensitive pointer analysis for
C. In: Proc. of the 5th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools and Engineering. pp. 37–42. PASTE ’04, ACM, New York, NY,
USA (2004)

24. Pearce, D.J., Kelly, P.H.J., Hankin, C.: E�cient field-sensitive pointer analysis of
C. ACM Trans. on Programming Languages and Systems 30(1) (2007)

25. Rountev, A., Milanova, A., Ryder, B.G.: Points-to analysis for Java using anno-
tated constraints. In: Proc. of the 16th Annual ACM SIGPLAN Conf. on Object
Oriented Programming, Systems, Languages, and Applications. pp. 43–55. OOP-
SLA ’01, ACM, New York, NY, USA (2001)

26. Smaragdakis, Y., Balatsouras, G.: Pointer analysis. Foundations and Trends R�
in Programming Languages 2(1), 1–69 (2015), http://dx.doi.org/10.1561/
2500000014

27. Smaragdakis, Y., Balatsouras, G., Kastrinis, G., Bravenboer, M.: More sound static
handling of Java reflection. In: Proc. of the 13th Asian Symp. on Programming
Languages and Systems. pp. 485–503. APLAS ’15, Springer (2015)

28. Smaragdakis, Y., Bravenboer, M., Lhoták, O.: Pick your contexts well: Under-
standing object-sensitivity. In: Proc. of the 38th ACM SIGPLAN-SIGACT Symp.

17

http://dx.doi.org/10.1561/2500000014
http://dx.doi.org/10.1561/2500000014

on Principles of Programming Languages. pp. 17–30. POPL ’11, ACM, New York,
NY, USA (2011)

29. Whaley, J., Rinard, M.C.: Compositional pointer and escape analysis for Java
programs. In: Proc. of the 14th Annual ACM SIGPLAN Conf. on Object Oriented
Programming, Systems, Languages, and Applications. pp. 187–206. OOPSLA ’99,
ACM, New York, NY, USA (1999)

30. Zheng, X., Rugina, R.: Demand-driven alias analysis for C. In: Proc. of the 35th
ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages. pp.
197–208. POPL ’08, ACM, New York, NY, USA (2008)

18

Extensible and E�cient Streaming Libraries

Aggelos Biboudis?

National and Kapodistrian University of Athens
Department of Informatics and Telecommunications

biboudis@di.uoa.gr

Abstract. Stream processing is mainstream (again): Widely-used stream
libraries are now available for virtually all modern OO and functional
languages, from Java to C# to Scala to OCaml to Haskell. Yet expressivity
and performance are still lacking. This dissertation identifies the key
high-level di↵erences between various implementations, observes that
future use cases are tied with past design decisions, and shows simple
abstraction mechanisms are not su�cient. Is it possible to modularize
the implementation of streams to enhance such libraries in terms of
extensibility and performance? We present a twofold modularization of
streams. To begin with, we untangle streams from the definition of their
syntax and semantics and afterwards we liberate them from the need of
a “su�ciently-smart” compiler. The utmost goal of this dissertation is to
make streams extensible and performant, while maintaining their high
level structure.
Our contributions are preceded by a performance assessment, of the cur-
rent state-of-the-art of streaming libraries. Subsequently, we first propose
a mechanism to enhance the maintainability of streams, supporting a
high-level of extensibility. We treat streams as a domain-specific language
and we design and implement StreamAlg, a library that has the ability
to accept new operators and semantics á la carte. Next, we port the
library design we used for streams to Java itself, with a lightweight tool
named Recaf. We show how to create dialects in Java, override its se-
mantics, support new syntactic elements and much more. Among many
examples and case studies we build an extension of Java with a keyword
that enables us to construct streams similar to C#. The culmination of
our work is a library design, Strymonas, for very e�cient streams while
preserving their high-level nature. It explicitly avoids the reliance on
black-box optimizers and “su�ciently-smart” compilers, o↵ering highest,
guaranteed and portable performance. Our approach relies on high-level
concepts that are then readily mapped into an implementation.

Keywords: Code generation, domain-specific languages, multi-stage
programming, optimization, stream fusion, streams

1 Introduction

Programming languages have started shifting away from the sequential program-
ming model that the von Neumann architecture so vigorously imposed [2]. Instead

? Dissertation Advisor: Yannis Smaragdakis, Professor

19

of thinking in terms of commands and static storage, modern programming needs
often encourage thinking in terms of processes and transformations over flows
of data. That transition happened over several decades of research and develop-
ment in programming languages, systems, and computer architectures. Streaming
functionality is a prominent representative of this trend. Casually speaking, in
computer science, a stream is a sequence of elements that can be piped through
a series of transformation steps. A streaming library is a software library to
manipulate streams. All streaming libraries seem to fulfill similar goals; however,
their vastly di↵erent characteristics make them one of the most fascinating areas
of software construction.

This dissertation investigates the modern design decisions behind the stream-
ing libraries that are used in general-purpose programming. We identify the key
high-level di↵erences between various implementations and observe that future
use cases are tied with past design decisions and simple abstraction mechanisms
are not su�cient. Is it possible to modularize the implementation of streams to
enhance such libraries in terms of extensibility and performance? We present a
twofold modularization of streams. Firstly, we untangle streams from the defini-
tion of their syntax and semantics, and secondly, we liberate them from the need
of a “su�ciently-smart” compiler. The utmost goal of this dissertation is to make
streams extensible and performant, while maintaining their high level structure.

Nowadays, streaming libraries let us model algorithms as if data were in
motion and not stationary: stock ticks, tweets, sales, products, inventory and
real-time analytics are only some of the examples that generate petabytes of
information available to data scientists. In terms of conceptual modeling, a stream
corresponds to a pipe transporting gas or liquids over long distances. Materials
are being processed in location A where an activity f takes place. After processing
ends, each element is put in the pipe and is transferred to another location B,
where f 0 takes place. The pipe represents the flow of data and the activities
f and f 0 represent transformations on each element of the stream. We have
only declared what activities take place and not how each transformation works.
“Stream processing lets us model systems that have state without ever using
assignment or mutable data” per the authors of Structure and Interpretation of
Computer Programs [1].

A streaming library is typically o↵ered with a set of operators to create streams,
transform and consume them into scalar or other kinds of data structures, as
shown in Figure 1. Its distinguishing feature in relation to simple collection APIs
is that intermediate transformations are performed on-demand, thus they do not
perform more computation than needed. Producer operators can be either backed
by an in-memory data structure or not. of arr creates a stream out of an array
and unfold builds a (possibly unbounded) stream from a seed value (it unfolds a
whole stream from a single value). Next are operators that transform a stream.
A stream can be transformed either in a linear or a non-linear way. map applies
a function f to each element of the input stream and returns a transformed
stream. The number of elements on the input streams is equal to the number
on the transformed stream. This is where linearity comes from. On the contrary,

20

// Producers of finite
val of_arr : 'a array ! 'a stream

// Producers of possibly infinite
val unfold : ('state ! ('a * 'state) option) ! 'state ! 'a stream

// Transformers of linear nature
val map : ('a ! 'b) ! 'a stream ! 'b stream

// Transformers of non-linear nature
val filter : ('a ! bool) ! 'a stream ! 'a stream
val take : int ! 'a stream ! 'a stream
val flat_map : ('a ! 'b stream) ! 'a stream ! 'b stream

// Transformers of parallel loops
val zip_with : ('a ! 'b ! 'c) ! 'a stream ! 'b stream ! 'c stream

// Consumers
val fold : ('state ! 'a ! 'state) ! 'state ! 'a stream ! 'state

Fig. 1: Stream Operators

filter applies a predicate to the input stream, again element-wise and unless the
predicate is satisfied, the element does not appear on the output stream. Other
operators like take sub-range the input stream based on a counter value. flat map

applies a function to each element; the results of the function application are
concatenated to form the output stream, which can be a stream of zero, one
or more elements. zip with merges two streams according to a zipping function,
applied element-wise over two streams. As expected, zip with can have variations
on the number of input streams as well as a default behavior like zipping two
elements into a pair (called simply zip). Finally, we have consumers, like fold

which apply a binary function, combining all elements of the stream. fold is a
standard recursion operator for processing lists and can be used to fold a stream
(like folding a piece of paper) into something else: sum, product, max, min, count,
boolean operations like disjunction or and conjunction and, concat are only some
functions that can be implemented in terms of fold.1

We present the same pipeline in two language (Figures 2 and 3). Both pipelines
calculate the sum of squared elements of an array.

1 In fact, fold is highly powerful and standard operators like map and filter can also
be implemented in terms of it.

21

def sumOfSquares(arr : Array[Double]) : Double = {
val sum : Double = arr.view

.map(a_i => a_i * a_i)

.sum
sum

}

Fig. 2: Sum of squares in Scala

public double sumOfSquares(double[] arr) {
double sum = DoubleStream.of(arr)

.map(a_i ! a_i * a_i)

.sum();
return sum;

}

Fig. 3: Sum of squares in Java 8

2 Two Modern Needs: Extensibility & Performance

The rationale behind streams for general-purpose programming is that they can be
used for fast data processing by providing a minimal and easy-to-use abstraction.
However, the design decisions behind them tie the implementation with future
use cases. Consider the mainstream, VM-based, multi-paradigm programming
languages C# (through the System.Collections.IEnumerable interface) and Java
(through the java.util.stream interface), which o↵er vastly di↵erent designs for
streams. While the first o↵ers a zip operator, the second does not, sacrificing the
functionality in favor of performance. Another example is that Java 8 Streams, due
to their internal structure, following a push-based design, significantly outperform
C#, following a pull-based design, in a number of occasions. On the flipside, C#
guarantees laziness in more cases, often permitting higher memory e�ciency.

Two key observations motivate our study. The first is that streams need not
be tightly coupled to either their implementation or the range of operators they
support. The user can freely change the underlying semantics for any reason.
To achieve this we propose a new design for streams, StreamAlg, and we view
the API of streaming libraries as a domain specific language (DSL). Using that
perspective we can study both their syntactic and their semantic elements. In
order to modularize streams on both, we isolate the functionally-inspired API
that all stream APIs share, and we propose an extensible design. This will give
users the opportunity to use di↵erent flavors of streams at will. One flavor could
boost performance, another could trace execution steps, yet another could be
the combination of the two!

22

Next, we apply the same design on the programming language Java. We
propose Recaf, a compiler that liberates both the syntax and the semantics of
Java and o↵ers the same level of extensibility at the language level. Using that
compiler we are able to create extensions for constructs that do not exist in
Java such as a yield keyword to implement iterators and subsequently a stream
library that follows the C# architecture in Java.

The second observation is that modern libraries rely either on extensible
compilers or on a “su�ciently-smart” dynamic compiler to generate e�cient
machine-level code—as if the original source code had been loop-based, hand-
written code with state, mutation and . . . human intuition. In the first case, for
example, Haskell provides rewrite rules on the GHC.Base and GHC.List modules
to perform elimination of intermediate data structures. The rules are applied at
compile time [7,19]. Library authors following this strategy usually maintain two
code bases (possibly in the same compilation unit; yet programming two di↵erent
things): a) the library itself (following a certain pattern), and b) the optimiza-
tions in the form of rewriting rules. For the second case, of a “su�ciently-smart”
dynamic compiler, the underlying VM technologies are exceptional pieces of engi-
neering and tremendously complex, like the Java Hotspot Server Compiler [14].
However, sometimes it is di�cult to predict their behavior. For example the point
that a streams is used may fail to inline (unfold its body) so the quality of the
expected loop can be very poor.2 In this dissertation we view these optimizations
as domain–specific entirely and implement them explicitly in the stream library
itself. We propose Strymonas, a library that embodies the level of separability
described above to streams. We implement Strymonas in both OCaml and Scala.

3 Introducing the StreamAlg design

The new design we propose o↵ers streaming libraries à la carte to maximize exten-
sibility. Our approach requires no language changes, and only leverages features
found across all languages examined—i.e., standard parametric polymorphism
(generics). We argue for the benefits of this design in terms of extensibility and
low adoption barrier (i.e., use of only standard language features), all without
sacrificing performance. Additionally, we demonstrate extensibility and provide
several alternative semantics for streaming pipelines, all in an actual, publicly
available implementation. Finally, we provide an example of the use of object
algebras in a real-world, performance-critical setting.

Underlying our architecture is the object algebra construction of Oliveira and
Cook [12] and Oliveira et al. [13]. This is combined with a library design that
dissociates the push or pull nature of iteration from the operators themselves,

2 A quote by John Rose discussing two design strategies for Java 8 Streams on the
[hotspot-compiler-dev] mailing list: “HotSpot are less good at internal iterators. If
the original point of the user request fails to inline all the way into the internal
looping part of the algorithm (a hidden ”for” loop), the quality of the loop will
be very poor. ”—https://web.archive.org/web/20170322141224/http://mail.
openjdk.java.net/pipermail/hotspot-compiler-dev/2015-March/017278.html

23

https://web.archive.org/web/20170322141224/http://mail.openjdk.java.net/pipermail/hotspot-compiler-dev/2015-March/017278.html
https://web.archive.org/web/20170322141224/http://mail.openjdk.java.net/pipermail/hotspot-compiler-dev/2015-March/017278.html

analogously to the recent “defunctionalization of push arrays” approach in the
context of Haskell [20].

In StreamAlg, a pipeline, shown earlier, gets inverted and parameterized by
an alg object, which designates the intended semantics. For instance, a plain
Java-streams-like evaluation would be written as in Figure 4.

PushFactory alg = new PushFactory();
int sum = Id.prj(

alg.sum(
alg.map(x ! x * x,

alg.source(v))))).value;

Fig. 4: Example pipeline with push-based semantics

(The Id.prj and value elements in Figure 4 are part of a standard pattern for
simulating higher-kinded polymorphism with plain generics. They can be ignored
for the purposes of understanding our architecture.)

Although the code in Figure 4 is slightly longer than pipelines we showed
earlier, its elements are highly stylized. The user can adapt the code to other
pipelines with trivial e↵ort, comparable to that of the original code fragment in
Java 8 streams. Most importantly, if the user desired a di↵erent interpretation
of the pipeline, the only necessary change is to the first line of the example. An
interpretation that has pull semantics and fuses operators together only requires
a new definition of alg:

FusedPullFactory alg = new FusedPullFactory();
... // same as earlier

Fig. 5: Declaration of an interpretation

Such new semantics can be defined externally to the library itself. Adding
FusedPullFactory requires no changes to the original library code, allowing for
semantics that the library designer had not foreseen.

This highly extensible design comes at no cost to performance. The new
architecture introduces no extra indirection and does not prevent the JIT compiler
from performing any optimization. This is remarkable, since current Java 8 streams
are designed with performance in mind (cf. the earlier push-style semantics). As
we show, StreamAlg matches or exceeds the performance of Java 8 streams.

24

Recaf

recaf Using<String> alg = new Using<String>();
recaf String usingUsing(String path) {

using (File F : IO.open(path)) {
. . .

}
}

class Using<R> extends FullJavaDirect<R> {
public <U extends AutoCloseable>
IExec Using(ISupply<U> r, Function<U, IExec> body) {

return () � {
U u = null;
try { u = r.get(); body.apply(u).exec(); }
finally { if (u != null) { u.close(); } }

};
}

}

Using<String> alg = new Using<String>();
String usingUsing(String path) {

return alg.Method(
alg.Using(() � IO.open(path),

(File f) � { . . . }));
}

Figure 1. High-level overview of Recaf

tains the details on the implementation, including a discussion of
implementation trade-offs, details regarding support of the full Java
language, and IDE features.

To assess the expressiveness and flexibility provided by Re-
caf, Section 7 presents four case studies. The first case study ex-
tends Java with Dart’s generators, asynchronous computations and
reactive streams [20]. Then we show two DSL embeddings, one
for GUI construction and one for Parsing Expression Grammars
(PEGs, [11]). Finally, we show how a subset of Java syntax can be
reappropriated and mapped to a third-party constraint solver. We
discuss the results of case study and outline directions for future
work in Section 8.

