
Improving QoS and Utilisation in modern multi-core
servers with Dynamic Cache Partitioning

Ioannis Papadakis
School of ECE, NTUA
ypap@cslab.ece.ntua.gr

Konstantinos Nikas
School of ECE, NTUA

knikas@cslab.ece.ntua.gr

Vasileios Karakostas
School of ECE, NTUA

vkarakos@cslab.ece.ntua.gr

Georgios Goumas
School of ECE, NTUA

goumas@cslab.ece.ntua.gr

Nectarios Koziris
School of ECE, NTUA

nkoziris@cslab.ece.ntua.gr

ABSTRACT
Co-execution of multiple workloads in modern multi-core
servers may create severe performance degradation and un-
predictable execution behavior, impacting significantly their
Quality of Service (QoS) levels. To safeguard the QoS levels
of high priority workloads, current resource allocation poli-
cies are quite conservative, disallowing their co-execution
with low priority ones, creating a wasteful tradeoff between
QoS and aggregated system throughput. In this paper we
utilise the cache monitoring and allocation facilities provided
by modern processors and implement a dynamic cache par-
titioning scheme, where high-priority workloads are moni-
tored and allocated the amount of shared cache that they
actually need. This way, we are able to simultaneously main-
tain their QoS very close to the levels of full cache allocation
and boost the system’s throughput by allocating the surplus
cache space to co-executing, low-priority applications.
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1. INTRODUCTION
Multi-core systems have become the norm for high perfor-

mance servers that are widely used in both HPC and cloud
datacenters. These systems encapsulate several cores that
share critical resources, such as cache space and memory
bandwidth. When applications are executed simultaneously
on such a system, contention for shared resources impacts
the quality of service (QoS) and can lead to performance
degradation.

To address this problem, researchers have mainly devel-
oped two orthogonal approaches. The first one extends the
schedulers operating at different levels, from inside a sin-
gle server [3, 5, 11, 12, 18–20, 22, 27, 30] up to a supercom-
puter [6], datacenter or cloud environment [7–9, 21, 29], to
deal with contention. These contention-aware schedulers
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typically classify applications based on their utilisation of
one or more of the shared resources. The classification is
then used to identify co-schedules that mitigate contention
and maximise the overall throughput or maintain perfor-
mance fairness. The second approach investigates ways to
effectively partition the shared resources among the concur-
rently running applications [10,14,16,17,23–26,28]. Most of
these works focus on the shared cache space and attempt to
manage its allocation to the applications in an attempt to
isolate or optimise their performance.

Nevertheless, until today, supercomputers and cloud dat-
acenters do not employ any of the above solutions. Instead,
in order to guarantee QoS, they typically do not allow co-
execution of applications on a multi-core server, leaving a
subset of cores idle to avoid any interference [6, 8, 29].
IntelR⃝ has recently developed and released as part of its

latest XeonR⃝ processors that power server platforms, the
IntelR⃝ Resource Director Technology (RDT) [2], a hardware
framework to monitor and manage shared resources. The
goal of our work is to leverage this technology to provide a
mechanism that alleviates the effects of contention, making
the co-execution of applications a viable choice even when
QoS needs to be guaranteed.

To this end, we implement a dynamic cache partitioning
scheme that monitors the throughput of a high-priority ap-
plication and allocates to it the amount of shared cache that
it actually needs, safeguarding its QoS as the performance
penalty compared to full cache allocation is minimised to
5% on average. At the same time, the cache surplus is allo-
cated to the co-executing low-priority applications, boosting
their performance by a factor of 5× compared to when the
cache is fully assigned to the high-priority workload, thus
increasing the aggregated system throughput.

2. BACKGROUND & MOTIVATION

2.1 Architectural Support
IntelR⃝ RDT provides the necessary hardware support to

monitor and manage the last level cache (LLC) and the
memory bandwidth [15]. This is achieved through four tech-
nologies:

• Cache Monitoring Technology (CMT), which monitors
the usage of the shared LLC.

• Cache Allocation Technology (CAT), which enables
the management of the distribution of the shared LLC

10.14459/2017md1344298
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Figure 1: Distribution of HP application’s slowdown
when running together with 21 LP applications.

among the concurrently running applications. The al-
located cache areas can overlap or be isolated.

• Memory Bandwidth Monitoring (MBM), which moni-
tors the usage of the memory links.

