

National Technical University of Athens

School of Electrical and Computer Engineering Computing Systems Laboratory

A Configurable TLB Hierarchy for the RISC-V Architecture

Nikolaos Charalampos Papadopoulos, Vasileios Karakostas, Konstantinos Nikas, Nectarios Koziris, Dionisios N. Pnevmatikatos

ncpapad@cslab.ece.ntua.gr

Motivation

Configurable high-performance soft-processors are getting more attractive

- FPGA fabrics get cheaper and larger
- Expanding FPGA applications for soft processors

RISC-V and Rocket Chip Generator

- Extensible & Configurable + custom accelerators
- Tailored design to the needs of the application

Outline

- Background
- Configurable TLB Hierarchy features
- Methodology
- Performance and Resource Results
- Related & Future work
- Conclusions

Rocket Chip Generator

- SoC Generator that produces Synthesizable RTL
 - Written in Chisel
 - Rocket core or BOOM (Berkeley Out-of-Order Machine)
 - Parameterized Tiles, Caches, Accelerators, etc.
- Library of processor parts and utilities
 - Branch predictors
 - Replacement policies
 - ...and many more

Existing MMU in Rocket Chip Generator

- Fully-associative L1 TLB
 - Separate Data/Instr L1 TLB
 - Vector of Registers
 - Fast & small (32-128 entries)
- Direct-mapped L2 TLB
 - SyncReadMem
 - Slower but larger (128-1024 entr.)
- Fully-associative PTW Cache
 - Vector of Registers
 - Keeps non-leaf nodes

Configurable TLB hierarchy in Rocket

- Kept the same overall structure

 Lookups, refill, replacement
 policies, flushing
- Added about 70 LoC for the L1 TLB
- 50 LoC for the L2 TLB
- Implementation in two different editions of the RCG
 - April 2018 version
 - Supports Xilinx ZCU102
 - January 2020 version

L1 | L2 TLB Contributions

Vanilla L1 | L2 TLB

Fully-assoc | Direct-mapped

#Entries

#Sets, #Ways (pow2)

Configurable L1 | L2 TLB

Any associativity

Pseudo LRU/Random set-associative alternatives

Sectored L1 TLB entries are supported too

Organization

Parameterization

Replacement policies

Other features

PseudoLRU/Random | No policy

Sectored L1 TLB entries

FPL 2020 | August 31, 2020 | Virtual Event

HW & SW Development Flow

• Hardware Flow

- Chisel & FIRRTL checks
- Verilator: Cycle-accurate Simulator
- Xilinx ZCU102 bitstream generation

• Software flow

- Freedom-U-SDK
- Minimal Buildroot distro
- SPEC2006 benchmarks

Evaluation Metrics

- FPGA Resource Usage
 - Lookup-Tables (LUTs), Flip-Flops (FFs), Block RAM (BRAMs)
- Performance Metrics
 - SPEC2006 benchmarks (with test input set)
 - Misses-per-kilo-Instructions (MPKI)
 - Instructions-per-cycle (IPC)

Evaluation Scenarios

Conf. No	DTLB	ITLB	L2 TLB
Ι	32-way, 32 entries	32-way, 32 entries	-
II	32-way, 32 entries	32-way, 32 entries	4-way, 128 entries
III	32-way, 32 entries	32-way, 32 entries	4-way, 512 entries
IV	8-way, 64 entries	8-way, 128 entries	8-way, 1024 entries
V	8-way, 128 entries	8-way, 64 entries	8-way, 1024 entries

- Configurations resembling well-known architectures
 - $\circ \quad \text{Conf III} \rightarrow \text{ARM Cortex A57}$
 - $\circ \quad \text{Conf IV} \rightarrow \text{Intel Skylake}$
 - \circ Conf V \rightarrow Intel Skylake (swapped I/D TLB sizes)

FPGA resource usage evaluation

			T A	v
39 1	87 1	.86	188 1	186
	#-0-2760 T		0.000/020120 00	190372190827
	39 1	39 187 1	39 187 186	39 187 186 188 1