2. Overview
2.1 Recaffeinating Java with Recaf
Figure 1 shows a graphical overview of Recaf. It shows how the
using extension is used and implemented using Recaf. The right-
hand side of the diagram represents the user perspective of Re-
caf. The top-left quadrant, is our implementation of Recaf which
is needed to perform the virtualization of statements and expres-
sions. The bottom-left quadrant, shows what a user of an extension
would write to use the using extension introduced in Section 1. The
programmer write an ordinary method, annotated with the keyword
recaf to trigger the source-to-source transformation. To provide the
custom semantics, the user also declares a recaf field, in scope of
the recaf method. In this case, the field alg is initialized to be a
Using object, defined over some (concrete) type T.

The Using class provides the semantics for using and is shown
in the top-right quadrant. Using extends BaseJava which captures
the ordinary semantics of Java, and defines a single method, also
called Using. The Using method defines the semantics of the using

construct, by returning a closure of type IExec. The signature Using

states that it accepts two arguments: an expression conforming to
the standard Java interface AutoCloseable, and a function, represent-
ing the block following the using keyword. The body of the closure,
evaluates the expression (r.get()), and passes the result to the sec-
ond argument (b). The whole evaluation is wrapped in a try-finally
construct to close the resource u, when the body completes (either
normally, or abnormally).

The Using class is developed in plain Java. The user code on
the left, and the the implementation of Using are tied together, by
the source-to-source transformation of Recaf. This is illustrated in
the bottom-right quadrant: it shows the translated code, where each
statement in the user code is transformed into calls on the alg ob-
ject. The using construct itself is mapped to the Using method. The
using block is translated to a closure accepting the resource (File
f), and the initializer is passed as the first argument. Note that the
transformation is generic: it does not know about using specifically.
The transformation employs a naming convention where the iden-

tifying keyword (e.g., using) is mapped to a method with the same
(but capitalized) name (e.g., Using).

Note that the extension developer does not have to worry about
concrete syntax matters. The using constructs is parsed automati-
cally by Recaf’s extended Java parser, because using follows the
structure of Java’s foreach-statement. Recaf caters for many kinds
of extensions, by liberating the ordinary statement syntax of Java.
Section 3 provides more detail; for the full extent of Recaf’s syn-
tactic flexibility, see Section 6.

In addition to using a recaf-annotated field to specify the se-
mantics of a recaf-annotated method, it is also possible to annotate
a formal parameter of a method with the recaf modifier. This al-
lows binding of the semantics at the call site of the method itself.
Thus, Recaf supports three different binding times for the seman-
tics of a method: static (using a static field), at object construction
time (using an instance field), and late binding (method parameter).

Recaf makes the distinction between statement-only virtualiza-
tion and full virtualization. In the latter case, expressions are vir-
tualized too. This mode is enabled by using the recaff keyword,
instead of recaf. Section 4 provides all the details regarding the
difference.

2.2 Object Algebras
The encoding used for the Using class in Figure 1 follows the
design pattern of Object Algebras [22], which can be seen as
an object-oriented encoding of tagless interpreters [5]. Instead of
defining a language’s abstract syntax using concrete data structures,
it is defined using generic factories: a generic interface declares
generic methods for each syntactic construct. Implementations of
such interfaces define a specific semantics by creating semantic
objects representing operations like pretty printing, evaluation, and
so on.

Object Algebras are a simple solution to the expression prob-
lem [31]. As such they provide type-safe, modular extensibility
along two axes: adding new data variants and adding new opera-
tions over them without changing existing code. For instance, the
Using algebra extends the base Java semantics with a new syntactic
construct. On the other hand, the generic interface representing the
abstract syntax of Java can also be implemented again, to obtain a
different semantics. Notice that we define the algebras using Java
8 interfaces, that admit default methods. These methods enable an
even more powerful mechanism to combine independently devel-
oped extensions: using interface inheritance with default methods
results in stateless trait composition. The resulting modular flexi-
bility is a crucial aspect of Recaf. We explore the modular extensi-
bility in depth in Section 5.

3. Virtualizing Statements
In this section we describe the first level of semantic and syntactic
polymorphism offered by Recaf, which restricts virtualization and
syntax extension to statement-like constructs.

3.1 µJava
µJava is a simplified variant of Java used for exposition in this pa-
per. In µJava all variables are assumed to be final, there is no sup-
port for primitive types nor void methods, all variables declaration
have initializers. Figure 2, shows the abstract syntax of µJava state-
ments and method bodies in the form of Object Algebra interfaces.

Both interfaces are parametric in two generic types R and S.
R represents the return type of the method, and S the semantic
type of statements. The method Method in MuJavaMethod mediates
between the denotation of statements (S) and the return type R of
the virtualized method. The programmer of Recaf method needs to
ensure that R returned by Method corresponds to the actual return
type declared in the method.

Initial submission to OOPSLA’16 2 2016/3/22

recaf Using<String> alg = new Using<String>();
recaf String usingUsing(String path) {

using (File F : IO.open(path)) {
. . .

}
}

class Using<R> extends BaseJava<R> {
<U extends AutoCloseable>
IExec Using(ISupply<U> r, Function<U, IExec> body) {

return () � { U u = null;
try { u = r.get(); body.apply(u).exec(); }
finally { if (u != null) u.close(); } };

}
}

Using<String> alg = new Using<String>();
String usingUsing(String path) {

return alg.Method(alg.Using(() � IO.open(path), (File f) � { . . . }));
}

Figure 2. High-level overview of Recaf

interface MuJavaMethod<R, S> { R Method(S s); }

interface MuJava<R, S> {
S Exp(Supplier<Void> e);
<T> S Decl(Supplier<T> e, Function<T, S> s);
<T> S For(Supplier<Iterable<T>> e, Function<T, S> s);
S If(Supplier<Boolean> c, S s1, S s2);
S Return(Supplier<R> e);
S Seq(S s1, S s2);
S Empty();

}

Figure 3. Object Algebra interfaces defining the abstract syntax of
µJava method bodies and statements.

Both interfaces are parametric in two generic types R and S.
R represents the return type of the method, and S the semantic
type of statements. The method Method in MuJavaMethod mediates
between the denotation of statements (S) and the return type R of
the virtualized method. The programmer of Recaf method needs to
ensure that R returned by Method corresponds to the actual return
type declared in the method.

The MuJava interface assumes that expressions are represented
using the standard Java Supplier type, which represents thunks.
Java expressions may perform arbitrary side-effects; the thunks
ensure that evaluation is delayed until after the semantic object are
created.

The constructs For-each and Decl employ higher-order abstract
syntax (HOAS [24]), to introduce local variables. As a result, the
bodies of declarations (i.e., the statements following it, within the
same scope) and for-each loops are represented as functions from
some generic type T to the denotation S.

Interfaces like the ones shown in Figure 3 mediate between the
syntax-driven transformation of Recaf and the implementation of
the actual semantics. In other words, the transformation expects
the methods corresponding to ordinary Java statements to conform
to the signatures of MuJava and MuJavaMethod. Note, however, that
R does not have to be bound to the same concrete type in both
MuJavaMethod and MuJava. This means that the return type of a
virtualized method can be different than the type of expressions
given to Return. Section 3.5 below describes a language extension
that exploits this flexibility.

3.2 Transforming Statements
The transformation for µJava is shown in Figure 4, and consists of
two transformation functions M and S , respectively transform-
ing method bodies, and statements. The transformation folds over
the syntactic structure of µJava, compositionally mapping each
construct to its virtualized representation. Both functions are sub-
scripted by the expression a, which represents the actual algebra
that is used to construct the semantics. The value of a is determined
by recaf annotated fields or formal parameters.

Ma�S� = return a.Method(Sa�S�);

Sa�e;� = a.Exp(() � {e; return null;})

Sa�if (e) S1 else S2 � = a.If(() � e, Sa�S1�,Sa�S2�)
Sa�for(T x: e) S� = a.For(() � e, (T x) � Sa�S�)

Sa�T x = e; S� = a.Decl(() � e, (T x) � Sa�S�)
Sa�S1; S2� = a.Seq(Sa�S1�, Sa�S2�)

Sa�return e;� = a.Return(() � e)
Sa�;� = a.Empty()

Sa�{ S }� = Sa�S�

Figure 4. Virtualizing method statements into statement algebras.

for (Integer x: l)
if (x % 2 == 0)
return x;

else ;
return null;

return a.Method(
a.Seq(
a.For(() � l, (Integer x) �

a.If(() � x % 2 == 0,
a.Return(() � x),
a.Empty())),

a.Return(() � null)));

Figure 5. Example method body (left) and its transformation into
algebra a (right).

As an example consider the code shown in Figure 5. The for-
loop on the left iterates over a list of integers to return the first
even number (or null if none exists). The right side shows how the
code is transformed into the algebra a. The semantics of the code is
now virtualized via the algebra object a. If a implements the same
semantics as ordinary Java, the behavior of executing the code on
the right will be the same as the behavior of the code on the left.

3.3 Polymorphic Statement Syntax
Polymorphic statement syntax is based on generalizing the existing
control-flow statement syntax of Java. Informally speaking, wher-
ever Java requires a keyword (e.g., for, while etc.), Recaf allows the
use of an identifier. This identifier will then, by convention, corre-
spond to a particular method with the same name in the semantic
algebra.

The following grammar describes the syntax extensions of state-
ments (S) for µJava:

S ::= x! e ; Return-like
| x (T x: e) S For-each like
| x (e) {S} While-like
| x {S} Try-like
| x T x = e; Declaration-like

This grammar defines a potentially infinite family of new language
constructs, by using identifiers (x) instead of keywords. Each pro-
duction is a generalization of existing syntax. For instance, the first
production, follows syntax of return e, with the difference that an

Initial submission to OOPSLA’16 3 2016/3/22

User code

Generated

Library

recaf Using<String> alg = new Using<String>();

recaf String usingUsing(String path) {

using (File F : IO.open(path)) {

. . .
}

}

class Using<R> extends BaseJava<R> {

<U extends Closeable>

IExec Using(ISupply<U> r, Function<U, IExec> body) {

return () � { U u = null;

try { u = r.get(); body.apply(u).exec(); }

finally { if (u != null) u.close(); } };

}

}

Using<String> alg = new Using<String>();

String usingUsing(String path) {

return alg.Method(alg.Using(() � IO.open(path), (File f) � { . . . }));

}

Figure 2. High-level overview of Recaf

interface MuJavaMethod<R, S> { R Method(S s); }

interface MuJava<R, S> {

S Exp(Supplier<Void> e);

S If(Supplier<Boolean> c, S s1, S s2);

<T> S For(Supplier<Iterable<T>> e, Function<T, S> s);

<T> S Decl(Supplier<T> e, Function<T, S> s);

S Seq(S s1, S s2);

S Return(Supplier<R> e);

S Empty();

}

Figure 3. Object Algebra interfaces defining the abstract
syntax of µJava method bodies and statements.

3.1 µJava
µJava is a simplified variant of Java used for exposition in
this paper. In µJava all variables are assumed to be final,
there is no support for primitive types nor void methods, all
variables declaration have initializers. Figure 3, shows the
abstract syntax of µJava statements and method bodies in the
form of Object Algebra interfaces.

Both interfaces are parametric in two generic types R and S.
R represents the return type of the method, and S the semantic
type of statements. The method Method in MuJavaMethod medi-
ates between the denotation of statements (S) and the return
type R of the virtualized method. The programmer of Recaf
method needs to ensure that R returned by Method corresponds
to the actual return type declared in the method.

The MuJava interface assumes that expressions are repre-
sented using the standard Java Supplier type, which represents
thunks 1. Java expressions may perform arbitrary side-effects;
the thunks ensure that evaluation is delayed until after the
semantic object are created.

The constructs For and Decl employ higher-order abstract
syntax (HOAS [27]) to introduce local variables. As a result,
the bodies of declarations (i.e., the statements following it,
within the same scope) and for-each loops are represented as
functions from some generic type T to the denotation S.

Interfaces like the ones shown in Figure 3 mediate between
the syntax-driven transformation of Recaf and the implemen-
tation of the actual semantics. In other words, the transforma-

1 We use the term thunk to refer to an anonymous function that has no
parameters.. It represents an unevaluated expression

Ma�S� = return a.Method(Sa�S�);

Sa�e;� = a.Exp(() � {e; return null;})

Sa�if (e) S1 else S2 � = a.If(() � e, Sa�S1�,Sa�S2�)
Sa�for(T x: e) S� = a.For(() � e, (T x) � Sa�S�)

Sa�T x = e; S� = a.Decl(() � e, (T x) � Sa�S�)
Sa�S1; S2� = a.Seq(Sa�S1�, Sa�S2�)

Sa�return e;� = a.Return(() � e)
Sa�;� = a.Empty()

Sa�{ S } � = Sa�S�

Figure 4. Virtualizing method statements into statement
algebras.

tion expects the methods corresponding to ordinary Java state-
ments to conform to the signatures of MuJava and MuJavaMethod.
Note, however, that R does not have to be bound to the same
concrete type in both MuJavaMethod and MuJava. This means that
the return type of a virtualized method can be different than
the type of expressions given to Return. Section 3.5 below
describes a language extension that exploits this flexibility.

3.2 Transforming Statements
The transformation for µJava is shown in Figure 4, and con-
sists of two transformation functions M and S , respectively
transforming method bodies, and statements. The transforma-
tion folds over the syntactic structure of µJava, composition-
ally mapping each construct to its virtualized representation.
Both functions are subscripted by the expression a, which
represents the actual algebra that is used to construct the
semantics. The value of a is determined by recaf annotated
fields or formal parameters.

As an example consider the code shown in Figure 5. The
for-loop on the left iterates over a list of integers to return
the first even number (or null if none exists). The right side
shows how the code is transformed into the algebra a. The
semantics of the code is now virtualized via the algebra object
a. If a implements the same semantics as ordinary Java, the
behavior of executing the code on the right will be the same
as the behavior of the code on the left.

3.3 Polymorphic Statement Syntax
Polymorphic statement syntax is based on generalizing the
existing control-flow statement syntax of Java. Informally

Initial submission to OOPSLA’16 3 2016/3/23

Fig. 6: High level overview of Recaf

4 Introducing the Recaf library

Figure 6 gives a bird’s eye overview of Recaf. It shows how a new language
extension extension is used and implemented with Recaf. The new extension
o↵er the same functionality with try-with-resources in Java and is called using.
The top shows a snippet of code illustrating how the programmer would use a
Recaf extension, in this case consisting of the using construct. The programmer
writes an ordinary method, decorated with the recaf modifier to trigger the
source-to-source transformation. To provide the custom semantics, the user also
declares a recaf variable, in scope of the recaf method. In this case, an object
with static type of Using<String> is defined (alg in this example).

for (Customer c : List) { . . . }

using (File f : IO.open(path)) { . . . }

Fig. 7: Recaf matching fragments over the concrete syntax

The downward arrow indicates Recaf’s source-to-source transformation. Recaf
detects that the new keyword relies on the for-each statement syntactically. An
enhanced for-loop, in vanilla Java, omits explicit looping variables by operating

25

over objects of type *Iterable. The new keyword, using, relies on the same
pattern and the two uses are shown below for comparison (the highlighted parts
in Figure 7 show the fragments over the concrete syntax, that the Recaf compiler
matches to detect the pattern).

Recaf, after detecting the concrete syntax of the pattern, virtualizes the
compilation unit at the method level by transforming the code fragment that
includes the extension to the plain Java code at the bottom.

Each statement in the user code is transformed into calls on the alg object.
The using construct itself is mapped to the Using method. The Using class, shown
in the call-out, defines the semantics for using. It takes two parameters: one of
type ISupply, a lambda that takes no parameters and supplies a value (the value
on the right of the semicolon) and one function of type Function<U, IExec> that
represents the code inside the block of using, as a function, parameterized by a
value of type U (one the left of the semicolon and of type File in this example). It
extends a class (BaseJava) capturing the ordinary semantics of Java, and defines
a single method, also called Using. This particular Using method defines the
semantics of the using construct as a kind of interpreter, of type IExec.