• Code and Data Prioritization (CDP), which enables
separate control over code and data placement in the
LLC.

All these technologies can be programmed and utilised
via Model Specific Registers (MSR) on a hardware thread
basis. Therefore, they can be used in all modern Operating
Systems, which provide APIs to read and write the MSRs.

2.2 Motivation
To guarantee QoS, supercomputers and datacenters typi-

cally avoid placing multiple applications on the same multi-
core server [6, 8, 29]. To showcase the problems that arise
when attempting to utilise all the processing cores of a server,
we execute multiprogrammed workloads on an Intel Xeon
E5-2699 v4 server. The system is configured with a 2.2
GHz processor with 22 cores, SMT disabled, 55MB L3 cache
(LLC), and 64GB of memory.

We employ 11 benchmarks from the Parsec 3.0 benchmark
suite [4] (serial versions) and 28 benchmarks from the SPEC
CPU 2006 suite [13], 9 of which can be used with multiple
inputs, bringing the total number of applications to 65. Each
multiprogrammed workload is created by nominating one
of the 65 benchmarks as a “High-Priority” application (HP)
and placing it on one of the cores of the server. Then another
benchmark is selected as the“Low-Priority”application (LP)
and 21 instances of it are placed on the remaining cores of
the system. Every time an LP instance finishes, we restart it
to make sure that the system is always full until HP finishes
its execution.

We execute all the 4,225 workloads and compare the ex-
ecution time of the HP application to when it is executed
alone on the system. As shown in Figure 1, in around 60%
of the workloads, HP suffers at most 10% slowdown, while
in the remaining 40% there is a significant impact on the
QoS. In around 33% of the cases, HP’s execution time can
double compared to when running alone, while in 310 work-
loads co-execution thrashes HP, causing its execution time
to increase even more than 8 times in some cases.

It is evident that in order to increase the utilisation of the
platforms while guaranteeing QoS, we must diminish the

impact of co-execution due to resource contention.

3. CACHE-BASED QoS
The CAT technology has been shown to be able to restore

the performance of an HP application in multiprogrammed
workloads by reserving for that application a percentage of
the shared LLC while restraining all other applications in
the remaining cache space [15]. However, to leverage this
technology on a multi-core platform of a supercomputer or
a datacenter, one would need to know the exact amount of
cache space that the HP application requires to be isolated
from the others.

This amount depends on the behaviour of the actual HP
application as well as on the behaviour of its co-runners.
Therefore, the system would need to know at any given mo-
ment which applications are running, how they behave and
how much space HP requires in the currently executed work-
load.

Alternatively, a system could conservatively limit all the
LP applications in the minimum possible cache space, i.e., a
single way of the set-associative LLC, reserving the rest of
the cache space for the HP application. We refer to this con-
servative, static allocation as “Cache-Takeover QoS” (CT-
QoS). CT-QoS is expected to provide the best possible per-
formance for HP, at the expense however of the LP appli-
cations. At the same time, there is a high chance that HP
does not utilise all the allocated cache space and it could
have achieved similar performance with less cache. Fur-
thermore, the cache requirements of an application typically
vary during its execution, making the static assignment of
cache space for the whole execution of the application a poor
choice.

In this paper we propose a mechanism that dynamically
adapts the HP application’s LLC allocation, trying to match
its cache requirements at any moment of its execution. We
refer to this approach as “Dynamic Cache-Partitioning QoS”
(DCP-QoS). DCP-QoS attempts to guarantee similar per-
formance for the HP application to that achieved by CT-
QoS, while at the same time allowing more cache space to
be used by the LP applications. This extra space allocated
to LPs, will enable them to achieve higher performance com-
pared to CT-QoS, thus increasing the aggregated through-
put of the system.

3.1 DCP-QoS
The flow chart of our scheme is presented in Figure 2.

DCP-QoS makes initially the same conservative choice as
CT-QoS, i.e., all the LP applications are restrained within
the minimum possible cache space. Assuming a system with
an N-way associative LLC, DCP-QoS allocates N − 1 ways
to HP and only 1 way to LPs. It then waits for HP to reach
a steady state before attempting any changes.

