

COURSE SYLLABUS

 1

INSTITUTION NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL SCHOOL OF SCIENCE

DEPARTMENT INFORMATICS AND TELECOMMUNICATIONS

COURSE LEVEL UNDERGRADUATE

COURSE TITLE Software Development for Algorithmic Problems

COURSE CODE Κ23γ Semester 7 ECTS 8

TEACHING HOURS per week THEORY 1 SEMINAR. LABORATORY 3

COURSE TYPE

Select one of the following and delete the rest
Project

Κ Ε1 Ε2 Ε3 Ε4 Ε5 Ε6

Α

Fill the table as in the curriculum: Track (Α-Computer Science, Β- Computer
Engineering) / Specialization Compulsory (Υ) / Core Specialization (Β)/
Elective Specialization (Ε)

URL https://eclass.uoa.gr/courses/DI352/

EXPECTED PRIOR
KNOWLEDGE/ PREREQUISITES
AND PREPARATION:

Κ17- Algorithms and Complexity (Αλγόριθμοι και Πολυπλοκότητα)
Recommended: K25 – Theory of Computation (Θεωρία Υπολογισμού)

TEACHING AND
EXAMINATIONS LANGUAGE:

GREEK

THE COURSE IS OFFERED TO
ERASMUS STUDENTS

NO

COURSE CONTENT

The course focuses on the development of software for solving an important problem in Computer Science, on
the use of the software in a real application and on its experimental evaluation. The followed approach aims at
the familiarization of the students with large scale programming, often with the use of open source software
libraries through team work as well as at the development of skills for the implementation and practical
utilization of established, efficient algorithms. C/C++ is used as a programming language in the course. Topics
covered include the implementation of efficient algorithms, their experimental evaluation, software
organization and design principles, the use of open source libraries and software tools such as: Qt, Boost,
Gnuplot, LAPACK, Eigen, Unit testing frameworks, collaboration and version control systems such as git and
SVN as well as collaborative large scale implementation. Three assignments for the design and development of

COURSE SYLLABUS

 2

software for solving hard algorithmic problems are given with emphasis on the fields of data science and
computational geometry.

STUDENT LEARNING OBJECTIVES

Expected Learning Outcomes
Upon successful completion of the course the student will be able to:

• Describe and explain hard algorithmic problems.

• Select appropriate programming techniques and algorithms for solving difficult problems in Computer
Science.

• Install and use open source libraries and software tools such as Qt, Boost, Gnuplot, LAPACK, Eigen, Unit
testing frameworks, collaboration and version control systems (git and SVN).

• Implement algorithms according to design principles that permit their easy reuse.

• Execute an experimental evaluation of the algorithmic techniques and of the software, in general, as well
as produce reports presenting accurately and clearly the experimental results.

TEACHING AND LEARNING METHODS - ASSESSMENT

TEACHING METHOD In Class (Face to Face)

USE OF INFORMATION AND COMMUNICATION
TECHNOLOGIES

Learning process supported by the e-class platform (Course
description, Material Provision, Announcements, Calendar,
Student Teams, Assignments, Discussion forum, External
links)

Email communication

Live transmission of lectures

Ability to track recorded lectures

TEACHING ORGANIZATION
Describe in detail the way and methods of teaching:
Enhanced Lectures,
Online Lectures,
Seminars,
Tutorial,
Laboratory,
Laboratory Exercise,
Study & analysis of literature,
Practice (Positioning),
Interactive teaching,
Developing a project,
Individual / group work
Telework (reference to tools) etc.

Details of the student's study hours for each learning activity
and hours of non-guided study are shown to ensure that the
total workload at the semester corresponds to the ECTS

Theory is presented in lectures through the use of
powerpoint/pdf presentations. Open source libraries and
software tools are presented in laboratory demonstrations.
Tutorials are organized for answering questions regarding
the algorithms, for the resolution of technical issues that
arise during their implementation as well as for the
execution of the evaluation experiments. 3 assignments for
the design and development of software for solving hard
algorithmic problems are assigned to teams of 1-2 persons.
The third assignment focuses on developing a real
application utilizing real or simulated data. Support is
provided for the implementation of the programming
assignments through the discussion forum of the eclass
platform.

Activity
Student Workload

(hours)

Lectures 13

COURSE SYLLABUS

 3

Tutorial 26

Laboratory 13

1st assignment
40

2nd assignment 40

3rd assignment 40

Independent study in order to
understand the algorithms and

to be familiarized with the
libraries and software tools.

28

Total Course
(25 hours of workload per unit

of credit)
200

ASSESSMENT OF STUDENTS
Description of the assessment process

Assessment Methods, Formative or Concluding, Multiple
Choice Test, Quick Response Questions, Test Development
Questions, Problem Solving, Written Work, Report / Report,
Oral Examination, Public Presentation, Laboratory Work,
Other / Other

Fully defined evaluation criteria are mentioned and if and
where they are accessible to students.

Students are evaluated through an oral examination of
each consecutive assignment. The assignments are
assessed on the basis of graded criteria and have equal
weight in the final evaluation. Students are given the
opportunity to request an analysis of the evaluation of
their assignments. The evaluation is corrected in case of
an error.

Assessment methods Number Percentage

Assignments 3 100%

LITERATURE AND STUDY MATERIALS / READING LIST

Textbook for general C/C++ programming (Εύδοξος):

• Bruce Eckel, Thinking in C++, vol. 2, εκδόσεις Μ. Γκιούρδας, 2009
Scientific publication that change from year to year according to the examined algorithmic problems.
PDF/powerpoint presentations for the description of the examined problems, the algorithmic techniques,
software organization and design principles as well as for all the libraries and software tools which are used in
the course.