5 Introducing the Strymonas library

We next present Strymonas: a streaming library design that o↵ers both high
expressiveness and guaranteed, highest performance. First, we support the full
range of streaming operators (a.k.a. stream transformers or operators) from past
libraries: not just map and filter but also sub-ranging (take), nesting (flat_map—
a.k.a. concatMap) and parallel (zip_with) stream processing. All operators are
freely composable: e.g., zip_with and flat_map can be used together, repeatedly,
with finite or infinite streams. Our novel stream representation captures the
essence of stream processing for virtually all operators examined in past literature.

Second, our stream representation allows eliminating the abstraction overhead
altogether, for the full set of stream operators. We perform stream fusion and other
aggressive optimizations. The generated code contains no extra heap allocations
in the main loop. By not generating tuples or other objects, we avoid the overhead
of dynamic object construction and pattern-matching, and also the hidden, often
significant overhead of memory pressure and boxing of primitive types as in Java
8 (using the generic types and not the hand-specialized) and in Scala. The result
not merely approaches but attains the performance of hand-optimized code, from
the simplest to the most complex cases, up to well over the complexity point
where hand-written code becomes infeasible. Although the library operators
are purely functional and freely composable, the actual running stream code is
loop-based, highly tangled and imperative.

Our technique relies on staging, a form of metaprogramming, to achieve
guaranteed stream fusion. This is in contrast to past use of source-to-source
transformations of functional languages [8], of AST run-time rewriting [11,15],
compile-time macros [17] or Haskell GHC Rules [16,6] to express domain-specific
streaming optimizations.

26

Fig. 8: OCaml microbenchmarks in msec / iteration (avg. of 30, with mean-error
bars shown). “Staged” is our library (Strymonas). The figure is truncated: OCaml
batteries take more than 60sec (per iteration!) for some complex benchmarks.

Fig. 9: JVM microbenchmarks (both Java and Scala) in msec / iteration (avg. of
30, with mean-error bars shown). “Staged scala” is our library (Strymonas). The
figure is truncated.

Rather than relying on an optimizer to eliminate artifacts of stream composi-
tion, we do not introduce the artifacts in the first place. Our library transforms
highly abstract stream pipelines to code fragments that use the most suitable
imperative features of the host language. The appeal of staging is its certainty
and guarantees. Unlike the aforementioned techniques, staging also ensures that
the generated code is well-typed and well-scoped, by construction. Our work
describes a general approach, and not just a single library design. To demonstrate
the generality of the principles, we implemented two library versions in diverse
settings. The first is an OCaml library, staged with BER MetaOCaml [9]. The
second is a Scala library (also usable by client code in Java and other JVM
languages), staged with Lightweight Modular Staging (LMS) [18].

We evaluate Strymonas on a suite of benchmarks (Figures 8 and 9), com-
paring with hand-written code as well as with other stream libraries (including
Java 8 Streams). Our staged implementation is up to more than two orders-of-
magnitude faster than standard Java/Scala/OCaml stream libraries, matching

27

the performance of hand-optimized loops. (Indeed, we occasionally had to improve
hand-written baseline code, because it was slower than the library.)

Thus, our contributions are: (i) the principles and the design of stream
libraries that support the widest set of operations from past libraries and also
permit the full elimination of abstraction overhead. The main principle is a novel
representation of streams that captures rate properties of stream transformers and
the form of termination conditions, while separating and abstracting components
of the entire stream state. This decomposition of the essence of stream iteration
is what allows us to perform very aggressive optimization, via staging, regardless
of the streaming pipeline configuration. (ii) The implementation of the design in
terms of two distinct library versions for di↵erent languages and staging methods:
OCaml/MetaOCaml and Scala/JVM/LMS.

6 Conclusions

Summarizing, we improve streams in terms of extensibility and performance, and
with the mechanisms we present, we enhance them without breaking their high
level structure. In this dissertation we treat interpretations and optimizations as
pluggable components and we advocate that domain-specific optimizations must
be developed in “active” Stream APIs instead of “su�ciently-smart compilers”.

7 Credits

The contents of this doctoral dissertation are based on published papers that
were written in collaboration with others. Specifically:

– Clash of the Lambdas [5]; joint research with Nick Palladinos and Yannis
Smaragdakis.

– Streams à la carte [4]; joint research with Nick Palladinos, George Fourtounis
and Yannis Smaragdakis.

– Recaf: Java Dialects As Libraries [3]; work done while the author was a�liated
with CWI; original design and implementation by the author, Pablo Inostroza
and Tijs van der Storm; implementation of expression-level extensibility and
corresponding applications by Pablo Inostroza.

– Stream Fusion, to Completeness [10]; original design by Oleg Kiselyov with
help by the author on implementation and evaluation, jointly with Nick
Palladinos and Yannis Smaragdakis.

References

1. Abelson, H., Sussman, G.J., Sussman, J.: Structure and Interpretation of Computer
Programs (1985)

2. Backus, J.: Can programming be liberated from the von neumann style?: A func-
tional style and its algebra of programs. Commun. ACM 21(8), 613–641 (Aug
1978)

28

3. Biboudis, A., Inostroza, P., Storm, T.v.d.: Recaf: Java dialects as libraries. In: Proc.
of the 2016 ACM SIGPLAN International Conference on Generative Programming:
Concepts and Experiences. pp. 2–13. GPCE ’16, ACM (2016)

4. Biboudis, A., Palladinos, N., Fourtounis, G., Smaragdakis, Y.: Streams à la carte: Ex-
tensible Pipelines with Object Algebras. In: Proc. of the 29th European Conference
on Object-Oriented Programming. pp. 591–613. ECOOP ’15, Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik (2015)

5. Biboudis, A., Palladinos, N., Smaragdakis, Y.: Clash of the lambdas. In: Proc.
9th International Workshop on Implementation, Compilation, Optimization of
Object-Oriented Languages, Programs and Systems. ICOOOLPS ’14 (2014)

6. Coutts, D., Leshchinskiy, R., Stewart, D.: Stream fusion: From lists to streams to
nothing at all. In: Proc. of the 12th ACM SIGPLAN International Conference on
Functional Programming. pp. 315–326. ICFP ’07, ACM (2007)

7. Gill, A., Launchbury, J., Peyton Jones, S.L.: A short cut to deforestation. In:
Proc. of the Conference on Functional Programming Languages and Computer
Architecture. pp. 223–232. FPCA ’93, ACM (1993)

8. Kelsey, R., Hudak, P.: Realistic compilation by program transformation (detailed
summary). In: Proc. of the 16th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. pp. 281–292. POPL ’89, ACM (1989)

9. Kiselyov, O.: The Design and Implementation of BER MetaOCaml. In: Proc. of the
12th International Symposium on Functional and Logic Programming. pp. 86–102.
FLOPS ’14, Springer (2014)

10. Kiselyov, O., Biboudis, A., Palladinos, N., Smaragdakis, Y.: Stream fusion, to
completeness. In: Proc. of the 44th ACM SIGPLAN Symposium on Principles of
Programming Languages. pp. 285–299. POPL ’17, ACM (2017)

11. Murray, D.G., Isard, M., Yu, Y.: Steno: Automatic Optimization of Declarative
Queries. In: Proc. of the 32nd ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation. pp. 121–131. PLDI ’11, ACM (2011)

12. Oliveira, B.C.d.S., Cook, W.R.: Extensibility for the masses: Practical extensibility
with object algebras. In: Proc. of the 26th European Conference on Object-Oriented
Programming, ECOOP ’12, vol. 7313, pp. 2–27. Springer Berlin Heidelberg (2012)

13. Oliveira, B.C.d.S., van der Storm, T., Loh, A., Cook, W.R.: Feature–Oriented
Programming with Object Algebras. In: Proc. of the 27th European Conference on
Object-Oriented Programming. pp. 27–51. ECOOP ’13, Springer-Verlag (2013)

14. Paleczny, M., Vick, C., Click, C.: The java hotspotTM server compiler. In: Proc.
of the 2001 Symposium on JavaTM Virtual Machine Research and Technology
Symposium - Volume 1. pp. 1–1. JVM’01, USENIX Association (2001)

15. Palladinos, N., Rontogiannis, K.: Linqoptimizer. https://github.com/nessos/
LinqOptimizer (2013)

16. Peyton Jones, S., Tolmach, A., Hoare, T.: Playing by the rules: Rewriting as a
practical optimisation technique in GHC. In: Haskell workshop. vol. 1, pp. 203–233
(2001)

17. Prokopec, A., Petrashko, D.: ScalaBlitz: Lightning-Fast Scala collections framework.
http://scala-blitz.github.io/ (2013)

18. Rompf, T., Odersky, M.: Lightweight modular staging: A pragmatic approach to
runtime code generation and compiled dsls. In: Proc. of the 9th International
Conference on Generative Programming and Component Engineering. pp. 127–136.
GPCE ’10, ACM (2010)

19. Svenningsson, J.: Shortcut fusion for accumulating parameters & zip-like functions.
In: Proc. of the 7th ACM SIGPLAN International Conference on Functional
Programming. pp. 124–132. ICFP ’02, ACM (2002)

29

https://github.com/nessos/LinqOptimizer
https://github.com/nessos/LinqOptimizer
http://scala-blitz.github.io/

20. Svensson, B.J., Svenningsson, J.: Defunctionalizing Push Arrays. In: Proc. of the
3rd ACM SIGPLAN Workshop on Functional High-performance Computing. pp.
43–52. FHPC ’14, ACM (2014)

30

* Dissertation Advisor: Professor Dimitris Syvridis

Coupled semiconductor lasers and their applications in
telecommunications and networks

Michail Bourmpos*
National and Kapodistrian University of Athens

Department of Informatics and Telecommunications
mmpour@di.uoa.gr

Abstract. The aim of this thesis is to theoretically and experimentally
investigate the nonlinear dynamics of coupled semiconductor lasers, in
various network topologies and under different operating conditions. The
nodes of the aforementioned networks proved capable of exhibiting
synchronized chaotic optical outputs and in special cases at zero-lag. The
first large scale network implementation of bidirectionally coupled
semiconductor lasers with long interacting cavities, is presented.

1. Introduction

Coupled oscillators are capable of producing diverse dynamics and therefore have
been a topic of great interest, with many applications in fields such as cryptography
[1], telecommunications [2], control engineering [3] and more. The collective
behavior of coupled oscillators, in various network topologies, has also been
investigated over the past decades, driven mainly by the fact that these networks
can be directly associated with complex physical [4] or biological systems [5].
Semiconductor lasers (SLs) are known nonlinear elements that generate complex
dynamics and have been extensively used as models in the aforementioned
networks [6]. In the simplest case of a mutual interacting network, two mutually
coupled identical SLs can produce generalized synchronized dynamics [7]. When a
third - relay element is added between them, isochronous synchronization can be
achieved [8]. Zero-lag synchronization has also been observed for larger networks
with multiple nodes [6]. In the present work, we have investigated arithmetically and
experimentally multi-nodal all-optical networks in various topologies based on mutual
coupling, in terms of synchronization, complexity and robustness. The nodes are
represented by typical semiconductor lasers.
The rate equation mathematical model has been used to describe the operation and
dynamics of the nodes, which can be applied to any of the investigated network
topologies. This model is formulated in vector form and is based on the Lang
Kobayashi model [9], originating from the representation used in [6] and including
frequency detuning terms among oscillators as in [10].

!"##⃗ (&)
() = +,-######⃗ ∘ /##⃗ ()) +

1
2
(1 + +3)45##⃗ ()) −

1
)78

9 ∘ :#⃗ ())	

																	+<=>:#⃗ () − ?)) ∘ @A+-B?C + √E	F⃗())	
(1)

(G##⃗ ())
() =

H⃗
@ −

G##⃗ ())
)I

− 5##⃗ ()) ∘ J:#⃗ ())J
2	

(2)

5##⃗ ()) = KL>G##⃗ ()) − GBC ∘ (1 + IJ:#⃗ ())J
2
)∘A1	

 (3)

The vectors of the SLs optical fields and carrier densities are M#⃗ (t)=[E1(t);E2(t); ...
;En(t)] and N##⃗ (t)=[N1(t);N2(t); ... ;Nn(t)] respectively. The vector of uncorrelated
complex Gaussian white noises is represented by O⃗(P). The time delays and

31

couplings between the nodes of the network are kept in the n x n arrays K and τ,
where the actual values from node i to node j are represented as τij and kij
respectively. By appropriate manipulation of the coupling and time delay arrays (K
and τ) we can construct the desired network topologies, adopting coupling
asymmetries wherever needed. The result of the Hadamard product (∘) between the
n x n arrays of the time delayed optical field E(t-τ) and the phase shift QARSTU in
equation (1), is also a n x n array, where the element (i,j) is the delayed optical field
of i injected into j, followed by the corresponding phase shift, thus equal to VW(P −
XWR)QARSTUYZ.Vector [⃗ of equation (2) contains the biasing current for all lasers which is
set to I=18mA throughout this work, while the solitary lasing emission threshold is
Ith=17.4mA. Each laser is detuned with respect to the reference laser frequency ω0,
at variable values Δωj, included in the vector Δω#####⃗ of equation (1). The n x 1 vectors α,
tph and s, include the linewidth enhancement factors, photon lifetimes and saturation
gain coefficients of the n SLs respectively. Finally, vector ^M##⃗ (P)^

_
=

[|Vb(P)|_|V_(P)|_ … |Vd(P)|_] contains the power of optical fields. The Hadamard inverse
(1 + g ∘ ^M##⃗ (P)^

_
)∘Ab yields 1/(1 + gW|VW(P)|_)	 for the ith laser. SLs share the same

values for the rest of their intrinsic parameters, so there parameters gn and N0 are
not expressed in vector form, although this could also be possible.
Simulations were performed for the set of differential equations (1-3) using the 4th
order Runge-Kutta method, with a time-step of 0.8psec. Optical power has been
deducted from the complex optical field using the appropriate conversion [11].
In all network topologies presented below, we formulate the coupling matrix K and
assume that the time delay matrix is similarly constructed, with constant values of
5ns delays between the nodes. The frequency detuning from the reference laser
frequency are randomly chosen, following a Gaussian distribution in the range of
2π·(±1GHz).

2. Star Network

For a star network of 50 remote nodes coupled through a central typical SL we
formulate the 51x51 coupling matrix K as follows:

							i =

⎣
⎢
⎢
⎢
⎡
0 0 … 0 nb,pb
0 0 … 0 n_,pb
⋮ ⋮ ⋮ ⋮ ⋮
0 0 … 0 npr,pb

npb,b npb,_ … npb,pr 0 ⎦
⎥
⎥
⎥
⎤

(4)

The 51st row of the matrix is matched with the central node of the star topology. We
have assumed identical couplings from the hub node to the star nodes (npb,W =
npb,R = n) and from star nodes to the hub nW,pb = nR,pb = v ∙ n , where 0<β<1 is a
coupling asymmetry coefficient we have introduced to keep the accumulated optical
injection into the hub laser within reasonable range.
We must point out that for this topology the hub laser frequency detuning is assumed
to be zero, without loss of generality.
For different values of the parameter pair (k,β), a mapping of the mean zero-lag
cross-correlation between all SL pairs (i,j) is constructed, as shown in figure 1.

32

Based on this mapping, we have selected the pair of parameters {k=60ns-1 , β=0.5}
where high zero-lag mean cross-correlation is achieved (xW,Ryz{d=0.921) in
combination with higher complexity. For this pair of values, a sensitivity analysis,
when a SL is added or subtracted from the network, is performed.
First we connect a new node to the network, with various coupling and time-delay
parameter values. We are interested in whether the connection of this non-identical
laser with unmatched operational parameters will influence the behaviour of the
backbone network. Moreover, we would like to know the tolerance in the parameter
mismatch in order for the SL to be synchronized with the rest of the nodes in the
network and if this node-addition can somehow be detected.