Once our scheme detects that the performance of HP is
stable, it starts gradually reducing its allocation by one way,
which gets assigned to the LP applications. When the cache
space has been reduced to a point where HP’s performance
is no longer stable, our mechanism increases HP’s allocation
by a single way. If this does not make the performance stable
again, our mechanism resets, i.e., allows HP to takeover the
LLC and limits LPs to a single way. If it does, then we
assume that we have reached a “Balanced state”, where the
HP application has enough cache space allocated to enable it
to achieve similar performance to when running with N − 1
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Figure 2: Flowchart of the proposed DCP-QoS
mechanism.

ways.
While in the Balanced state, our mechanism continues to

monitor HP’s performance. If it detects a change, then it
increases HP’s allocation by a single way and checks whether
the extra space was enough to make the performance stable
again. If not, our mechanism resets and HP receives again
N − 1 ways.

3.1.1 Determining performance stability
To determine whether the performance of HP is stable

or not, we define a monitoring period with length T and
measure the IPC HP obtained during that time. As IPC is
expected to fluctuate between two monitoring periods, we
define that IPCt1 and IPCt2 are considered equal if :

(1− a) ∗ IPCt1 ≤ IPCt2 ≤ (1 + a) ∗ IPCt1 (1)

At the end of each time interval i, we compare HP’s IPC,
IPCi, with its IPC during the previous two periods, IPCi−1

and IPCi−2. If:

• IPCi−1 = IPCi−2 and IPCi = IPCi−1, then the per-
formance is considered stable.

• IPCi−1 = IPCi−2 and IPCi ̸= IPCi−1, then the per-
formance is considered not stable.

• IPCi−1 ̸= IPCi−2 and IPCi ̸= IPCi−2, then the
performance was found to be not stable at the end
of the previous monitoring interval. This caused our
mechanism to allocate one more cache way to the HP
application, without however succeeding in restoring
the performance. Therefore, the performance is deter-
mined to be unstable again, leading our mechanism to
reset.

• IPCi−1 ̸= IPCi−2 and IPCi = IPCi−2, then the per-
formance that was found to be unstable before has
now been restored again to its previous levels. There-
fore, we consider the performance to be stable and our
mechanism has reached the Balanced state.

As is evident by Equation 1, our mechanism can deduce
that performance is not stable and reset, even when HP’s
IPC has increased. This design choice is justified by the fact

that a significant change in the IPC, regardless of whether it
is increased or not, could imply a phase change of the appli-
cation. Therefore, our mechanism resets and starts looking
for the new Balanced state from the beginning. Note that
different metrics could also be used for driving the mecha-
nism, such as LLC misses; we leave the exploration of such
options for future work.

3.1.2 Cache Utilization Monitoring
We further augment DCP-QoS to take into consideration

also the cache metrics offered by the Intel technologies. Dur-
ing each monitoring period T , using CMT and MBM, we ac-
quire n samples of how much space HP occupies in the LLC
and how much memory bandwidth it uses, recording only the
maximum cache occupancy and the maximum bandwidth
utilisation.

At the end of T , once the stability of the performance
has been determined and a decision regarding HP’s alloca-
tion has been made, our mechanism compares the recorded
utilisation of the memory channel by HP to a predefined
threshold. If the utilisation is higher than the threshold,
we can speculate that HP tends to fully utilise its allocated
space and proceed with modifying its allocation based on
the performance stability, as depicted in Figure 2.
If, however, the utilisation is below the predefined thresh-

old, we can deduce that HP is content with its LLC alloca-
tion, as it does not suffer many LLC misses. At this point,
we compare the recorded maximum LLC occupancy to the
cache space allocated to HP by our mechanism. If HP is
found to occupy less space than allocated, then the redun-
dant cache ways are removed from HP and assigned to LPs.
That way, we are able to reduce HP’s allocation more ag-
gressively than by removing just one cache way at the end
of every monitoring period.

Finally, we use the memory bandwidth utilisation to avoid
unnecessary resets while in the Balanced state. Specifically,
if our system has reached the Balanced state and the per-
formance is found unstable, before resetting, we look at the
recorded memory bandwidth measurement of the last mon-
itoring period. If it is found to be less than the predefined
threshold, then we speculate that HP will not utilise the ex-
tra space provided by a reset and choose to remain in the
Balanced state.