Conf. No	DTLB	ITLB	L2 TLB
Ι	32-way, 32 entries	32-way, 32 entries	-
II	32-way, 32 entries	32-way, 32 entries	4-way, 128 entries
III	32-way, 32 entries	32-way, 32 entries	4-way, 512 entries
IV	8-way, 64 entries	8-way, 128 entries	8-way, 1024 entries
V	8-way, 128 entries	8-way, 64 entries	8-way, 1024 entries

L1 TLB Performance Evaluation (MPKI)

- Most L1 TLB misses come from data accesses
- Several benchmarks show similar behavior across configurations
- But larger L1 DTLB may improve performance
- mcf stresses the TLB hierarchy the most

Conf. No	DTLB	ITLB	L2 TLB	
Ι	32-way, 32 entries	32-way, 32 entries	-	
II	32-way, 32 entries	32-way, 32 entries	4-way, 128 entries	
III	32-way, 32 entries	32-way, 32 entries	4-way, 512 entries	
IV	8-way, 64 entries	8-way, 128 entries	8-way, 1024 entries	
V	8-way, 128 entries	8-way, 64 entries	8-way, 1024 entries	

L1 TLB Performance Evaluation (MPKI)

- Most L1 TLB misses come from data accesses
- Several benchmarks show similar behavior across configurations
- But larger L1 DTLB may improve performance
- mcf stresses the TLB hierarchy the most

Conf. No	DTLB	ITLB	L2 TLB
Ι	32-way, 32 entries	32-way, 32 entries	-
II	32-way, 32 entries	32-way, 32 entries	4-way, 128 entries
III	32-way, 32 entries	32-way, 32 entries	4-way, 512 entries
IV	8-way, 64 entries	8-way, 128 entries	8-way, 1024 entries
V	8-way, 128 entries	8-way, 64 entries	8-way, 1024 entries

L1 TLB Performance Evaluation (MPKI)

- Results for L1 Data and Instruction TLBs
- Most L1 TLB misses come from data accesses
- Several benchmarks show similar behavior across configurations
- But larger L1 DTLB may improve performance
- mcf stresses the TLB hierarchy the most

Conf. No	DTLB	ITLB	L2 TLB
Ι	32-way, 32 entries	32-way, 32 entries	-
II	32-way, 32 entries	32-way, 32 entries	4-way, 128 entries
III	32-way, 32 entries	32-way, 32 entries	4-way, 512 entries
IV	8-way, 64 entries	8-way, 128 entries	8-way, 1024 entries
V	8-way, 128 entries	8-way, 64 entries	8-way, 1024 entries

L2 TLB Performance Evaluation (MPKI)

- L2 TLB misses are rare for most benchmarks
- Larger L2 TLB reach may reduce page walks
 Configurations IV and V
- mcf improves significantly as L2 TLB increases

Conf. No	DTLB	ITLB	L2 TLB	
I	32-way, 32 entries	32-way, 32 entries	-	
II	32-way, 32 entries	32-way, 32 entries	4-way, 128 entries	
III	32-way, 32 entries	32-way, 32 entries	4-way, 512 entries	
IV	8-way, 64 entries	8-way, 128 entries	8-way, 1024 entries	
V	8-way, 128 entries	8-way, 64 entries	8-way, 1024 entries	

L2 TLB Performance Evaluation (MPKI)

- L2 TLB misses are rare for most benchmarks
- Larger L2 TLB reach may reduce page walks
 Configurations IV and V
 - Configurations IV and V
- mcf improves significantly as L2 TLB increases

Conf. No	DTLB	ITLB	L2 TLB
Ι	32-way, 32 entries	32-way, 32 entries	-
II	32-way, 32 entries	32-way, 32 entries	4-way, 128 entries
III	32-way, 32 entries	32-way, 32 entries	4-way, 512 entries
IV	8-way, 64 entries	8-way, 128 entries	8-way, 1024 entries
V	8-way, 128 entries	8-way, 64 entries	8-way, 1024 entries