Figure 1. Mean zero-lag cross-correlation among the 50 star lasers.

For various values in the frequency detuning of the newly connected node and its
time delay from the hub laser we calculate the change in the mean and minimum
(worst case) zero-lag cross correlation of the original 50-node star network (figure 2).
It is evident that the network has absorbed the mismatch of the one additional laser,
even if its detuning is significantly larger than 1GHz or its time-delay is different than
5ns. The difference in the mean and minimum zero-lag cross-correlation is statistical
and calculated to beJ|xW,Ryz{dJ~0.013 and J|xW,RyWdJ~0.021 respectively. The only
parameter values of the added node for which the change is not statistical lie in the
region of τ=5ns and for small frequency detuning values. The consistence of these
values with the rest of the network parameters imposes a measurable positive
change in the mean correlation value, making the synchronized new node detectable
by the network.
Disconnecting a SL from the original network of 50 nodes is a rather more
straightforward case. The mean correlation of the network after disconnecting the
new laser is shifted now to a lower value by |xW,Ryz{d	= -0.012, attributed to a
reduction of the coupling strength among the 49 lasers left within the network.
However, simulation results prove that there is no dependence on the value of the
disconnected laser's frequency detuning; the effect of disconnecting a node with
large detuning seems almost equivalent to disconnecting a node with close to zero
detuning.

33

Figure 2. Change in the mean (a) and minimum (b) zero-lag cross correlation of the 50 star
laser network, when an additional laser is connected to the network, for various values of
frequency detuning and time delay of the added laser.

3. Mesh Network

For a fully-connected mesh network of 50 SLs, each one coupled to every other, we
formulate the 50x50 coupling matrix K as follows:

									i =

⎣
⎢
⎢
⎢
⎡
nb,b nb,_ … nb,}~ nb,pr
n_,b n_,_ … n_,}~ n_,pr
⋮ ⋮ ⋮ ⋮ ⋮

n}~,b n}~,_ … n}~,}~ n}~,pr
npr,b npr,_ … npr,}~ npr,pr⎦

⎥
⎥
⎥
⎤

(5)

where ki,i=0 for zero feedback of the SL nodes.
Assuming equal couplings ki,j=k,	∀Ä, Å and for different values of k we plot the mean
zero-lag cross-correlation between all SL pairs (figure 3). Based on this figure we
choose k=1.5ns-1 as the coupling between the nodes, which yields a mean zero-lag
cross-correlation of xW,Ryz{d=0.964 and then add a new node, with different parameter
values, to the network.
Again, the network has absorbed the mismatch of the one additional laser (figure 4).
The difference in the mean and minimum zero-lag cross-correlation is statistical and
calculated to beJ|xW,Ryz{dJ~0.001 and J|xW,RyWdJ~0.004 respectively. The newly added
SL produces a consistent, non-statistical increase in the mean and minimum zero-
lag cross-correlation of the network, only when it's time-delay is equal to 5ns - the
common time-delay of all nodes - and for small values of frequency detuning. Similar
results to those of the star network are obtained for the maximum value of the mean
cross-correlation between the connected laser and the 50 SLs in the fully-connected
mesh network, as well as for the corresponding time-lag, for various detuning and
time delay values of the added node.
Disconnecting a node from the network leads to a detectable minor mean cross-
correlation degradation, which is statistical and independent of the removed node's
frequency detuning, as in the case of the star network.

34

Figure 3. Mean zero-lag cross-correlation among the 50 star lasers.

Figure 4. Change in the mean (a) and minimum (b) zero-lag cross correlation of the 50 laser
fully-connected mesh network, when an additional laser is connected to the network, for
various values of frequency detuning and time delay of the added laser.

4. Ring Network

For a ring network of 50 SLs, where every node is connected only to its two
neighbors, the 50x50 coupling matrix K is formulated as follows:

 i =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
nb,b nb,_ 0 … 0 0 nb,pr
n_,b n_,_ n_,Ç … 0 0 0
0 nÇ,_ nÇ,Ç … 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 … n}É,}É n}É,}~ 0
0 0 0 … n}~,}É n}~,}~ n}~,pr

npr,b 0 0 … 0 npr,}~ npr,pr⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

																			 (6)

with ki,i=0 for zero feedback of the SL nodes, common couplings ki,j=k,	∀Ä, Å and time
delays of 5ns. The nodes are sorted and positioned in the ring by increasing
frequency detuning values.

35

For different coupling values we calculate the maximum cross-correlation between
all node-pairs and the corresponding lag. Only the second nearest neighbors (i-2
and i+2 for the ith node) have consistently their maximum cross-correlation value at
zero lag, even though this is also observed in several other 'even pairs' (j with j+2·l).
We plot (figure 5) the maximum, mean and minimum of these cross-correlation
(regardless of lag) values. Only for small couplings, where low complexity dynamics
are observed, we obtain high cross-correlation values.
Ring network topologies exhibit poor synchronization quality and thus are of no
particular interest regarding possible application in telecommunications or sensing.

Figure 5. Maximum, mean and minimum cross correlation of all pairs in the 50 node fully-
connected mesh network, regardless of lag.

5. Effect of parameters on synchronization

We have also investigated two different mutually coupled SL network topologies,
with respect to the number of nodes and the discrepancies in key SL parameters.
Star or fully-connected mesh networks with M=8, 16 and 24 nodes seem to be
significantly affected by the differences in the SLs linewidth enhancement factor and
photon life time parameters. The wider the range these different values are spread,
the worse the efficiency of the synchronized dynamics. The same applies for
discrepancies in the operating frequency of the SLs, as also shown in previous
research. Differences in the saturation gain coefficient are unimportant as proven in
this work. Furthermore, the full-mesh network topology seems to better cope with
parameter mismatch, than the star network topology. Based on the above, we can
propose that the full-mesh network topology should be adopted for a large-scale
experiment of optical networks yielding synchronized complex dynamics. Given that
the operating frequency can be adjusted by use of temperature control, it seems of
the outmost importance to be able to manufacture and use SLs with similar intrinsic
parameter values, especially for the linewidth enhancement factor and the photon
life time, which have been proven to be of significance.

6. Bubbling

Differences in the internal characteristics of the SL nodes have a noteworthy impact
on the performance and quality of network synchronization. For instance, networks
with small differences in the SLs free-running frequencies require larger coupling
strengths and/or smaller driving currents for adequate synchronization of the
produced signals. In any case, de-synchronization windows of rather small duration -
even at well-synchronized systems - have been observed. These intermittent de-

36

synchronizations are noise and/or parameter mismatch induced events, referred in
literature also as bubbling [12,13]. They have been observed both as fast and
frequent events in the coherence-collapse regime and as slower and less-frequent
events in the low-frequency fluctuation (LFF) regime, in the case of bi-directionally
coupled SLs [12,13].
In this work we have numerically investigated the behavior of bubbling effects in a
well-synchronized SL network, adopting a star topology, and how these events
determine the network's overall operation. We have concentrated on cases where
chaotic dynamics are generated under strong node coupling. Zero-lag cross-
correlation and synchronization error between pairs of star nodes in this network are
estimated, for various conditions of delay between nodes, coupling strength and
driving current of the mediating element (hub). In the context of these investigations,
the statistical properties of the de-synchronization events are monitored and
quantified, such as their reproducibility and duration. The general trends of bubbling
statistics are finally associated with the physical phenomena caused by the changes
in the network's critical variables.
The behavior of a star SL network has been examined, while altering certain key
network parameters in terms of the de-synchronization events that appear in well-
synchronized chaotic dynamics. Longer links between the star and hub nodes lead
to longer and more infrequent de-synchronization events, keeping the overall
synchronization at almost the same levels. On the contrary, the increase in coupling
strengths leads to a more efficient synchronization with shorter and more infrequent
bubbling events. Finally, the increase in the hub SLs driving current eventually leads
to minimization or even elimination of the de-synchronization events by upgrading
the role of the hub in the network operation, and interchanging its lagging with
leading dynamics.

7. Experimental investigation
In the present work we have extended the generalized synchrony investigations in a
network of up to 16 mutually-coupled identical SLs, connected through similar - yet
unmatched - distant optical paths. We show that each unit's properties and operating
parameters establish it as a member of the overall synchronized network, a member
of intra-network synchronized clusters or just an outlier unit. Strict frequency
matching (<200MHz) of the optical emitted signals allow synchrony at configurations
with even a few identical SLs. In contrast, when non-identical SLs couple with the
network they fail to synchronize at any operational condition. Moreover, when
shifting identical SLs from a common emission wavelength (global operation) to
multiplexed wavelengths (cluster operation), it is shown that the network can
maintain intra-cluster synchrony. The latter property is validated for ultra-dense
wavelength multiplexing of the coupled units, with chaotic carrier spectral distance of
only 50pm.

The coupling topology follows the fully-connected SL architecture shown in figure 6a.
Each laser is selected from a pool of identical SLs and emits to the network, while
receiving from all counterparts - including its own signal - through a common tunable
reflector. For up to 16 lasers (or else referred as network nodes) and no long-haul
transmission path, one amplification stage provides sufficient power to the injected
signals for laser synchrony. However, in the presented investigation two
amplification stages are used so that a larger range of coupling strengths can be
tested among the laser nodes. Optical filtering with 0.36nm (~40GHz) 3dB-
bandwidth is used to reduce erbium-doped fiber amplifiers’ (EDFA) spontaneous
emission, without imposing frequency-selective feedback conditions. Inline fiber

37

power monitors (PM) display the circulating average optical power. The total round
trip time of the cavities formed between pairs of lasers is 117.92 ± 0.12m. Each
laser's optical output is monitored through isolated ports that eliminate any residual
feedback. These outputs are used to screen the optical and microwave properties of
the emitted signals through appropriate monitoring instrumentation.

Figure 6. Full-mesh-type network with optically-coupled 16 SLs. Laser network topology: PC:
Polarization controller, 1x2 and 1x8: optical couplers, EDFA: 25dB-gain Erbium-doped fiber
amplifier, OF: Optical filter, PM: Inline optical power monitor, ATT: Optical attenuator.

The coupling strength among the SLs determines not only the synchrony
performance but also shapes the emitted laser dynamics through which synchrony is
achieved. The injection ratio RL# is a measure of the coupling strength among the
SLs and expresses the ratio of the optical power inserted into a laser divided by the
optical power emitted by the same laser. Thus, for a given laser L# that participates
in the coupled network, it is defined as:

ÑÖ# = x_ ∙
áYàZ
âäâ

áãåç
(7)

where C is the laser-fiber coupling loss, Pinj

tot is the total optical power reaching
laser L# through the associated fiber path and Pem

L# is the optical emitted power of
laser L# measured at its output fiber tip. Coupling loss C between laser facet and
fiber is a parameter which cannot be verified directly for each device, since all
devices are fiber pigtailed. For the injection ratio estimation, a value of C = 0.5 is
used for all lasers, according to the specifications given by the laser manufacturer.

As presented in figure 7, optical coupling affects signal emission from very
low R values (as low as 0.001), forcing the 16 lasers to deviate from the continuous
wave emission and oscillate in various dynamical states. Only when R>0.05
correlated chaotic emission for the overall network (average-CC>0.8) is observed
among all coupled lasers (gray-marked region). Even slight mismatches in SLs'

38

internal parameters, operational characteristics, optical emission frequencies, as well
as small deviations from polarization alignment, may result in different levels of
synchrony. In the example of figure 7, the laser pair L#1 - L#2 shows an average-
CC above 0.93, while the laser pair L#6-L#7 shows an average-CC close to 0.86. The
variance of each average-CC value is explained by the transversal instabilities of the
synchronization manifold imposed by the overall network operation. The appearance
of de-synchronization events, albeit always present, shows a dependence on the
coupling strength among the laser nodes. Their duration and occurrence frequency
shape the correlation and variance level for each coupling strength condition.
In figure 8 such de-synchronization events are shown between two SLs (L#1 and L#2)
emissions. Usually when power dropouts arise in the emitted dynamics, de-
synchronization for a small period of time - of the order of ns - is present. The fact
that this duration is significantly shorter than the period for which the two lasers
preserve high-level of synchronization deems the change in the statistical metric
of averaged-CC insignificant. This behavior refers to an optimally coupled and
operated 16-SL network. If SLs are biased to favor LFF emission or unmatched
operational conditions apply, the de-synchronization events last longer, affecting the
overall synchronization level. Finally, for very strong injection ratios (above 1),
increased instabilities are observed, accompanied by longer de-synchronization
events or lower complexity attractors, periodic oscillations and even continuous
wave operation.

Figure 7. Effect of coupling strength on the correlated emission of a 16-laser coupled
network. Averaged-CC values between two pairs of SLs (L#1-L#2 and L#6-L#7) vs. the
applied injection ratio, when the emitted power from the lasers is set to −15dBm. Timetraces
in insets show the dynamics of the emitted signals for different coupling strengths. Gray
region indicates synchronized network coupling conditions through chaotic signals

39

Figure 8. Temporal evolution of L#1 and L#2 emission, as well as their difference in a
coupled 16-laser network, when R = 0.2dB. De-synchronization events appear when power
dropouts occur and are minimized for optimal operating and coupling conditions. In the right
column, a detail in the temporal region where a de-synchronization event takes place is
provided.

8. Applications

Security

The concept of security in a 8-SLs network is tested by substituting one SL with a
device provided from another manufacturer. In this investigation we study the
potential of a user optically coupling with the network with a non-identical SL device
to synchronize.

Wavelength emission is matched among all SLs, while the biasing current of the
different SL and the optical injection level are varied so as to achieve the best
synchrony level within the network. When considering moderate optical coupling
(R = −9dB), the highest achieved averaged-CC between the non-identical SL and
any of the identical SLs group is 0.34 at its most, as shown in figure 9a. It is obtained
for the non-identical SL’s near-threshold operation and is greatly lower than the
worst synchronized pair within the identical SLs group (averaged-CC~0.82).

By enhancing the coupling conditions to R = −0.5dB, as presented in figure 9b, an
equivalent behavior is observed. The only difference observed is the improved
values of averaged-CC for the different (~0.62) and same manufacturers’ (~0.89)
SLs. Consequently, dissimilar hardware SL units hold by unauthenticated users fail
to synchronize with the network at any operational condition. On the other hand,
users with identical devices can access synchronized emission, as long as they
select matched operating conditions and same dynamical regimes. Equivalent
findings are also validated for a network containing two out of eight SLs from a
different manufacturer.

40

Figure 9. Synchrony comparison in an 8-node coupled network that includes 7 identical SLs
and 1 SL from a different manufacturer. The comparison is made between the worst
performance among the 7 identical lasers (black rectangles) and the best performance of
synchronization between the different SL and the 7 identical lasers (red circles), versus the
different SL’s emitted optical power and for (a) R = −9dBm and (b) R = −0.5dBm. All
uncoupled identical lasers emit optical power −15dBm, while all uncoupled lasers operate
at λ = 1549.600nm

Clustering

In a smaller network, we optically couple 8 SLs and examine the potential of the
network SL nodes to obtain cluster synchrony by imposing frequency emission
grouping. Initially, for small frequency detuning (<200MHz) of all 8 SLs - as in the 16-
laser network case - optimized conditions lead to highly correlated emission.
Specifically, pairwise averaged-CC values of at least 0.88, and as high as 0.97, are
recorded for full-bandwidth detected signals, as shown in figure 10a. It becomes
clear that by controlling frequency-matching conditions we can drastically reduce the
least number of coupled nodes required for synchronized operation. By thermally
shifting the emission wavelengths of the second quartet of lasers (L#5-L#8) by 50pm
we obtain the correlation mapping if figure 10b. Synchrony is observed between
lasers that participate in each cluster (L#1-L#4 and L#5-L#8) while correlated emission
is always at very low levels when comparing inter-cluster nodes (averaged-
CC<0.61). Thus, the same configuration can also lead to cluster synchronization.

