COURSE OUTLINE

(1) GENERAL

SCHOOL	School of Sciences				
ACADEMIC UNIT	Department of Informatics and Telecommunications				
LEVEL OF STUDIES	Undergraduate				
COURSE CODE	ΕΠ22στ	SEMESTER 7			
COURSE TITLE	Special Topics in Communications and Signal Processing: Deep Learning				
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits			WEEKLY TEACHING HOURS		CREDITS
Lectures and Tutorials			4		4
Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (4).					
COURSE TYPE	Special background				
general background, special background, specialised general, knowledge, skills development					
PREREQUISITE COURSES:	Recomended prerequisite: Pattern Recognition Machine Learning (EP08)				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	GREEK				
IS THE COURSE OFFERED TO ERASMUS STUDENTS	NO				
COURSE WEBSITE (URL)	https://eclass.uoa.gr/courses/DI682/				

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

Upon successful completion of the course, students will be able to:

- Understand the theoretical and practical principles of deep neural networks, including architectures, optimization, and applications
- Develop and train advanced deep learning models for real-world problems using modern tools and techniques
- Understand and apply self-supervised learning methods for learning representations from unlabeled data
- Design and implement generative AI systems
- Reproduce research results in the field of deep learning
- Recognize and address ethical challenges in developing artificial intelligence systems, applying principles of ethics and responsibility

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and

information, with the use of the necessary

technology

Team work

Respect for difference and multiculturalism

Project planning and management

Adapting to new situations Respect for the natural environment

adpling to new stadions

Decision-making Showing social, professional and ethical responsibility and sensitivity

to gender issues

Working independently

Criticism and self-criticism

Production of free, creative and inductive thinking

Working in an international environment

Others...

Working in an interdisciplinary environment

Production of new research ideas

Search for, analysis and synthesis of data and information, using necessary technologies, Working independently, Production of free, creative and inductive thinking, Decision making, Production of new research ideas, Showing social, professional and ethical responsibility.

(3) SYLLABUS

The "Deep Learning" course focuses on advanced deep learning technologies and architectures that shape the modern landscape of artificial intelligence. It aims at understanding theoretical foundations, practical implementation of advanced models, and ethical development of artificial intelligence systems.

The course content includes fundamental principles such as computation graphs, activation functions, optimization algorithms, and regularization techniques. It covers classical deep neural network architectures (CNNs, RNNs, etc.), architectures for graph-structured data (GNNs), as well as modern architectures such as Transformers, Vision Transformers, and Foundation models.

Additionally, self-supervised learning and contrastive learning techniques for representations from unlabeled data are introduced, as well as multimodal learning techniques. The course also includes generative models such as autoencoders (AEs, VAEs), generative adversarial networks (GANs), and diffusion models. Tensor methods for model interpretation and optimization are examined. Finally,

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY

USE OF INFORMATION AND

Face-to-face

COMMUNICATIONS TECHNOLOGY

- Support of learning process through e-class platform

Use of ICT in teaching, laboratory education, communication with students

Face-to-face, Distance learning, etc.

- Course description, provision of files/multimedia

- Announcements, Messages, Discussions

- Email communication

TEACHING METHODS

The manner and methods of teaching are described in detail.

Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art workshop, interactive teaching, educational visits, project, essay writing, artistic creativity, etc.

The student's study hours for each learning activity are given as well as the hours of non-directed study according to the principles of the FCTS

Activity	Semester workload
Lectures	39
Tutorials	13
Independent study & problem solving	48
Course total	100

STUDENT PERFORMANCE EVALUATION

Description of the evaluation procedure

Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open- ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other

Specifically-defined evaluation criteria are given, and if and where they are accessible to students.

The course evaluation is conducted through written examination that includes theoretical questions, analytical exercises and problems of designing advanced deep learning systems. Additionally, students complete assignments which include implementation of deep learning algorithms, experimental evaluation and presentation of results. The evaluation is based on understanding of basic concepts, ability to apply advanced techniques, quality of implementation and innovation of approach.

(5) ATTACHED BIBLIOGRAPHY

Recommended textbooks (Eudoxus):

• Ian Goodfellow, Yoshua Bengio, Aaron Courville "Deep Learning", Kleidarithmos Publications, 2024 (Eudoxus Code: 122075017)

Related academic journals and conferences:

- IEEE Transactions on Pattern Analysis and Machine Intelligence
- Journal of Machine Learning Research (JMLR)
- International Conference on Machine Learning (ICML) Proceedings
- Neural Information Processing Systems (NeurIPS) Proceedings
- International Conference on Learning Representations (ICLR) Proceedings

Online Resources:

- arXiv.org (cs.LG, cs.Al categories)
- Papers With Code (<u>https://paperswithcode.com/</u>)