

INSTITUTION	NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS									
SCHOOL	SCHOOL OF SCIENCE									
DEPARTMENT	INFORMATICS AND TELECOMMUNICATIONS									
COURSE LEVEL	UNDERGRADUATE									
COURSE TITLE	Calculus	Calculus II								
COURSE CODE	ко	6	Semes	ter	3		ECT	rs	8	
TEACHING HOURS per week	THEORY	4	SEMIN	AR.	2		LAE	BORATO	RY	
COURSE TYPE	Select one of the following and delete the rest Compulsory									
	К	E1	E2	E	3	E4	ļ	E5	E6]
URL	https://eclass.uoa.gr/courses/D260/									
EXPECTED PRIOR KNOWLEDGE/ PREREQUISITES AND PREPARATION:	Recommended K01									
TEACHING AND EXAMINATIONSLANGUAGE:	GREEK									
THE COURSE IS OFFERED TO ERASMUS STUDENTS	Yes, in the	Yes, in the English language for Erasmus students								

COURSE CONTENT

- Vectors, vector functions, inner and outer product, lines, planes, surfaces, arc length, unit tangent vector, TNB frame, multivariable functions, derivatives, limit, continuity.
- Partial derivatives, chain differentiation, directional derivative, tangent planes, linearization, differentials, extrema and saddle points.
- Taylor's theorem for multivariable functions.
- Curvilinear coordinate systems, norm, gradient, divergence and curl.
- Double and triple integrals in Cartesian and other coordinates, applications to the evaluation of areas, moments of inertia and centers of mass, change of variables (Jacobian determinants).
- Integration of vector fields, line and surface integrals, path independence, potential functions and conservative fields, Green, Gauss and Stokes theorems and applications.

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Εθνικόν και Καποδιστριακόν Πανεπιστήμιον Αθηνών Παργθεη το 1837

COURSE SYLLABUS

DEPARTMENT OF INFORMATICS & TELECOMMUNICATIONS

STUDENT LEARNING OBJECTIVES

In this course the student acquires the basic knowledge on multivariable and vector valued functions. This mathematical knowledge is necessary for the understanding of the physical laws and the ability to deal with problems that appear in all physics classes in the following semesters.

With the completion of the course the student is able to:

- Describe the formulation of physical phenomena that take place in the real three-dimensional space and laws that the variables involved are vectors.
- Approximately elaborate on useful and complicated expressions by expanding in appropriate parameters.
- Make use of differential and integral calculus to resolve problems in the three-dimensional space, as well as, restricted on subsets (curves and surfaces) of it.

TEACHING AND LEARNING METHODS - ASSESSMENT						
TEACHING METHOD In Class (Face to Face)						
USE OF INFORMATION AND COMMUNICATION TECHNOLOGIES	Learning process supported by the e-class platform.					
TEACHING ORGANIZATION Describe in detail the way and methods of teaching: Enhanced Lectures,						
Online Lectures, Seminars, Tutorial	Activity	Student Workload (hours)				
Laboratory,	Lectures	52				
Laboratory Exercise,	Seminars	26				
Study & analysis of literature, Practice (Positioning), Interactive teaching, Developing a project,	Individual Study/ Study and Analysis of bibliography / Preparation	140				
Individual / group work Telework (reference to tools)etc.	Total Course (25 hours of workload per unit of credit)	218				
Details of the student's study hours for each learning activity and hours of non-guided study are shown to ensure that the total workload at the semester corresponds to the ECTS						

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Εθνικόν και Καποδιστριακόν Πανεπιστήμιον Αθηνών Παργθεη το 1837

COURSE SYLLABUS

DEPARTMENT OF INFORMATICS & TELECOMMUNICATIONS

ASSESSMENT OF STUDENTS

Description of the assessment process

Assessment Methods, Formative or Concluding, Multiple Choice Test, Quick Response Questions, Test Development Questions, Problem Solving, Written Work, Report / Report, Oral Examination, Public Presentation, Laboratory Work, Other / Other

Fully defined evaluation criteria are mentionedand if and where they are accessible to students.

Assessment methods	Number	Percentage
Final written exams	1	100%

LITERATURE AND STUDY MATERIALS / READING LIST

- Διανυσματικός Λογισμός, Marsden J., Α. Tromba, ΙΤΕ ΠΑΝ/ΚΕΣ ΕΚΔΟΣΕΙΣ ΚΡΗΤΗΣ,
- Απειροστικός Λογισμός (σε έναν Τόμο), Β. Tomas, ΙΤΕ ΠΑΝ/ΚΕΣ ΕΚΔΟΣΕΙΣ ΚΡΗΤΗΣ,
- Απειροστικός Λογισμός σε πολλές μεταβλητές, Τ. Χατζηαφράτης, ΕΚΔΟΣΕΙΣ Σ.ΑΘΑΝΑΣΟΠΟΥΛΟΣ& ΣΙΑ Ο.Ε,
- Εφαρμοσμένος Απειροστικός Λογισμός, Λ.Ν. Τσίτσας, ΕΚΔΟΣΕΙΣ Σ.ΑΘΑΝΑΣΟΠΟΥΛΟΣ& ΣΙΑ Ο.Ε,
- Μαθηματικά ΙΙ, Β' έκδοση, Θ. Μ. Ρασσίας, ΕΚΔΟΣΕΙΣ ΑΘ. ΤΣΟΤΡΑΣ