Figure 10. Cluster synchronization in an 8-SL coupled network configuration. Cross-
correlation mapping with (a) zero-detuned wavelength laser emission, and (b) with cluster
synchronization among two quartets of lasers (L#1-L#4 and L#5-L#8) that are 50pm spaced in
wavelength.

41

9. Conclusions

In the present work, we have arithmetically and experimentally investigated multi-
nodal all-optical networks, in various topologies and in terms of synchronization,
complexity and robustness. We have presented the first large-scale implementation
of 16 optically coupled and independently controlled SLs in a fully-connected
synchronized network topology. The overall consistency of the synchronized network
is profound albeit the presence of mismatched or disparate lasers interacting through
optical coupling. Local instabilities causing short de-synchronization events do not
annihilate the overall high level of synchrony.
Our work can be the basis on which advanced sensing and authentication protocols
in future fiber-optic networks can be proposed. In an envisaged application based on
the concept of this work, other real-life large-scale networks of coupled oscillators
can be simulated through the use of SLs, exploiting the speed of phenomena
evolution in such configurations, for prediction purposes.

REFERENCES

[1] Uchida, A.,, Amano, K., Inoue, M., Hirano, K., Naito, S., Someya, H., Oowada, I.,
Kurashige, Y., Shiki, M., Yoshimori, S., Yoshimura, K., and Davis, P., “Fast physical
random bit generation with chaotic semiconductor lasers,” Nat. Phot. 2, 728–732 (2008).

[2] Argyris, A., Syvridis, D., Larger, L., Annovazzi-Lodi, V., Colet, P., Fischer, I., García-
Ojalvo, J., Mirasso, C.R., Pesquera, L., and Shore, K.A., "Chaos-based communications
at high bit rates using commercial fiber-optic links," Nature 438 (7066), 343-346, (2005).

[3] Fradkov, A.L., Evans, R.J., and Andrievsky, B.R., "Control of chaos: methods and
applications in mechanics," Phil. Trans. R. Soc. A 364, 2279-2307 (2006).

[4] Strogatz, S.H., Abrams, D.M., McRobie, A., Eckhardt, B., and Ott, E., "Crowd synchrony
on the millennium bridge," Nature 438 (7064), 43-44 (2005)

[5] Strogatz, S.H., and Stewart, I., "Coupled oscillators and biological synchronization,",
Scient. Amer. 269, 68–73 (1993).

[6] Zamora-Munt, J. , Masoller, C., Garcia-Ojalvo, J. and Roy R., "Crowd synchrony and
quorum sensing in delay-coupled lasers," Phys. Rev. Lett. 105, 264101 (2010).

[7] Mulet, J., Mirasso, C.R., Heil, T., and Fischer I., "Synchronization scenario of two distant
mutually coupled semiconductor lasers", J. Opt. B: Quantum Sem. Opt. 6, 97 (2004).

[8] Zhou, B.B., and Roy R., "Isochronal synchrony and bidirectionalcommunication with
delay-coupled nonlinear oscillators", Phys. Rev. E 75, 026205 (2007).

[9] Lang, R., and Kobayashi, K., "External optical feedback effects on semiconductor
injection laser properties," IEEE J. Quantum Electron. 16, 347-355 (1980).

[10] Fischer, I., Vicente, R., Buldú, J.M., Peil, M., Mirasso, C.R., Torrent, M.C., and García-
Ojalvo, J., "Zero-Lag Long-Range Synchronization via Dynamical Relaying," Phys. Rev.
Lett. 97, 123902 (2006).

[11] Petermann, K. [Laser Diode Modulation And Noise], New Ed. Kluwer Academic
Publishers Group, Netherlands (1991).

[12] J. Tiana-Alsina, K. Hicke, X. Porte, M. C. Soriano, M. C. Torrent, J. Garcia-Ojalvo and I.
Fischer, "Zero-lag synchronization and bubbling in delay-coupled lasers", Phys. Rev. E
vol. 85, 026209, 2012.

[13] V. Flunkert, O. D’Huys, J. Danckaert, I. Fischer, and E. Schöll, "Bubbling in delay-
coupled lasers", Phys. Rev. E vol. 79, 065201, 2009.

42

A GPU performance estimation model based on
micro-benchmarks and black-box kernel profiling

Elias Konstantinidis ⋆

National and Kapodistrian University of Athens
Department of Informatics and Telecommunications

ekondis@di.uoa.gr

Abstract. Over the last decade GPUs have been established as com-
pute accelerators. However, GPU performance is highly sensitive to many
factors, e.g. memory access patterns, branch divergence, the degree of
parallelism and potential latencies. Consequently, the execution time
on GPUs is a difficult to predict measure. Unless the kernel is latency
bound, a rough estimate of the execution time on a particular GPU
could be provided by applying the roofline model. Though this approach
is straightforward, it cannot not provide accurate prediction results. In
this thesis, after validating the roofline principle on GPUs by employ-
ing a micro-benchmark, an analytical performance model is proposed.
In particular, this improves on the roofline model following a quantita-
tive approach and a completely automated GPU performance prediction
technique is presented. In this respect, the proposed model utilizes micro-
benchmarking and profiling in a “black-box” fashion as no inspection of
source/binary code is required. It combines GPU and kernel parameters
in order to characterize the performance limiting factor and to predict
the execution time, by taking into account the efficiency of beneficial
computational instructions. In addition, the “quadrant-split ’ visual rep-
resentation is proposed, which captures the characteristics of multiple
processors in relation to a particular kernel. The experimental evaluation
combines test executions on stencil computations, matrix multiplication
and a total of 28 kernels of the Rodinia benchmark suite. The observed
absolute error in predictions was 27.66% in the average case. Special cases
of mispredicted results were investigated and justified. Moreover, the
aforementioned micro-benchmark was used as a subject for performance
prediction and the exhibited results were very accurate. Furthermore, the
performance model was also examined in a cross vendor configuration by
applying the prediction method on the AMD HIP/ROCm programming
environment. Prediction errors were comparable to CUDA experiments
despite the significant architectural differences of different vendor GPUs.

Keywords: performance model, GPU, roofline model

⋆ Dissertation Advisor: Yiannis Cotronis, Associate Professor

43

1 Dissertation Summary

1.1 Introduction

The main focus of GPU computing is about performance so it would be of great
significance to be able to predict performance of GPU applications on a wide
range of hardware. Performance modeling information is particularly important
that can be exploited for either the consideration of a hardware upgrade or even
on taking important optimization decisions. However, performance impact of
migrating to a GPU accelerator or moving from one type of GPU to another can
be a puzzling process to predict. Performance bottlenecks can be different due
to architectural differences or variations on the balance of processor resources
between different types of processors.

CPUs do not require a vast amount of parallelism in order to yield decent
performance. They utilize large cache memory hierarchies that are able to allevi-
ate the long access latencies of main memory. In addition, they employ advanced
techniques in order to maximize the single threaded performance, e.g. aggressive
speculative execution, register renaming, result value forwarding, etc. All these
features potentially eliminate pipeline and memory bottlenecks, leading to more
predictable execution results.

On the other hand, GPUs are significantly more performance sensitive to
supplied parallelism, resource usage and memory access patterns. They are con-
sidered as massively parallel compute devices as they practically need thousands
of active threads in order to keep them occupied. This fact poses large problems
with abundant parallelism as a requirement. The GPUs feature much smaller
cache memories which in conjunction with the large amount of active threads
allows only limited use, mostly for exploiting the spatial locality between sibling
threads. The miss of large cache hierarchies forces programmers to effectively use
main memory. However, GPUs require regular memory accesses with specific
requirements in order to apply coalescing, which is a mandatory requirement
for efficient memory accessing. All reasons above induce potential bottlenecks
for GPU performance. Practical experience has proven that GPU performance
is sensitive to design decisions and fine tuning. In general, GPUs tend to be
less tolerant to naive programming practices in regard to performance. Overall,
though GPUs provide great compute performance, this can only be achieved on
problems that match their characteristics.

For all the reasons above this thesis is focused on proposing a performance
model that provides the necessary abstraction in order to be applicable on a
wide range hardware, yet it provides decent prediction accuracy, is quick and
straightforward to apply and can be fully automated based on black-box kernel
inspection. In addition, this model was developed as roofline based and as such
it is able to indicate an upper bound on performance, which can be fairly useful
to the programmer as a guidance, providing performance feedback for further
optimizations. The ultimate goal was to provide a tool that runs automatically
the whole performance prediction process by utilizing an existing GPU program
and producing the final results without user’s intervention.

44

1.2 Related work

The roofline model [12] introduced by Williams and Patterson, is a visual model
that provides insight on the maximum expected performance of a kernel by con-
sidering both pure computation and DRAM memory transfer requirements. It is
based on the assumption that performance is either bound on the compute po-
tential or the memory bandwidth of the underlying processor. The performance
bound is either one depending on the relative requirements of operations of the
application. Operational intensity is measured in flop/byte units and is used to
determine the limiting performance factor on a particular processor. This can be
applied by estimating the program’s operational intensity which is determined
by the program’s requirements as formula (1) indicates:

4

8

16

32

64

128

256

512

1,024

1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128

G
FL

O
PS

 (d
ou

bl
e

pr
ec

is
io

n)

Operation Intensity (Flops/byte ratio)

Roofline for Intel Xeon E7-8857 v2

Dot product (double precision)

Fig. 1. The roofline visual model for Intel Xeon E7-8857 v2.

Okernel =
Operations(compute)

Traffic(memory)
(1)

The operational intensity is measured in flop/byte units and it is depen-
dent on the application characteristics. Depending on the whether Okernel >
Throughputdev
Bandwidthdev

the kernel is considered as compute bound or memory bound. The
graphical representation of the roofline model is able to provide a quick and
insightful visual representation of the device theoretical peak performance. In
figure 1 the solid line represents the theoretical peak performance of an Intel
Intel Xeon E7-8857 v2 CPU depending on the program’s operational intensity.
In this example for program operational intensities up to 3.39 flop/byte the pro-
gram is considered as memory bound. Compute bound programs must exhibit
higher compute intensity.

1.3 Results

The proposed performance model, which is the primary contribution presented
within this thesis, is an analytical GPU performance model based on the roofline

45

model [12]. An early foundation of the proposed model was presented in a prelim-
inary stage as a regular conference paper [7] and subsequently it was extended
and published as an elaborate work in the form of a journal article [11]. The
first paper contribution [7] presented an initial form of the method along with
a limited number of experimental results. The relevant journal publication [11]
extended the method to a fully automated prediction process. The experimental
results included executions on a wide range of different real world kernels and a
micro-benchmark. The hardware used for the experiments included 4 consumer
and 2 professional GPUs. Furthermore, the proposed model was extended to the
experimental use on a cross-vendor GPU environment by employing an AMD
GPU and the exhibited results were quite promising.

Other contributions that have been used in this thesis include an implemen-
tation of a red-black SOR stencil computation method [9, 10] which has been
utilized in the experiments and it poses as a proof of concept case study in this
thesis. The reordering by color strategy was the primary contribution of this pub-
lished work. A theoretical performance analysis of the algorithm was provided
and the implementations included various kernels, each utilizing a different mem-
ory caching approach. Additionally, a set of developed LMSOR stencil compu-
tations [4–6] were also developed which served to investigate the re-computation
strategy as an optimization. In this respect various implementations were in-
vestigated characterized by different operational intensities due to the different
degree of re-computation applied. Implementations of this work were also applied
on the performance model in this thesis. Last, a set of micro-benchmarks [8] was
presented that serves to the purpose of better understanding of the hardware
capabilities regarding the GPU’s fast on-chip memories. The micro-benchmarks
assess the fast on-chip memories which include shared memory, L1 & L2 cache,
texture cache and constant memory cache.

2 Results and Discussion

2.1 The quadrant-split visual representation

The roofline visual model is a valuable abstract representation of the compute
device capability. As an alternative representation, the quadrant-split is proposed
where in the horizontal axis the memory bandwidth is used instead of the opera-
tional intensity. In this respect, a device can be represented by a single point on
the chart determined by its memory bandwidth and compute throughput peak
rates. A program can be represented by a half-line crossing the intersection of
the axes with a slope equal to its operational intensity. The half-line is the visual
bound for the distinction of the area into two parts where the kernel is expected
to behave as memory bound for the devices residing in the upper half-quadrant
and as compute bound for the others instead. For instance, figure 2 represents
the LBMHD problem with respect to 4 GPUs and a CPU. The dashed arrow
lines point to the estimated roofline performance points for the each device on
the particular problem.

46

0

200

400

600

800

1,000

1,200

1,400

0 50 100 150 200 250 300 350

G
FL

O
PS

 (d
ou

bl
e

pr
ec

is
io

n)

GB/sec

Intel Xeon E7-8857 v2
NVidia GTX-480
NVidia Tesla K20X
NVidia Tesla M2050
NVidia GTX TITAN X

Fig. 2. The quadrant-split representation of the LBMHD problem using 5 CPU/GPUs.

2.2 The proposed performance prediction method

A profiling approach on a reference GPU is employed by extracting kernel exe-
cution information without requiring any internal knowledge of the kernel char-
acteristics. The parameters used for the GPU device that is targeted for per-
formance prediction are extracted by running a set of micro-benchmarks. The
combination of both sets of parameters are employed for the performance pre-
diction procedure. The whole process involves the steps described in figure 3.

Hardware metric
profiling on

reference GPU
(table 1)

Kernel
parameters

(table 2)

Performance
modeling on
target GPU

Target GPU
parameters

(table 3)

micro-benchmark
execution on
target GPU

Reference
GPU

Target GPU
performace
prediction

Target
GPU

GPU
Kernel

Fig. 3. The performance prediction methodology flow diagram.

In general, the approach for performance estimation of GPU kernels can be
summarized in three aspects:

– Modeling compute and memory parameters of GPU kernels, largely inde-
pendently of GPU architectural details, obtained by using a “black box” ap-

47

proach based exclusively on profiling measures (figure 3: ”Hardware metric
profiling on reference GPU”)

– Modeling the GPU generic peak performance ratings on various operations,
obtained by micro-benchmarking the target GPU (figure 3: ”micro-benchmark
execution on target GPU”)

– Estimation of the target GPU performance (figure 3: ”Performance modeling
on target GPU”) on the particular kernel according to:

• the estimated maximum rate of executed compute operations on the
target GPU for the particular kernel, and

• the compute and memory demands of the given kernel (i.e. operational
intensity) determining whether its performance is limited by the compute
or memory throughput when executed on the target GPU

Kernel parameter extraction The required kernel parameters are extracted
by profiling the execution of the subject kernel on a reference GPU. The list of
the required kernel metrics is shown in table 1 and the provided notation will
be used for reference.

Table 1. The NVidia profiler metrics required for the derivation of kernel parameters.

Metric Notation Description

flop count sp fma Mfma32

Number of single-precision floating-point
multiply-accumulate operations executed

by non-predicated threads

flop count dp fma Mfma64

Number of double-precision floating-point
multiply-accumulate operations executed

by non-predicated threads

inst compute ld st Mldst

Number of compute load/store instructions

executed by non-predicated threads

inst executed Minst The number of instructions executed

inst fp 32 Mfp32

Number of single-precision floating-point
instructions executed by non-predicated

threads (arithmetic, compare, etc.)

inst fp 64 Mfp64

Number of double-precision floating-point
instructions executed by non-predicated

threads (arithmetic, compare, etc.)

inst integer Mint

Number of integer instructions executed
by non-predicated threads

dram read transactions Mtran-r Device memory read transactions

dram write transactions Mtran-w Device memory write transactions

The produced parameter set is provided in table 2. Ktype parameter deter-
mines the type of beneficial operations within the kernel. It can be either fp64,
fp32 or int. A simple rule based approach in order to avoid user interaction is
a function selecting fp64 if the Mfp64 metric is non zero, fp32 if the Mfp32 is
non zero or int otherwise. The Wcomp parameter represents the total beneficial
compute operations performed by the kernel. It is evaluated by formula (2).