4. EVALUATION

Processor
Intel Xeon E5-2699 v4 (Broadwell)

22 cores, 2.2GHz, SMT disabled

Memory 64GB DDR4

Memory Bandwidth 153.6 Gbps per channel

LLC 55MB, 20-way set associative

DCP-QoS

a = 0.05

T = 100ms

n = 10

bandwidth threshold = 27.5Mbps

Table 1: System Configuration
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Figure 3: Execution time of the (a) HP application and (b) LP applications, normalized to when each
application runs alone on the system (higher is better). DCP-QoS maintains the QoS of the HP application
very close to the levels of CT-QoS and at the same time improves the performance for the LP applications
by allocating the surplus cache space to them.

4.1 Methodology
We implement DCP-QoS by extending the Intel RDT

Software Package v0.1.5 [1], an open source stand-alone li-
brary that provides support for CMT, MBM, CAT, and
CDP. As the library controls these technologies via the MSRs,
it runs in privileged mode. In addition, the library calculates
various metrics such as IPC. The evaluation is performed on
an Intel Xeon E5-2699 v4 processor. The details of the pro-
cessor, together with the predefined parameters of DCP-QoS
are presented in Table 1.

For the evaluation, we employ 11 benchmarks from the
Parsec 3.0 benchmark suite [4] (serial versions) and 28 bench-
marks from the SPEC CPU 2006 suite [13], 9 of which can
be used with multiple inputs, bringing the total number of

applications to 65. We create multiprogrammed workloads
by selecting one benchmark as the HP application and 21
instances of another as the LP applications. We first execute
all the 4,225 possible co-executions on our system without
any QoS mechanisms, allowing full contention for the shared
resources. Based on the results, we select for each of the 65
benchmarks its worst co-execution, i.e., the LP co-runners
that caused its performance to degrade the most.

We then use the selected 65 co-executions to compare
the proposed DCP-QoS mechanism with two other config-
urations. First the “No QoS” configuration, where no QoS
mechanism is used, hence the HP and the LP applications
experience full contention on the LLC and memory chan-
nel. Second, the CT-QoS configuration, where 19 ways are
statically allocated to the HP application and only 1 way is



allocated to the LP applications.

4.2 Results
Figures 3a and 3b show the execution time of the HP

application and the LP applications respectively for the se-
lected co-execution scenarios, normalized to when each ap-
plication runs alone on the system; the last bars show the
geometric mean.

The results with the No QoS configuration show that the
lack of a QoS mechanism can severely harm the performance
of the HP application due to the contention in the cache and
the memory bandwidth with the LP applications, as was
also shown in Section 2.2. This performance degradation
can reach up to 90% and is on average 59%, compared to
when running alone.

CT-QoS preserves QoS for the HP application by allowing
them to execute on average by 84% compared to when run-
ning alone. However, CT-QoS achieves that QoS for the HP
application at the cost of significantly sacrificing the perfor-
mance of the LP applications and underutilising the shared
resources. The reason is that CT-QoS pessimistically allo-
cates 19 ways of the LLC for the HP application in a static
fashion, even when less ways and hence cache space would
have provided similar performance to the HP application.
Indeed, CT-QoS degrades the performance of the LP appli-
cation by 96% compared to when running alone.

Our proposed mechanism DCP-QoS enjoys almost the
same QoS benefits that CT-QoS provides for the HP applica-
tion, while increasing the performance of the LP applications
too. More specifically, DCP-QoS achieves high performance
for the HP application, by 80% on average compared to when
running alone, and ensures QoS close to that of CT-QoS by
less than 5%. In addition, DCP-QoS enables higher cache
utilisation, increases the overall throughput, and improves
the performance for the LP applications by 5× compared to
the CT-QoS approach (from 4% to 22% compared to when
running alone). Overall, DCP-QoS provides a good trade-off
between QoS and utilisation, and enables the co-location of
high and low priority workloads on the same server.

5. CONCLUSIONS AND FUTURE WORK
In this paper we experimented with the cache monitor-

ing and partitioning facilities provided by modern multicore
processors to test their efficacy in a co-scheduling scenario
where a high priority process co-exists with a number of
low priority ones. We devised a dynamic cache allocation
scheme that monitors the execution behavior of the high
priority process and adapts the cache size according to its
demands. In this way, we were able to validate that it is pos-
sible to maintain the QoS levels of high priority processes to
those of full cache allocation, while at the same time signifi-
cantly boosting the system’s throughput by providing more
resources to the low priority processes.

We intend to extend our approach to more complex execu-
tion scenarios involving different mixtures of processes and
priority levels, and combine the allocation decisions with
workload characterization schemes to further improve its
QoS and throughput.
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