L2 TLB Performance Evaluation (MPKI)

- L2 TLB misses are rare for most benchmarks
- Larger L2 TLB reach may reduce page walks
 Configurations IV and V
- mcf improves significantly as L2 TLB increases

Conf. No	DTLB	ITLB	L2 TLB
Ι	32-way, 32 entries	32-way, 32 entries	-
II	32-way, 32 entries	32-way, 32 entries	4-way, 128 entries
III	32-way, 32 entries	32-way, 32 entries	4-way, 512 entries
IV	8-way, 64 entries	8-way, 128 entries	8-way, 1024 entries
V	8-way, 128 entries	8-way, 64 entries	8-way, 1024 entries

System Performance Evaluation (IPC)

Benchmark	Ι	II	III	IV	V
mcf	0.13	-	7.7 %	15.4 %	15.4 %
gobmk	0.44	-	-	2.3 %	2.3 %
hmmer	0.58	-	-	-	-
sjeng	0.55	1.8 %	1.8 %	1.8 %	3.6 %
libquantum	0.44	-	-	-	-
h264ref	0.77	1.4 %	1.4 %	2.6 %	2.6 %
omnetpp	0.35	2.9 %	5.7 %	5.7 %	5.7 %
astar	0.36	-	-	2.8 %	2.8 %
xalancbmk	0.36	2.8 %	8.3 %	8.3 %	8.3 %
bzip2	0.51	2.0 %	4.0 %	5.9 %	5.9 %
gcc	0.44	$2.2 \ \%$	2.2~%	4.5 %	4.5 %

System Performance Evaluation (IPC)

Benchmark	Ι	II	III	IV	V
mcf	0.13	-	7.7 %	15.4 %	15.4 %
gobmk	0.44	-	-	2.3 %	2.3 %
hmmer	0.58	-	-	-	-
sjeng	0.55	1.8 %	1.8 %	1.8 %	3.6 %
libquantum	0.44	-	-	-	-
h264ref	0.77	1.4 %	1.4 %	2.6 %	2.6 %
omnetpp	0.35	2.9 %	5.7 %	5.7 %	5.7 %
astar	0.36	-	-	2.8 %	2.8 %
xalancbmk	0.36	2.8 %	8.3 %	8.3 %	8.3 %
bzip2	0.51	$2.0 \ \%$	4.0 %	5.9 %	5.9 %
gcc	0.44	2.2 %	2.2~%	4.5 %	4.5 %

System Performance Evaluation (IPC)

Benchmark	Ι	II	III	IV	V
mcf	0.13	-	7.7 %	15.4 %	15.4 %
gobmk	0.44	-	° -	2.3 %	2.3 %
hmmer	0.58	-	-	-	-
sjeng	0.55	1.8 %	1.8 %	1.8 %	3.6 %
libquantum	0.44	-	-	-	 .
h264ref	0.77	1.4 %	1.4 %	2.6 %	2.6 %
omnetpp	0.35	2.9 %	5.7 %	5.7 %	5.7 %
astar	0.36		-	2.8 %	2.8 %
xalancbmk	0.36	2.8 %	8.3 %	8.3 %	8.3 %
bzip2	0.51	2.0 %	4.0 %	5.9 %	5.9 %
gcc	0.44	2.2 %	$2.2 \ \%$	4.5 %	4.5 %

Related & Future Work

- Improving soft-processor performance
 - Prior work targets hand optimized HDL code
 - Improvements in Chisel compiler \rightarrow Cheaper & better FPGA mappings
- Reduce resource usage in FPGA simulation
 Fully-assoc. TLBs are CAMs → FPGA-hostile structure

Conclusions

- Enabled further configurability in the Rocket Chip Generator
- Our design can output any L1/L2 TLB organization/size
- Evaluated resource usage & application performance

https://github.com/ncppd/rocket-chip

Thank you!