48

Table 2. The set of required kernel parameters in the proposed performance model.

Parameter Description Obtained
Ktype Dominant ops (fp64, fp32 or int) rule based function
Wcomp Compute operations formula (2)
Wtraf DRAM bytes accessed formula (3)
Emix Operation mix efficiency (%) formula (4)
Dops Operation instruction density (%) formula (5)
Dldst Ld/St instruction density (%) formula (6)
Dother Other instruction density (%) formula (7)

Wcomp =

⎧
⎪⎨

⎪⎩

Mfp32 +Mfma32, if Ktype = fp32

Mfp64 +Mfma64, if Ktype = fp64

Mint, if Ktype = int

(2)

The parameter regarding the conducted memory traffic is the Wtraf and it
is estimated by using the DRAM transaction count metrics as shown in formula
(3):

Wtraf = 32× (Mtran-r +Mtran-w) (3)

The efficiency of compute instructions Emix is defined as shown in formula
(4) which involves the type of compute instructions executed.

Emix =

⎧
⎪⎨

⎪⎩

Mfp32+Mfma32

2×Mfp32
× 100%, if Ktype = fp32

Mfp64+Mfma64

2×Mfp64
× 100%, if Ktype = fp64

50%, if Ktype = int

(4)

Finally, the instructions executed are classified in 3 different types (compute,
load/store and other instructions) and the individual density of each type in the
instruction stream is determined by formulae (5), (6) and (7):

Dops =
Iops
Itotal

× 100% (5)

Dldst =
Mldst

Itotal
× 100% (6)

Dother = 100%−Dops −Dldst (7)

where Iops and Itotal are estimated by formulae (8) and (9):

Iops =

⎧
⎪⎨

⎪⎩

Mfp32, if Ktype = fp32

Mfp64, if Ktype = fp64

Mint, if Ktype = int

(8)

Itotal = 32×Minst (9)

49

Target GPU parameter extraction All required device parameters are col-
lected by using micro-benchmarks and are shown in table 3. All floating point
computation throughput parameters (TSP and TDP) concern MAD (Multiply-
ADd) operations. The Txxx parameters (TSP , TDP , Tint, Tadd, Tldst) regard the
compute throughput of the device in various types of instructions and the Bmem

parameter which reflects the effective memory bandwidth of the device.

Table 3. The set of GPU parameters used in the performance model.

Parameter Description Unit
TSP Single precision floating point operation throughput GFLOPS
TDP Double precision floating point operation throughput GFLOPS
Tint Integer multiply-add operation throughput GIOPS
Tadd Integer addition operation throughput GIOPS
Tldst Load/Store instruction throughput on shared memory GOPS
Bmem Memory bandwidth GB/sec

Kernel performance estimation In this model the throughput of various in-
struction types is considered for the efficiency estimation of instruction execution
regarding beneficial computation. The purpose is to estimate the attainable peak
throughput by considering the portion in which the pipeline is available for the
execution of beneficial instructions. In this regard the instruction type densities
(Dops, Dldst, Dother) should be considered in order to provide an estimation on
the overall instruction execution throughput on the particular kernel.

The peak throughput on raw beneficial operations is selected in (10):

Top =

⎧
⎪⎨

⎪⎩

TSP , if Ktype = fp32

TDP , if Ktype = fp64

Tint, if Ktype = int

(10)

For the estimation of the instruction execution efficiency the instruction den-
sities along with the instruction throughput for various types are considered.
The instruction types considered correspond to the throughput parameters of
the GPU (table 3). The fastest instruction on the GPU typically is the single
precision multiply-add instruction, and therefore it is the instruction that poten-
tially is used to execute the most operations per second. So, the single precision
multiply-add instructions are used as a point reference. The weight factor of
executing a type of instruction is defined as the throughput ratio of fast single
precision floating point instructions to the throughput of the particular type of
instructions. Thus, weight factor is normalized by setting the weight of single
precision instructions to 1. Therefore, the weight of all other instructions is typ-
ically greater or equal to 1. In this regard we define the weight factor operators
as follows in formulae (11), (12), (13):

50

Wop =
TSP

Top
(11) Wldst =

1/2TSP

Tldst
(12) Wother =

1/2TSP

Tadd
(13)

In the estimation of Wother the throughput of integer addition is used. This
is an arbitrary decision based on the assumption that the rest of the instructions
apart from computation and load/store, is constituted mostly of simple integer
instructions or instructions that execute roughly with the same cost. The 1⁄2
factor in (12) and (13) is applied in order to convert the operation throughput
rate TSP to instruction execution rate as each floating point MAD instruction is
accounted as 2 operations. All beneficial operations are assumed to be executed
using MAD instructions (two operations per instruction) whereas the load/store
and integer addition operations are assumed to be implemented with single op-
eration instructions. By taking into account the instruction densities and the
respective weight factors the relative execution cost of each instruction type can
be defined as shown in (14), (15), (16):

Cop = Dops ×Wop (14)

Cldst = Dldst ×Wldst (15)

Cother = Dother ×Wother (16)

The estimated instruction efficiency can be estimated by formula (17):

Einstr =
Cop

Cop + Cldst + Cother
× 100% (17)

This cost modeling for the instruction execution assumes that all instructions
are executed by the GPU multiprocessor on a single pipeline and therefore the
execution of different types of instructions cannot be co-issued in a super-scalar
fashion.

The adjusted throughput is estimated by applying both efficiency ratios
each decreasing the theoretical instruction throughput by a factor. The adjusted
throughput is given in (18):

T ′
op = Emix × Einstr × Top (18)

As such, the kernel’s operational intensity is Okrn = Wcomp/Wtraf and the
device’s adjusted operational intensity is Odev = T ′

op/Bmem. The comparison of
the two intensities is used to determine whether the application is considered to
behave as memory or compute bound. Thus, the estimated compute throughput
is given by (19):

Tpredicted =

{
T ′
op, if Okrn > Odev

Okrn ×Bmem, if Okrn ≤ Odev
(19)

51

2.3 Experimental evaluation

The executed experiments include two variants of stencil computations (red/black
SOR & LMSOR) [9, 10], a matrix multiplication (SGEMM) kernel and a large
subset of the Rodinia benchmark suite[3]. The experiments were applied on 6
different GPUs, characterized by 4 different architectures. The prediction pro-
cedure on red/black stencil computations, SGEMM and Rodinia benchmarks
exhibited an average APE 3.42%, 15.18% and 28.97%, respectively. By summa-
rizing all prediction results it is concluded that out of all conducted experiments
more than half of them exhibited less than 25% APE (Absolute Percentage Er-
ror). This is considered a significant achievement given the small set of input
that is used by the method.

In order to assess the performance prediction method in a cross vendor en-
vironment, the HIP/ROCm platform of AMD was chosen because of its CUDA
kernel source code compatibility feature. By porting a CUDA implementation
to HIP, the kernel source code effectively remains the same. This allows the pro-
filing procedure to be performed on NVidia hardware by either using the CUDA
application or the HIP application itself as HIP provides a compatibility layer
for both hardware platforms.

The HIP programming environment was applied as supported by ROCm
1.4.0 release, on Ubuntu 14.04 Linux 64bit, using an AMD R9-Nano GPU. The
kernel parameters were extracted on the GTX-480 and used for the performance
prediction model on the AMD GPU. The required benchmarks were also ported
to HIP platform and they were used to generate the R9-Nano GPU parameters.

The applied problems were the red/black SOR stencil computation, SGEMM
and the lavaMD benchmark from the Rodinia suite (lvmd-krn). Running the
performance model yields the execution times shown in table 4. It is evident
that the observed prediction errors are very comparable to the ones produced
on NVidia GPUs. Out of the 3 kernels, lvmd-krn exhibited slightly higher APE.

Table 4. Prediction results on the R9-Nano GPU for red/black SOR, SGEMM and
lvmd-krn kernels

Predicted time Measured time Error
Benchmark (msecs) (msecs) (%)

red/black SOR 7.75 8.72 -11.18%
SGEMM 0.83 0.94 -11.45%
lvmd-krn 46.27 54.57 -15.21%

In general, it is expected to observe slightly higher APEs on the AMD plat-
form due to the architectural differences between the two different vendor GPU
architectures. These differences could slightly differentiate the extracted kernel
parameters between the two architectures. However, this is not expected they
change dramatically allowing the use of the performance prediction method in
cross architecture environments, in the same way it was applied on this experi-
ment.

52

3 Conclusions

This thesis presents an analytical performance model that derives from the
roofline model [12]. Through a quantitative approach, the proposed model is
able to provide timings that approximate actual execution measurements on
real hardware. In addition, an alternative visual representation approach was
presented, named quadrant-split , which is insightful in cases of multiple com-
pute devices being represented along with a single application characterized by
a particular operation intensity. The merit of the model’s simplicity and its high
abstraction characteristic allows providing results, final and intermediate, that
can be easily interpreted by the final developer by being more human friendly.
The small amount of required parameters pose the method as readily applicable.

One of the key points of the proposed method is the ability to extract the
kernel’s parameters by exploiting a mere set of profiling metrics as input pa-
rameters. This is captured through a kernel profiling procedure in a black-box
fashion. Any internal knowledge of the kernel structure itself is not required by
the developer. Furthermore, the proposed method can be developed as an auto-
mated tool which is executed without intervention from the developer. In this
regard, the developer can apply the method on kernels and use it as a guidance
tool without previous inspection the kernel design itself.

The proposed method achieves a better understanding of both compute and
memory workloads compared to a pure theoretical peak approach primarily for
two reasons. First, both the execution of non-essential and load/store instruc-
tions are considered by modeling their implications in the instruction pipeline
and thus, their impact on the effective peak performance on beneficial instruc-
tions. Additionally, the type of mix of compute operations is also taken into ac-
count, i.e. the proportion of effective multiply-add operations in total amount of
compute instructions. Second, the memory traffic requirements are measured by
considering the actual traffic, thus any trivial locality and the degree of memory
access coalescing are being indirectly accounted. The model provides an adjusted
roofline on the peak performance based on these considerations.

The proposed performance model was tested and validated on a wide range
of real world kernels. It was applied on stencil computations (red/black SOR
and LMSOR), matrix multiplication and a wide range of Rodinia suite kernels.
Furthermore, it was also tested for cross-vendor applicability on the HIP pro-
gramming environment [2, 1] of the ROCm platform which is developed by AMD.
The results were quite promising as they were similar to CUDA prediction in
terms of absolute errors, despite the broader architectural differences between
different vendor GPUs. The exact performance is dependent on special issues as
the exact instruction mix, variability in cache behavior, pipeline latencies, the
available parallelism and additional latencies which push performance to lower
levels than the predicted ones, as the proposed model does not take into account
these factors. Nevertheless, in these cases the performance prediction measure-
ments serve as an upper bound performance and they indicate the potential
room for improvement with further optimizations.

53

References

1. AMD. HIP. https://github.com/GPUOpen-ProfessionalCompute-Tools/HIP,
2016.

2. AMD. HIP Data Sheet, 2016. Rev. 1.7.
3. S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. H. Lee, and K. Skadron.

Rodinia: A benchmark suite for heterogeneous computing. In Workload Charac-
terization, 2009. IISWC 2009. IEEE International Symposium on, pages 44–54,
Oct 2009.

4. Yiannis Cotronis, Elias Konstantinidis, Maria A. Louka, and Nikolaos M. Missirlis.
Parallel SOR for Solving the Convection Diffusion Equation Using GPUs with
CUDA, pages 575–586. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

5. Yiannis Cotronis, Elias Konstantinidis, Maria A. Louka, and Nikolaos M. Missirlis.
A comparison of CPU and GPU implementations for solving the convection diffu-
sion equation using the local modified SOR method. Parallel Computing, 40(7):173
– 185, 2014. 7th Workshop on Parallel Matrix Algorithms and Applications.

6. Yiannis Cotronis, Elias Konstantinidis, and Nikolaos M. Missirlis. A GPU Imple-
mentation for Solving the Convection Diffusion Equation Using the Local Modified
SOR Method, pages 207–221. Springer International Publishing, Cham, 2014.

7. E. Konstantinidis and Y. Cotronis. A practical performance model for compute and
memory bound GPU kernels. In 2015 23rd Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing, pages 651–658, March 2015.

8. E. Konstantinidis and Y. Cotronis. A quantitative performance evaluation of fast
on-chip memories of GPUs. In 2016 24th Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing (PDP), pages 448–455, Feb
2016.

9. Elias Konstantinidis and Yiannis Cotronis. Accelerating the red/black sor method
using gpus with cuda. In Roman Wyrzykowski, Jack Dongarra, Konrad Kar-
czewski, and Jerzy Waśniewski, editors, Parallel Processing and Applied Math-
ematics: 9th International Conference, PPAM 2011, Torun, Poland, September
11-14, 2011. Revised Selected Papers, Part I, pages 589–598, Berlin, Heidelberg,
2012. Springer Berlin Heidelberg.

10. Elias Konstantinidis and Yiannis Cotronis. Graphics processing unit acceleration
of the red/black sor method. Concurrency and Computation: Practice and Expe-
rience, 25(8):1107–1120, 2013.

11. Elias Konstantinidis and Yiannis Cotronis. A quantitative roofline model for GPU
kernel performance estimation using micro-benchmarks and hardware metric pro-
filing. Journal of Parallel and Distributed Computing, 107:37 – 56, 2017.

12. Samuel Williams, AndrewWaterman, and David Patterson. Roofline: An insightful
visual performance model for multicore architectures. Commun. ACM, 52(4):65–
76, April 2009.

54

Advances in Possibilistic Clustering with
Application to Hyperspectral Image Processing

S.D. Xenaki⋆

Department of Informatics and Telecommunications, National and Kapodistrian
University of Athens, GR-15236, Athens, Greece

Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing,
National Observatory of Athens, GR-15236, Penteli, Greece

ixenaki@di.uoa.gr or ixenaki@noa.gr

Abstract. Clustering is a well established data analysis methodology
that has been extensively used in various fields of applications during
the last decades. The main focus of the present thesis is on a well-known
cost-function optimization-based family of clustering algorithms, called
Possibilistic C-Means (PCM) algorithms. Specifically, the shortcomings
of PCM algorithms are exposed and novel batch and online PCM schemes
are proposed to cope with them. These schemes rely on (i) the adapta-
tion of certain parameters which remain fixed during the execution of
the original PCMs and (ii) the adoption of sparsity. The incorporation
of these two characteristics renders the proposed schemes: (a) capable,
in principle, to reveal the true number of physical clusters formed by the
data, (b) capable to uncover the underlying clustering structure even in
demanding cases, where the physical clusters are closely located to each
other and/or have significant differences in their variances and/or densi-
ties, and (c) immune to the presence of noise and outliers. Moreover, the-
oretical results concerning the convergence of the proposed algorithms,
also applicable to the classical PCMs, are provided. The potential of
the proposed methods is demonstrated via extensive experimentation on
both synthetic and real data sets. In addition, they have been success-
fully applied on the challenging problem of clustering in HyperSpectral
Images (HSIs). Finally, a feature selection technique suitable for HSIs
has also been developed.

1 Introduction and Related Work

Clustering is a well established data analysis methodology that lie in the frame-
work of pattern recognition and it has been extensively used in various fields
of applications during the last decades. Given a set of objects, the aim of clus-
tering is the identification of groups (clusters) formed by “similar” objects. A
great amount of work reported in the clustering literature has been devoted to
the identification of compact and hyperellipsoidally shaped clusters. Each such

⋆ Dissertation Advisor: Sergios Theodoridis, Professor

55

cluster is represented by a vector called cluster representative or simply repre-
sentative, which lies in the same l-dimensional space with the data and (ideally)
is located at the center of the cluster.

The most well-known algorithms that deal with this problem, belong to the
family of cost optimization clustering algorithms and are the k-means (hard clus-
tering), e.g. [1], the fuzzy c-means (FCM - fuzzy clustering), e.g. [2], [3] and the
possibilistic c-means (PCM - possibilistic clustering), e.g. [4], [5], [6], [7], [8]. The
main goal of all these algorithms is to move iteratively the representatives to-
wards the centers of the regions that are dense in data points (dense regions),
that is, to regions where significant aggregations of data points (clusters) ex-
ist. Under this perspective, we say that each such vector represents a cluster,
while their movement towards the centers of the clusters is carried out via the
minimization of appropriately defined cost functions.

Let us consider first the k-means and FCM, which share some significant
features. First of all, they both require prior knowledge of the exact number of
clusters m underlying in the data set (which, of course, is rarely known in prac-
tice). In addition, in both schemes the updating equations of the representatives
are interrelated. As a result, these algorithms impose a specific clustering struc-
ture on the data set (rather than uncovering the underlying one), in the sense
that they will return m clusters irrespective of the actual number of physical
clusters existing in the data set. Specifically, if m is less than the actual number
of clusters, at least some representatives will fail to move to dense regions, while
in the opposite case, some naturally formed clusters will split into more than one
pieces1. A common method for estimating m is via the use of suitable validity
indices (e.g., [8]). Finally, as shown in [6], [7], k-means and FCM are vulnerable
to noisy data and outliers.

As far as the PCM algorithms are concerned, the cluster representatives
are updated, based on the degrees of compatibility of the data vectors with the
clusters. In contrast to FCM and k-means, in PCM algorithms, the degrees of
compatibility of a data vector with the various clusters are mutually indepen-
dent. A direct consequence of this fact is that even if the number of clusters is
overestimated, in principle, all representatives will be driven to dense regions,
making thus feasible the uncovering of the actual clusters. However, in this case,
the scenario where two or more cluster representatives are led to the same dense
in data region, may arise, which, however, can be faced after the termination
of the algorithm by seeking for (almost) coincident representatives. In addition,
PCM deals well with noisy data points and outliers, compared to k-means and
FCM. However, it involves additional parameters, usually denoted by γ. Each of
these parameters is associated with a single cluster, while their accurate estima-
tion is of crucial importance. Since, once they have been estimated they are kept
fixed during the execution of the PCM algorithm, it is clear that poor initial
estimates are likely to lead to poor clustering performance, especially in more

1 Of course, if the value of m corresponds to the actual number of physical clusters,
the algorithms have the ability to recover the physical clusters; that is, in this case
“imposition” coincides with “uncovering”.

56

demanding data sets (e.g. where clusters with significantly different variances
are encountered in the data set).

2 Dissertation Summary

The present thesis focuses on the Possibilistic C-Means (PCM) algorithms. Specif-
ically, exposing first their shortcomings, they are extended next, in order to over-
come them. These extensions rely on the adoption of the parameter adaptivity
and the sparsity concepts. In the sequel, the main contributions of the present
thesis are briefly exposed.

First, a novel approach in the context of possibilistic clustering algorithms,
named Adaptive Possibilistic C-Means (APCM) has been developed [9], [10].
APCM addresses several of the weaknesses of original PCM, by allowing the
adaptation of some parameters that are characteristic to all PCM algorithms,
during its execution. This is in contrast to classical PCM algorithms where these
parameters, once they are set, they remain fixed. This characteristic of APCM
gives rise to two new features that are not met in classical PCM algorithms. The
first one is that APCM is capable, in principle, to reveal the true number of phys-
ical clusters, provided that it starts with a reasonable overestimate of it, thus
overcoming a long-standing issue in the clustering literature. This is carried out
by removing the clusters that gradually become obsolete (i.e., the clusters whose
characteristic parameter diminishes towards zero as the algorithm evolves). The
other feature resulting from the adaptation of the characteristic parameters of
APCM is the increase of its flexibility in following the variations in the for-
mation of the clusters during the algorithm execution. This makes APCM able
to uncover the underlying clustering structure, even in demanding cases, where
the physical clusters are closely located to each other and/or have significant
differences in their variances. APCM is compared against several related state-
of-the-art algorithms through extensive simulations on both synthetic and real
data and the provided results show that APCM exhibits superior performance
in almost all the considered data sets. Moreover, theoretical results that are
indicative of the convergence behavior of the algorithm are also provided.

Next, we extended PCM by introducing the concept of sparsity. The rationale
behind this extension is that, in practice, a data point is most compatible with
at most one, a few or even none cluster (outlier). Thus, taking into account the
data points that are most compatible with a given cluster and excluding those
that are not compatible with it, leads to more accurate estimations of the clus-
ters’ parameters. The resulting algorithm, called Sparse Possibilistic C-Means
(SPCM) [11] can deal well with closely located clusters that may also be of sig-
nificantly different densities, while at the same time it exhibits immunity to noise
and outliers. Finally, a non-trivial convergence proof for the SPCM algorithm is
conducted [12]. The main source of difficulty in the provided convergence anal-
ysis, compared to those given for previous possibilistic algorithms, relies on the
fact that one of its updating parameter equations is not given in closed form
but is computed via a two-branch expression, which defines a non-continuous

57

mapping. In this thesis, it is shown that SPCM will converge to one of the local
minima of its associated cost function. As a side effect, it is shown that similar
convergence results can be derived for the PCM algorithm, viewed as a special
case of SPCM, which are stronger than those established in previous works.

In the sequel, the main features of the proposed APCM and SPCM algo-
rithms are combined giving rise to the Sparse Adaptive Possibilistic C-Means
(SAPCM) algorithm [13], [11], which, inheriting all the advantages of its an-
cestors, has the ability to (a) cope well with demanding data sets with closely
located physical clusters with possibly different densities and/or variances, (b)
determine the number of physical clusters and (c) improve even more the esti-
mates of the clusters’ parameters, compared to APCM and SPCM. Extensive
experimentation verified the overall advantages of SAPCM compared to other
related algorithms. Moreover, two variants of SAPCM, which use the above orig-
inal SAPCM algorithm as a building block, have been devised. The first one is an
iterative bottom-up version, called Sequential SAPCM (SeqSAPCM) [14], which,
at each iteration, determines a single new cluster by employing SAPCM. Thus,
it unravels sequentially the underlying clustering structure. The basic advantage
of SeqSAPCM is that it does not require knowledge of the number of physical
clusters (not even a crude overestimate, as is the case with APCM, SPCM and
SAPCM). The second variant of SAPCM is called Layered SAPCM (L-SAPCM)
[15] and works in layers. Specifically, the SAPCM algorithm is initially applied in
the whole data set and then it is recursively applied individually on each result-
ing cluster, in order to reveal possible clustering structure within it, working in a
tree structure basis. L-SAPCM terminates when none of the clusters resulting so
far has further clustering structure within it. As is verified by the experimental
results, L-SAPCM can provide accurate clustering even in cases where the data
form closely located clusters at various “resolutions”, i.e. the variances of the
clusters may differ orders of magnitude from each other.

Also, a considerable contribution of this thesis is the development of an online
version of the APCM algorithm, called Online APCM (O-APCM) [16], which
processes data points one by one and memorizes their impact to suitably defined
accumulating variables. O-APCM embodies three new procedures for (a) gener-
ating, (b) merging or (c) deleting clusters dynamically and it is a good candidate
for clustering of big data sets, whose size and dimensionality are prohibitive for
batch algorithms. Finally, it is highlighted that O-APCM may be utilized for
applications in both stationary, as well as dynamically varying environments,
where the physical clusters may change their location in data space over time.
Specifically, O-APCM has the ability to weight more heavily the most recent
data, compared to older data, in the estimation of its parameters. Experimen-
tal results show that O-APCM offers high discrimination ability at a very low
computational cost for data sets in stationary conditions and, additionally, it is
able to track with high accuracy the physical clusters at a non-stationary envi-
ronment. Finally, the application of O-APCM to a real video data set, in order
to identify and track moving objects, highlights its great potential in monitoring
the evolution of dynamically varying phenomena.

58

The potential of the proposed methods is also demonstrated via experimen-
tation on the basis of three case studies, concerning real hyperspectral images
(HSIs). The images have been collected from different hyperspectral sensors and
depict various land cover cases. The proposed algorithms gave, in general, supe-
rior performance compared to other related algorithms.

Finally, a sparsity-aware feature selection technique suitable for HSIs has
been developed in the frame of the current thesis [17]. The proposed method
is based on the optimization of a sparsity promoting cost-function, in order
to identify the bands with the most significant ability in discriminating the
various homogeneous regions in the HSI under study. Experimental results on
real HSI data have shown remarkable quality of the clustering considering only
the selected bands that result from the above technique.

3 Results and Discussion

In the sequel, we describe in detail one of the proposed possibilistic clustering
algorithms, that is the Sparse Adaptive Possibilistic C-Means (SAPCM), that
incorporates the idea of adaptivity and sparsity.

3.1 Sparse Adaptive Possibilistic C-Means Algorithm

The SAPCM algorithm stems from the optimization of the cost function

J(Θ, U) =
m∑

j=1

[
N∑

i=1

uij∥xi − θj∥2 + γj

N∑

i=1

(uij lnuij − uij)

]
+λ

N∑

i=1

∥ui∥pp (1)

where uij > 0, i = 1, ..., N , j = 1, ...,m, the parameter γj is related to the “size”
of jth cluster, Cj , and it could be described as a measure of its variance around
its θj , and λ is a parameter that controls the degree of the imposed sparsity.

In SAPCM, the parameters γ, after their initialization, are properly adapted
as the algorithm evolves. In particular, the parameter γ of each specific cluster
is updated based only on those data vectors that are “most compatible” with
this cluster. The proposed SAPCM algorithm stems from the optimization of
the cost function of eq. (1), by setting

γj =
η̂

α
ηj (2)

with ηj being a measure of the mean absolute deviation of Cj as it has been
formed in the current iteration, η̂ is a constant defined as the minimum among
all initial ηj ’s, i.e., η̂ = min

j=1,...,mini

ηj , where mini is the initial number of clusters,

and α is a user-defined positive parameter, so that the ration η̂/α approximates
the mean absolute deviation of the smallest physical cluster. Note that although
the latter quantity is fixed for a given data set, it is unknown in practice.

Initialization in SAPCM: First, we make an overestimation, denoted bymini,
of the true number of natural clusters m, formed by the data points; that is, we

59

begin with mini θj ’s and their corresponding ηj ’s. Regarding θj ’s and ηj ’s, their
initialization drastically affects the final clustering result in SAPCM. Recalling
that SAPCM is a possibilistic-type algorithm and these algorithms move the
cluster representatives towards “dense in data points” regions (physical clusters),
care should be taken so that at least one representative lies “close” to each
physical cluster with its associated ηj being initialized suitably. Thus, a good
starting point for them is of crucial importance. To this end, the initialization of
θj ’s is carried out using the final cluster representatives obtained from the FCM
algorithm, when the latter is run with mini clusters. Taking into account that
FCM is very likely to drive the representatives to dense in data regions (since
mini > m), the probability that at least one of the initial θj ’s is placed in each
dense region (cluster) of the data set, increases with mini.

After the initialization of θj ’s, ηj ’s are initialized as follows:

ηj =

∑N
i=1 u

FCM
ij ∥xi − θj∥

∑N
i=1 u

FCM
ij

, j = 1, . . . ,mini, (3)

where θj ’s and uFCM
ij ’s in eq. (3) are the final parameter estimates obtained by

FCM. Combining eqs. (2), (3), the initialization of γj ’s is completely defined.

Parameter adaptation in SAPCM: In SAPCM algorithm, all parameters
are adapted during its execution. More specifically, this refers to, (a) the param-
eters θj ’s, (b) the parameters uij ’s, (c) the number of clusters, m, and (d) the
parameters γj ’s, with (c) and (d) being achieved through two interrelated pro-
cesses. Minimization of J(Θ, U) with respect to θj leads to the same updating
equation as in the original PCM scheme, that is

θj =

∑N
i=1 uijxi∑N
i=1 uij

(4)

Taking the derivative of J(Θ, U) with respect to uij , we obtain

∂J(Θ, U)

∂uij
≡ f(uij) = dij + γj lnuij + λpup−1

ij , (5)

where dij = ∥xi − θj∥2. Obviously, ∂J(Θ,U)
∂uij

= 0 is equivalent to f(uij) = 0, the

solution of which will give the requested uij . Clearly, this equation cannot be
solved analytically. However, it can be efficiently solved arithmetically based on
the following propositions.

Proposition 1 f(uij) does not become zero for uij ∈ (−∞, 0) ∪ (1,+∞) 2.

Proposition 2 The stationary points of f(uij) are ûij =
[

λ
γj
p(1− p)

] 1
1−p

and

ũij = +∞.
2 The proofs of Propositions 1 to 6 are given in the dissertation.

60

Proposition 3 The unique minimum of f(uij) appears at ûij =
[

λ
γj
p(1− p)

] 1
1−p

.

Proposition 4 If f(ûij) < 0 then f(uij) = 0 has exactly two solutions u{1}
ij ,

u{2}
ij ∈ (0, 1) with u{1}

ij < u{2}
ij .

Proposition 5 If f(uij) = 0 has two solutions u{1}
ij , u{2}

ij (with u{1}
ij < u{2}

ij),

JSPCM (Θ, U) exhibits a local minimum at the largest of them (u{2}
ij).

Proposition 6 JSPCM (Θ, U) exhibits its global minimum (with respect to uij)
at u∗

ij, where:

u∗
ij =

⎧
⎨

⎩
u{2}
ij , if f(ûij) < 0 and u{2}

ij >
(

λ(1−p)
γj

) 1
1−p

(≡ umin)

0, otherwise
(6)

Based on the above propositions, to determine u∗
ij , we solve f(uij) = 0 as

follows. First, we determine ûij and check whether f(ûij) > 0. If this is the case,
then f(uij) has no roots in [0, 1]. Note that, in this case, it is f(uij) > 0 for all
uij ∈ (0, 1], since f(ûij) > 0 (Fig. 1b). Thus, JSPCM is increasing with respect
to uij in (0, 1] (Fig. 1e). Consequently, in this case we set u∗

ij = 0, imposing
sparsity. In the rare case, where f(ûij) = 0, we set u∗

ij = 0, as ûij is the unique
root of f(uij) = 0 and f(uij) > 0 for uij ∈ (0, ûij) ∪ (ûij , 1]. If f(ûij) < 0, then
f(uij) = 0 has exactly two solutions that both lie in [0, 1] (see Figs. 1a, 1c).

In order to determine the largest of the solutions (u{2}
ij), we apply the bisection

method (e.g. [18]) in the range (ûij , 1], as u
{2}
ij is greater than ûij . The bisection

method is known to converge very rapidly to the optimum uij , that is, in our
case, to the largest of the two solutions of f(uij) = 0. If the obtained solution

u{2}
ij satisfies the rightmost condition in the first branch of eq. (6), then we set

u∗
ij = u{2}

ij (Fig. 1d) . Otherwise, u∗
ij is set to 0 (see Fig. 1f).

Concerning the adjustment of the number of clustersm(t) at the tth iteration,
we proceed as follows. Let label be a N -dimensional vector, whose ith element
is the index of the cluster which is most compatible with xi, that is the index j
for which uij(t) = maxr=1,...,m(t) uir(t). At each iteration of the algorithm, the
adjustment (reduction) of the number of clusters m(t) is achieved by examining,
for each cluster Cj , if its index j appears at least once in the vector label (i.e.
if there exists at least one vector xi that is most compatible with Cj). If this is
the case, Cj is preserved. Otherwise, Cj is eliminated and, thus, U and Θ are
updated accordingly. As a result, the current number of clusters m(t) is reduced.

Finally, concerning γj ’s and in contrast to the classical PCM where they
are kept fixed, in SAPCM they are given by eq. (2) and are adapted at each
iteration of the algorithm through the adaptation of the corresponding ηj ’s.
More specifically, we propose to compute the parameter ηj of a cluster Cj at

61

0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

5

10

15

20

25

30

f(u
ij)

uij

ûij umin

u∗ij ≡ u
{2}
ij

(a) f(uij)

0 0.2 0.4 0.6 0.8 1
−5

0

5

10

15

20

25

30

f(u
ij)

uij

uminûij

(b) f(uij)

0 0.2 0.4 0.6 0.8 1

−10

0

10

20

30

40

50

60

f(u
ij)

uij

umin

u
{2}
ij < umin

ûij

(c) f(uij)

0 0.2 0.4 0.6 0.8 1
−2.5

−2

−1.5

−1

−0.5

0

0.5

J(
u ij)

uij

u∗

ij ≡ u
{2}
ijuminûij

(d) J(uij)

0 0.2 0.4 0.6 0.8 1
−2

0

2

4

6

8

10

12

uij

J(
u ij)

umin

u∗

ij = 0

ûij

(e) J(uij)

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2

3

4

5

6

7

8

J(
u ij)

uij

ûij

u∗ij = 0

umin

u
{2}
ij < umin

(f) J(uij)

Fig. 1: In all plots the dashed parts of the graphs correspond to the interval
(0, umin), which is not accessible by the algorithm (see eq. (6)). (a) The shape
of function f(uij), when f(ûij) < 0 and the right-most condition of eq. (6) is
satisfied and (d) the corresponding shape of the cost function J(uij). (b) The
shape of function f(uij), when f(ûij) > 0 and (e) the corresponding shape of
J(uij). (c) The shape of function f(uij), when f(ûij) < 0 and the right-most
condition of eq. (6) is not satisfied and (f) the corresponding shape of J(uij).

each iteration, as the mean absolute deviation of the most compatible to cluster
Cj data vectors, i.e.,

ηj(t+ 1) =
1

nj(t)

∑
xi:uij(t)=maxr=1,...,m(t+1) uir(t)

∥xi − µj(t)∥, (7)

where nj(t) denotes the number of the data points xi that are most compatible
with Cj at iteration t and µj(t) the mean vector of these data points.

Selection of parameter λ: As it follows from the previous analysis, consider-
ing a specific data point xi and a cluster Cj , a necessary condition in order for
the equation f(uij) = 0 to have a solution is f(ûij) < 0, which, taking into ac-

count eq. (5) and solving with respect to λ gives λ < γj

p(1−p) exp
(
−1− dij(1−p)

γj

)
.

Consequently, selecting

λ ≥ γj
p(1− p)

exp

(
−1− dij(1− p)

γj

)
, (8)

62

the degree of compatibility uij of a data point xi with a cluster Cj is set to
0, promoting sparsity. Aiming at retaining the smallest sized cluster, say Cq

(i.e., the cluster with γq = min
j=1,...,m

γj) until the termination of the algorithm

(provided of course that at least one representative has been initially placed
in it), a reasonable choice for λ would be the one for which uij becomes 0 for
points xi that lie at distance diq greater than γq from the representative θq. In
this way, θq will be less likely to be “attracted” by nearby larger clusters, aiding
it to remain in the region of the physical cluster where it was first placed. This
is so because the cluster representative will be affected only by the data points
that are very close to it (i.e., points with diq < γq = min

j=1,...,m
γj).

To this end, applying inequality (8) for dij and γj equal to γq = min
j=1,...,m

γj ,

we end up with λ ≥ γq

p(1−p)e2−p , where e is the base of natural logarithm. In
practice, we select λ as

λ = K
min

j=1,...,m
γj

p(1− p)e2−p
, (9)

where if we set K = 1, we allow non-zero uij ’s for points that lie at distance
around γq from θq. In most of the experiments of SAPCM, we take K = 0.1.

Comparison of APCM with state-of-the-art clustering algorithms In
this section, we compare the clustering performance of SAPCM with that of
the k-means, the FCM, the PCM [5], the UPC [8], the UPFC [19], the PFCM
[7], the SPCM-L1 [20], the APCM [10] and the SPCM [11] algorithms, which
all result from cost optimization schemes. For a fair comparison, the represen-
tatives θj ’s of all algorithms (except for SPCM-L1) are initialized based on the
FCM scheme and the parameters of each algorithm are first fine tuned. More-
over, in PCM, UPC, UPFC, PFCM and SPCM, duplicate clusters are removed
after their termination. In order to compare a clustering with the true data la-
bel information, we utilize (a) the Success Rate (SR) of each physical cluster
(SRcj , j = 1, ...,m), which measures the percentage of the points of each physi-
cal cluster that have been correctly labeled by each algorithm, (b) the mean of
the Euclidean distances (MD) between the true mean of each physical cluster
and its closest cluster representative obtained by each algorithm, (c) the number
of iterations (Iter) and (d) the total time required (Time) for the convergence
of each algorithm. Experiment: Consider a two-dimensional data set consist-
ing of N = 5300 points, where three clusters C1, C2 and C3 are formed. Each
cluster is modelled by a normal distribution. The means of the distributions are
c1 = [0.27, 7.99]T , c2 = [6.28, 1.49]T and c3 = [7.81, 3.76]T , respectively, while
their covariance matrices are set to 3 · I2, 0.5 · I2 and 0.01 · I2, respectively.
A number of 200 points are generated by the first distribution, 100 points are
generated by the second one and 5000 points are generated by the third one.
Note that C2 and C3 clusters are very close to each other and they have a big
difference in their variances (see Fig. 2a). Also, note the difference in the density
among the three clusters.

63

−6 −4 −2 0 2 4 6 8
0

2

4

6

8

10

12

Physical cluster 1
Physical cluster 2
Physical cluster 3

(a) The data set

−6 −4 −2 0 2 4 6 8
0

2

4

6

8

10

12

Cluster 1
Cluster 2
Cluster 3

(b) k-means

−6 −4 −2 0 2 4 6 8
0

2

4

6

8

10

12

Cluster 1
Cluster 2
Cluster 3

(c) FCM

−5 0 5 10
0

2

4

6

8

10

12

Cluster 1
Cluster 3

(d) PCM

−4 −2 0 2 4 6 8
0

2

4

6

8

10

12

Cluster 1
Cluster 2
Cluster 3
Cluster 4

(e) UPC

−6 −4 −2 0 2 4 6 8
0

2

4

6

8

10

12

Cluster 1
Cluster 2
Cluster 3

(f) UPFC

−6 −4 −2 0 2 4 6 8
0

2

4

6

8

10

12

Cluster 1
Cluster 2
Cluster 3
Cluster 4

(g) PFCM

−6 −4 −2 0 2 4 6 8
0

2

4

6

8

10

12

Cluster 1
Cluster 2

(h) SPCM-L1

−6 −4 −2 0 2 4 6 8
0

2

4

6

8

10

12

Cluster 1
Cluster 2
Cluster 3
Cluster 4

(i) APCM

−5 0 5 10
0

2

4

6

8

10

12

Cluster 1
Cluster 3

(j) SPCM

−6 −4 −2 0 2 4 6 8
0

2

4

6

8

10

12

Unassigned
Cluster 1
Cluster 2
Cluster 3

(k) SAPCM

Fig. 2: (a) The data set of Experiment. Clustering results for (b) k-means,mini =
3, (c) FCM,mini = 3, (d) PCM,mini = 5, (e) UPC,mini = 5, q = 1.5, (f) UPFC,
mini = 10, α = 5, β = 1, q = 2.2, n = 3, (g) PFCM, mini = 5, K = 1, α = 1,
β = 5, q = 1.5, n = 1.5, (h) SPCM-L1, λ = 15, q = 2 (i) APCM, mini = 5,
α = 0.3, (j) SPCM, mini = 5, and (k) SAPCM, mini = 10 and α = 0.15.

Table 1 shows the results of all algorithms for Experiment. Fig. 2b and Fig. 2c
show the clustering obtained using the k-means and FCM algorithms, respec-

64

Table 1: Performance of clustering algorithms for the data set of Experiment.
mini mfinal SRc1 SRc2 SRc3 MD Iter Time

k-means 3 3 51 0 100 3.4066 2 0.265
k-means 5 5 51 94 51.48 0.5369 20 0.202
FCM 3 3 51 0 100 3.3432 110 0.140
FCM 5 5 50.50 93 51.62 0.5537 86 0.218
PCM 5 2 100 0 100 0.9242 15 0.514
PCM 10 2 100 0 100 0.9254 18 1.185
UPC (q = 1.5) 5 4 50 95 100 0.4589 65 0.390
UPC (q = 1.2) 10 4 50 95 100 0.4480 89 0.910
UPFC (a = 5, b = 1, q = 2, n = 1.5) 5 4 50.50 96 100 0.4170 41 0.390
UPFC (a = 5, b = 1, q = 2.2, n = 3) 10 3 100 94 100 0.3601 190 2.940
PFCM (K = 1, a = 1, b = 5, q = 1.5, n = 1.5) 5 4 51.50 100 100 0.4573 38 0.380
PFCM (K = 1, a = 2, b = 1, q = 2, n = 1.2) 10 5 44 97 100 0.4011 60 0.880
SPCM-L1 (λ = 15, q = 2) - 2 76 0 100 1.1831 6 0.031
APCM (α = 0.3) 5 4 53 100 100 0.4469 73 0.390
APCM (α = 0.3) 10 4 52.50 100 100 0.4748 90 0.889
SPCM (K = 0.9) 5 2 100 0 100 0.9256 15 3.276
SPCM (K = 0.9) 10 2 100 0 100 0.9263 19 7.769
SAPCM (α = 0.18) 5 3 100 100 100 0.3222 91 13.40
SAPCM (α = 0.15) 10 3 100 100 100 0.3020 100 18.94

tively, both for mini = 3. Figs. 2d, 2e, 2f, 2g, 2h, 2i and 2j, depict the
performance of PCM, UPC, UPFC, PFCM, SPCM-L1, APCM and SPCM, re-
spectively, with their parameters chosen (after fine-tuning) as stated in the cap-
tion. In addition, the circles, centered at each θj and having radius

√
γj (as they

have been computed after the convergence of the algorithms), are also drawn.

As it can be deduced from Fig. 2 and Table. 1, even when the k-means and
the FCM are initialized with the (unknown in practice) true number of clusters
(m = 3), they fail to unravel the underlying clustering structure mainly due to
the big difference in the variances and densities between clusters. The classical
PCM also fails to detect the physical cluster 2, because it is located very close to
the densest physical cluster. The UPC algorithm has been fine tuned so that the
parameters γj ’s, which remain fixed during its execution and are the same for
all clusters, get small enough values, in order to identify cluster C2. However, it
splits the high variance/low density cluster C1 in two clusters. The same seems
to hold for the PFCM algorithm, after fine tuning of its several parameters. The
UPFC algorithm produces 3 clusters, at the cost of a computationally demanding
fine tuning of the (several) parameters it involves. The APCM algorithm also
splits the big variance cluster in two subclusters, failing to detect the underlying
clustering structure. On the other hand, SPCM identifies two clusters with high
accuracy with respect to the center of the actual clusters, but misses the third
one. Finally, as it is deduced from Table 1, the SAPCM algorithm manages to
identify all clusters, achieving the best SR and MD results and estimating very
accurately the true centers of the clusters, since it exhibits the minimum MD
among all algorithms.

65

References

1. J. A. Hartigan and M. A. Wong, “Algorithm AS 136: A k-Means Clustering Algo-
rithm”, Journal of the Royal Statistical Society, vol. 28, pp. 100-108, 1979.

2. J. C. Bezdek, “A Convergence Theorem for the Fuzzy Isodata Clustering Algo-
rithms”, IEEE Trans. on Pattern Analysis and Mach. Intel., vol. 2, pp. 1-8, 1980

3. J. C. Bezdek, “Pattern Recognition with Fuzzy Objective Function Algorithms”,
Plenum, 1981

4. R. Krishnapuram and J. M. Keller, “A Possibilistic Approach to Clustering”, IEEE
Transactions on Fuzzy Systems, vol. 1, pp. 98-110, 1993.

5. R. Krishnapuram and J. M. Keller, “The Possibilistic C-Means Algorithm: Insights
and Recommendations”, IEEE Trans. on Fuzzy Systems, vol. 4, pp. 385-393, 1996.

6. S. Theodoridis and K. Koutroumbas, “Pattern Recognition”, Academic Press, 2009.
7. N. R. Pal and K. Pal and J. M. Keller and J. C. Bezdek, “A Possibilistic Fuzzy

C-Means Clustering Algorithm”, IEEE Trans. on Fuzzy Systems, pp. 517-530, 2005
8. M. S. Yang and K. L. Wu, “Unsupervised Possibilistic Clustering”, Pattern Recog-

nition, vol. 39, pp. 5-21, 2006.
9. S. D. Xenaki and K. D. Koutroumbas and A. A. Rontogiannis, “Adaptive Possi-

bilistic Clustering”, IEEE International Symposium on Signal Processing and In-
formation Technology, pp. 422-427, Dec 2013.

10. S. D. Xenaki and K. D. Koutroumbas and A. A. Rontogiannis, “A Novel Adaptive
Possibilistic Clustering Algorithm”, IEEE Transactions on Fuzzy Systems, vol. 24,
no. 4, pp. 791-810, 2016.

11. S. D. Xenaki and K. D. Koutroumbas and A. A. Rontogiannis, “Sparsity-aware
Possibilistic Clustering Algorithms”, IEEE Transactions on Fuzzy Systems, vol. 24,
no. 6, pp. 1611-1626, 2016.

12. K. D. Koutroumbas and S. D. Xenaki and A. A. Rontogiannis, “On the Conver-
gence of the Sparse Possibilistic C-Means Algorithm”, IEEE Transactions on Fuzzy
Systems, 2017, to appear. DOI: 10.1109/TFUZZ.2017.2659739

13. S. D. Xenaki and K. D. Koutroumbas and A. A. Rontogiannis, “Sparse Adaptive
Possibilistic Clustering”, IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), pp. 3072-3076, Florence 2014.

14. S. D. Xenaki and K. D. Koutroumbas and A. A. Rontogiannis, “Sequential Sparse
Adaptive Possibilistic Clustering”, SETN 2014: Artificial Intelligence: Methods and
Applications, pp. 29-42, 2014.

15. S. D. Xenaki and K. D. Koutroumbas and A. A. Rontogiannis and O. A. Sykioti,
“A Layered Sparse Adaptive Possibilistic Approach for Hyperspectral Image Clus-
tering”, IEEE Intern.Geo. and Rem.Sens.Sympos(IGARSS), pp. 2890-2893, 2014.

16. S. D. Xenaki and K. D. Koutroumbas and A. A. Rontogiannis, “Hyperspectral
Image Clustering Using a Novel Efficient Online Possibilistic Algorithm”, 24th Eu-
ropean Signal Processing Conference (EUSIPCO), pp. 2020-2024, 2016.

17. S. D. Xenaki and K. D. Koutroumbas and A. A. Rontogiannis and O. A. Sykioti, “A
New Sparsity-Aware Feature Selection Method for Hyperspectral Image Clustering”,
IEEE Intern. Geoscience and Rem. Sens. Symposium (IGARSS), pp. 445-448, 2015.

18. G. Corliss, “Which Root Does the Bisection Algorithm Find?”, Siam Review,
vol. 19, pp. 325-327, 1977.

19. X. Wu, B. Wu, J. Sun, H. Fu, “Unsupervised Possibilistic Fuzzy Clustering”, Jour-
nal of Information & Computational Science, vol. 5, pp. 1075-1080, 2010.

20. Y. Hamasuna and Y. Endo, “On Sparse Possibilistic Clustering with Crispness
Classification Function and Sequential Extraction”, Soft Computing and Intel. Syst.
(SCIS) and 13th Intern. Symp. on Advanced Intel. Syst. (ISIS), pp. 1801-1806, 2012.

66

	ABSTRACTS OF DOCTORAL DISSERTATIONS
	Athens 2018
	ABSTRACTS OF DOCTORAL DISSERTATIONS
	The Committee of Research and Development Activities
	PREFACE

